Toward Programming Models for
Parallel Processing of Sparse Data Sets

Padma Raghavan

Computer Science and Engineering
The Pennsylvania State University

PENNSTAT
_ i
Languages and Compilers S

for Parallel Computing, 2015 Research Supported by NSF

Outline

» Background on sparse data processing

> k-level representations of sparse data and
computations
» achieving high performance on NUMA multicores

» as an abstraction for domain specific
programming models and optimizations

» Looking ahead: the increasing role of compiler
technologies

Background

»\Where do sparse data come from?
»Why exploit sparsity?

»How to exploit sparsity?

From Data, Text and Image mining

High Dimensional Hyper-
Sparse Data

Wikipedia mining

Disease networks

Gene networks (images are from google)

lobal transforms

From Discretizing space + local

interactions to model

sﬂi’iﬂl“‘!ﬁ?
Y000 W
‘ IR

i
il T

s RRRRRRRRR M_
s ss--n\hﬁm@%_s Q
i 3 T
@sh%‘,ﬁ.ﬁnu?fffiiﬂﬂaﬂ 2 9
- _...?—%,ﬁr.ﬁ#ﬁﬁﬂ— @) NG,
‘ \\ I TRNARAAAARAN =
s\ _:—Fﬁgfﬁﬁ- < o C
f——ﬁﬁﬁ%ﬁ? © U & ©
: ‘_——Fﬁf#ﬁf,ﬂ%, = 0 =3
:‘ ‘Eﬂﬂfﬁﬁ.ﬁ% S O cEY
/ N n mn B 7]
: NIZZ2718 @ oL 9
(N7 TN, - !
?uﬁ%ﬁ—-ﬂﬁ-’ = =
‘\\u%ﬁ.éﬂ_ﬁ-ﬁ-- e =09
bt/ & S I3
%.., c
,.,..,._, ‘J'__ a
74 /) <
O
)
=
o
<
=
O

‘EENEEEEREEEE

AREEREREEEE o

I
L]
]
]
-
]
1]
]
]
]
]
i
¥

Micron scale: MATCASE@PSU

@EEEEREERT. =

From Approximations

o Approximate N-body interactions

Atomistic: MATCASE@PSU Astrophysics: P. Hut et al, Hubble Telescope

Performance Challenges

Scaling, Efficiency, Reliability, Quality

*®

Applications Data & Algorithms

o

Systems &
Hardware

Why exploit Sparsity?

» Sparsity= Enables "Big Data” and “Big Simulation”
based science that is otherwise beyond reach

» Opportunity=0rder(s) of magnitude reduction in
Memory and Computational costs

» Increasingly important — as shown by recent
development of Sparse HPCG Type-2 benchmarks
vs Dense Linpack Type-1

What are general approaches ?

e Identify structure that is
latent in sparse data

o Multiple representations can
be used interchangeably to
find useful sub-structures

e Contributions by many
Catalyurek, ... Demmel,...
Gilbert, ... Ng, Raghavan, ...
Ucar, Yelick ...

Match: Matrix to Graph to Matrix ?

Matrix Graph

) _Matrix

=T

i
1

' etk gt

Why? Geometry Counts!

e Graph maps to clean geometric embedding
=Planar =Separable!

e Not separable even
when sparser
e Almost all random

Geometric matrices are not
« N vertices= 2 halves +N separator separable (Szermedi)

e Elegant theory

)

1%%‘&&%;«?‘

Some abstractions for High Performance
on NUMA Multicores

» Large packs of independent equal-length tasks
» Multilevel data sub-structuring
»Data reuse aware task scheduling

» Sparse matrix examples ---approach extends to
graphs and meshes

Multilevel Sub-structuring of Data

“ESdy, > Spatial
~=2 |ocality in

matrix or

graph

» Temporal
locality in
vector (reuse)

CSR-k Sparse Mat-Vec

X In parallel for each super-super-row | =1....r

. for each super-row j in super-row |

for each row k in super-row j

] | y(i) =0

epresents higher levels

beyond traditional CSR for each nonzero in row i
Load subscript k, A[i][k], x(k)
y(i) = y(i) + Ali][k] *x(k)
end for

Speeding-up Sparse Computations on Multicores:
What techniques are known to work?

» Ordering of matrix affects data locality & reuse in x
> Profile reducing orderings (e.g. RCM) are generally good
for mat-vec

> Level set and coloring are generally good for triangular
solve

» Utilizing dense sub-blocks to reduce loading of nonzero
subscripts can help

> Tradeoffs between # of loads & # of operation
» Dense blocks can be artificially created by adding fill or
dense blocks that exist naturally can be exploited

CSR-k: A multilevel form of CSR
Example: for K=3, symmetric A

» Start with A1 =A and G1= graph of Al

» Coarsen G1 to get G2 (with super-rows); Order G2

» Coarsen G2 to get G3 (with super-super-rows); Order G3
» Expand G3 to G2; refine ordering in each super-super-row
» Expand G2 to G1; refine ordering in each super-row

» Motivation: To get packs of uniform length,
independent tasks at a desired granularity, with
spatial locality in A, and options for temporal
locality/reuse in x through scheduling

CSR-k + Scheduling: 2 examples

» Mat-Vec (Ax=y)
» Coarsen: heavy edge matching or consecutive rows of a
band ordering

» Ordering of G2, G3 : a weighted form of band ordering
» Published, HiPC 2014, Kabir, Booth, R.

» Tri- Solve (Ly = b)
» Coarsen : same as above
» Ordering of G2, G3: Coloring (serialization is removed)
» To appear, SC15, Kabir, Booth, Aupy, Benoit, Robert, R.

» Data affinity and reuse graph model of scheduling: To
utilize temporal locality in vector and promote reuse

Data affinity and Reuse Graph
for Scheduling

t1 t2 t3 t4 tn

O->0->0—-0—~ O—->0—0

» n uniform length tasks, n is large
» Simplified model: edge between t_i and t_(i+1), i=1, ..., n-1
if vector elements are shared

> If cores are identical, equal partition is optimal schedule

(Aupy, Benoit, Robert)
» Actual graphs are not chains but we use ordering so that
the “chain” reflects main reuse component

+ 4

Solve

Tr

3

CSR-

of Tasks

Tunable Degree of Parallelism:

Tasks vs Task Granularity

8000
7000 A\
6000 \
5000 \
4000 \

3000 \\
2000

0

8 15 31 61 123 246 491 983 1,966 3,931 7,862 15,725

Task Size in Thousands of Operations

CSR-K:
» How does it perform?

% CSR-2 Sparse Mat Vec (HiPC 2014,
Kabir, Booth, R.)

% CSR-3 Tri-Solve (SC 2015, Kabir,
Booth, Aupy, Benoit, Robert, R.)

Sparse Matrix Suite for Tests
Matix ~ #ofRows #of Nonzeroes Row Density

G1: ldoor 952,203 42,493,817 44.63
Dl:rgg n 2 21 sO 2,097,152 31,073,142 14.82
S1: nlpkkt160 8,345,600 225,422,112 27.01
D2: delaunay n23 8,388,608 58,720,176 7.00
D3: road_central 14,081,816 47,948,642 3.41
D4: hugetrace-20 16,002,413 64,000,039 4.00
D5: delaunay_n24 16,777,216 117,440,418 7.00
D6: hugebubbles-0 18,318,143 73,258,305 4.00
D7: hugebubbles-10 19,458,087 77,817,615 4.00
D8: hugebubbles-20 21,198,119 84,778,477 4.00
D9: road_usa 23,947,347 81,655,971 3.41

D10: europe_osm 50,912,018 159,021,338 3.12

Intel Westmere NUMA

olalalolalalsla
1 11 11 111 11 11 11 11

P s

(a) 8-core processor. (b) 4-processors configuration with QPL

|1 access: 4 cycles (private)

|2 access:10 cycles (private)

| 3 access: 38-170 cycles (shared)
»Memory access: 175— 290 cycles (shared)

YV V V

Mat-Vec: MKL, pOSKI, and CSR-2 on 32 cores

1.4

Time (Second)
o o o -
£~ (o)) (o) -t N
I I

o
)

o

MKL

pOSKI

- e}
BlD1 |
B s1
D2
[D3 ||
| D4
[D5 |
| |D6
[|D7 |
I D8
BDS |
BD10

Methods

CSR-2

Dynamic Power and Energy: 32 cores

Dynamic Power: 32 cores

| » CSR-2: Highest Dynamic
. — Power !
E‘MD— : -
: |
% 120 —
100} . L Dynamic Energy: 32 Cores
—:— = -1I'n.-'llv{LI r I | | | |
BOf B OsKI
20} B CsR-2
I'n.-'lliiL pEJ‘ISH.I CEII=|-2 i’-‘:
> Lowest Dynamic Energy; £
> High H/W Power leadsto £"
&

faster execution

t

G1 D1 51 D2 03 D4 05 D& D7 Da D9 D10
Matrices

11.8

7.87

4 573

Total Energy: Static + Dynamic 32 cores

160

Bl CSR-2
140 | [l pOSKI
Bl VKL

-l

N

(=)
T

-
(=]
o

Total Energy(Joules)
» (o]
o o

=Y
o
T

N
o
T

0

Gi D1 S1 D2 D3 D4 D5 D6 D7 D8 D9 Dio
Matrices

» CSR-2 uses only 44% of energy of pOSKI
» MKL uses the most energy

Mat-Vec: MKL, pOSKI and CSR-2:
Total Time Over All Matrices, 1-32 Cores

Time(Sec)

9
*\
7
-\
> \\\\ -=-CSR-2
4 \ ==pOSKI
3 ~MKL
: :\'\-—-
0

2 4 8 16 24 32

1
of Cores

Tri-Solve : Level- Set and CSR-3 with
coloring, 32 cores

Time(Sec)

4
3
2
W CSR-3
1 W Level-Set
0 |

Gl D1 S1 D2 D3 D4 D5 De D7 D8 D9 D10

Matrices

Tri-Solve: Speed-ups Relative to Level Set

Relative Speed-up

25.00

20.00

15.00

10.00 “CSR-3

5.00 ¥ Level-Set

0.00
Gl D1 S1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Matrices

» CSR-3 is 20x faster than level-set

Serial Steps in Level Set Relative to CSR-3 with coloring

1600

1400
1200 —
1000
B0OO
600 -
400 -
200 -+
ﬂ -

hugetrace-20 road_usa

Matrices 3500

1400
1200
1000
800
600 -
400 -
200 -
o -

hugetrace-20 road_usa

Average Number of Parallel Tasks in CSR-3 RélatiVe to Level Set

Tri-Solve : Effect of Reuse Aware
Scheduling within 1 pack

Relative Speedup per Unknown (Intel)
| | | | | | I | I | :CSH-COL

D

o]
on

PO
|

i
||

Relative Speedup

JLIL

[

G1 D1 51 D2 D3 D4 D5 D6 D7 D8 D9 D10
Matrices

CSR-k: A simple model for performance

tuning

» Large packs of equal length independent tasks
through ordering and sub-structuring
» can tune granularity using k
» enables spatial locality of accesses in matrix

» Data affinity/reuse graph model for scheduling
can increase temporal locality in accesses to
vector

» For graphs and meshes, there are k-level
counterparts that are similar to csr-k for matrices

» Algorithm based fault tolerance can be wrapped in

CSR-k Patterns for Domain Specific
Optimizations?

> (>

> > >
synchronization
> > o
synchronization
> > > >

> >

synchronization

(@) Data affinity/reuse chain
graph of independent equal
length tasks (mat-vec, on
multicore)

(b)Packs of (a) with synchronization
between packs (tri-solve or bfs
on multicore)

(c) Packs of (a) with partial
synchronization between packs,
e.g. tree-like, for cross multicore
nodes, accelerators

The need for domain specific

optimizations

» CSR-k is a simplified abstraction for high

performance sparse computations on NUMA
multicores

» Needs a domain language/domain specific

optimization approach to be widely usable and
adaptable to new hardware

» Run-time optimizations and dynamic approaches
to scheduling will be needed in practical
applications to leverage tunable parameters of
CSR-k and to variations in hardware

Looking ahead

» Parallel computing for all --- programming
language and compilation technologies can be
the driver!

Parallel Computing: A Second Sustainable
Surge?

“A truly transformational technology will always have its immediate
consequences overestimated and its long-term consequences
underestimated” Francis Collins, 2010

» 1990-2000:
» NSF launches supercomputer centers program
» Early breakthroughs in physics based modeling &
A simulation through parallel “capability” computing
» 2000-2010:
» 1000x growth in peak computing rates
» Big growth in modeling & simulation for science
» High throughput science data generation
> 2010-
» 1000x growth in peak computing rates
. > > Multicore revolution: abundant TeraOps
Time » Data deluge: 1000x faster growth than computing

Impact

Expanding Opportunities:
Large Sparse Data Sets

Science Data
Explosion

Major
advances in
Algorithms,
Models,
Systems
EpE——— Grand Science
ustainabili . -
Health & Engineering

Advanced manufacturing Challenges

Critical infrastructure

Where are the Opportunities?

**Sparse data processing | **H/W trends

o Few ops-per-data o Fast, hot to slower, cooler

o O(N)-orlower “sublinear” data | 2y cgres/threads@18months
accesses define performance

efficiencies o Heterogeneous

o Parallelism at fine, medium, o Process variability, GPUs

SEEE o nrelsble- ot

OQ o ©

OO o ©

6

[:> X

Increasing Need for Programming
Models/ Run-Time Apboroaches .

Deke aete*g“"' Programming models &
WS = ace compilation technologies

\ QE"* OVma“
* WINN
s gel\ne oS
ucturing PN
v S

¢ Sparse Algorithn

%5555

=
°

21:0029%%%999§§§

Addressing Performance Challenges

Scaling, Efficiency, Reliability, Quality

Applications Data & Algorithms

Systems &
Hardware

Acnowledgements

e Joint work with:

— Guillaume Aupy, Josh Booth, Humayun Kabir
(Penn State)

— Anne Benoit (LIP, Ecole Normale Supérieure de
Lyon, France), and Yves Robert (LIP, Ecole Normale
Supérieure de Lyon, France & Univ of Tennessee)

 Thanks to

— National Science Foundation & Penn State
— LCPC organizers and attendees

