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Background on sparse data processing 

 

 k-level representations of sparse data and 
computations 

  achieving high performance on NUMA multicores 

 as an abstraction for domain specific 
programming models and optimizations 

 

 Looking ahead: the increasing role of compiler 
technologies 

 

 

 

 

 

 



Background 

 

 

Where do sparse data come from? 

 

Why exploit sparsity? 

 

How to exploit sparsity? 

 
 



From …. Data, Text and Image mining   

High Dimensional   Hyper-
Sparse  Data 
 
Wikipedia  mining 
Disease networks 
Gene networks     (images are from google) 



From …. Discretizing space + local   
interactions to model global transforms  

Mesh Based 
Animation: Tekalp 
& Osterman@U. 
Rochester 

Micron scale: MATCASE@PSU                  cm^3: Mechanics, Kershaw@ LLNL 



From Approximations  

• Approximate N-body interactions  

 

Atomistic: MATCASE@PSU              Astrophysics: P. Hut et al, Hubble Telescope 



Performance Challenges 

         Scaling, Efficiency, Reliability, Quality  
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Why exploit Sparsity? 

Sparsity= Enables “Big Data” and “Big Simulation” 
based science that is otherwise beyond reach 

 

Opportunity=Order(s) of magnitude reduction in 
Memory and Computational costs 

 

 Increasingly important – as shown by recent 
development of Sparse HPCG Type-2 benchmarks 
vs Dense Linpack Type-1   



    What are general approaches ? 

• Identify structure  that is 
latent in  sparse data 

• Multiple representations can 
be  used interchangeably to 
find useful sub-structures 

• Contributions by many  
Catalyurek, … Demmel,… 
Gilbert, … Ng, Raghavan, … 
Ucar, Yelick … 

 

 

 

 

 

Graph, 
symbolic 

Mesh, 
geometric 

Matrix,  
numeric 



Match: Matrix to  Graph to  Matrix ? 

Matrix  Graph  Matrix  

X 

B C 
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Z 
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Why? Geometry Counts! 

• Graph maps to clean geometric embedding 
=Planar =Separable! 

Geometric  

= 

• N vertices= 2 halves +         separator 

• Elegant theory  

N

• Not separable even 
when sparser 

• Almost all random 
matrices are not 
separable (Szermedi) 



Some abstractions for High Performance 
on NUMA Multicores 

 

 Large packs of independent equal-length tasks 

 Multilevel data sub-structuring 

Data reuse aware task scheduling 

 

 Sparse matrix examples ---approach extends to 
graphs and meshes 

 

 

 
 



Multilevel Sub-structuring of  Data 

Level 3 Level 2 

Level 1  Spatial 
locality  in 
matrix or 
graph 
 
 

 Temporal 
locality in 
vector (reuse) 

 
 



CSR-k  Sparse Mat-Vec  

 In parallel for each  super-super-row l = 1….r 

  for each super-row j in super-row l 

   for each row k in super-row j 

    y(i) = 0 

    for each nonzero in row i 

   Load subscript k, A[i][k], x(k) 

   y(i) = y(i) +  A[i][k] *x(k) 

    end for 

   ………………………….. 

Represents higher levels 
beyond traditional CSR 



Speeding-up Sparse Computations on Multicores: 
What techniques are known to work? 
 

Ordering of  matrix affects data locality & reuse in x 
Profile reducing orderings (e.g. RCM) are generally good 

for mat-vec 
Level set and coloring are generally good for triangular 

solve 
 

Utilizing dense sub-blocks to reduce loading of nonzero 
subscripts can help 
Tradeoffs between # of loads  & # of operation 
Dense blocks can be artificially created by adding fill or 

dense blocks that exist naturally can be exploited 
 



 CSR-k: A multilevel form of CSR 
 Example: for  K=3, symmetric A 
 
  Start with A1 =A and G1= graph of A1 
 Coarsen G1 to get G2  (with super-rows ); Order G2  
 Coarsen  G2  to get G3 (with super-super-rows); Order G3 
 Expand  G3 to  G2; refine  ordering in each super-super-row 
 Expand G2 to G1;  refine ordering in each super-row 
 

Motivation: To get packs of uniform length, 
independent tasks at  a desired granularity, with  
spatial locality in A, and options for temporal 
locality/reuse in x  through scheduling 
 
 



CSR-k + Scheduling: 2 examples 
 
 

Mat-Vec ( Ax=y) 
 Coarsen: heavy edge matching or consecutive rows of a 

band ordering 
 Ordering of G2, G3 : a weighted form of band ordering 
 Published, HiPC 2014, Kabir, Booth, R. 
 

Tri- Solve  (Ly = b) 
 Coarsen : same as above 
 Ordering of G2, G3: Coloring (serialization is removed) 
 To appear, SC15, Kabir, Booth, Aupy, Benoit, Robert, R. 
 

Data affinity and reuse graph model of scheduling: To 
utilize temporal locality in vector and promote reuse 
 
 



Data affinity and Reuse Graph 
for Scheduling 
 
 

 n uniform length tasks, n  is large  
 Simplified model: edge between t_i and t_(i+1),  i= 1, …, n-1 
if  vector elements are shared 

 
 If cores are identical, equal partition is  optimal schedule 

(Aupy, Benoit, Robert) 
 Actual graphs are not chains but we use  ordering  so that 

the “chain” reflects main reuse component 

t_1    t_2   t_3    t_4  ………….                  t_n 



CSR-2 : Mat-Vec 

CSR-3: Tri-Solve 
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CSR-K:     
   How does it perform? 
 
 CSR-2  Sparse Mat Vec (HiPC 2014, 

Kabir, Booth, R.)   
 CSR-3  Tri-Solve (SC 2015, Kabir, 

Booth, Aupy, Benoit, Robert, R.) 



Sparse Matrix Suite for Tests 
Matrix # of Rows # of Nonzeroes Row Density 

G1: ldoor  952,203 42,493,817 44.63 

D1: rgg_n_2_21_s0 2,097,152 31,073,142 14.82 

S1: nlpkkt160 8,345,600 225,422,112 27.01 

D2: delaunay_n23 8,388,608 58,720,176 7.00 

D3: road_central 14,081,816 47,948,642 3.41 

D4: hugetrace-20 16,002,413 64,000,039 4.00 

D5: delaunay_n24 16,777,216 117,440,418 7.00 
D6: hugebubbles-0 18,318,143 73,258,305 4.00 

D7: hugebubbles-10 19,458,087 77,817,615 4.00 

D8: hugebubbles-20 21,198,119 84,778,477 4.00 

D9: road_usa 23,947,347 81,655,971 3.41 

D10: europe_osm 50,912,018 159,021,338 3.12 



Intel  Westmere NUMA  

L1 access: 4 cycles (private) 
L2 access:10 cycles (private) 
L3 access: 38-170 cycles (shared) 
Memory access: 175– 290  cycles ( shared) 



Mat-Vec: MKL, pOSKI, and CSR-2 on 32 cores 



Dynamic Power and Energy: 32 cores 

 Lowest Dynamic Energy; 
 High H/W Power  leads to 

faster execution 

 CSR-2: Highest Dynamic 
Power !!  



Total Energy: Static + Dynamic 32 cores 

 CSR-2 uses only 44% of energy of pOSKI  
 MKL uses the most energy 



 Mat-Vec: MKL, pOSKI  and CSR-2: 
 Total Time Over All Matrices, 1-32 Cores 
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Tri-Solve : Level- Set and CSR-3 with 
coloring, 32 cores 



Tri-Solve: Speed-ups Relative to Level Set 

 CSR-3  is 20x faster than  level-set   

 Relative Speed-up 
  

 
 
 
 
 
 



Serial Steps in Level Set Relative to CSR-3 with coloring 

Average Number of Parallel Tasks in CSR-3 Relative to Level Set 



Tri-Solve : Effect of Reuse Aware 
Scheduling within 1 pack 



CSR-k: A simple model for performance 
tuning 

 Large packs of equal length independent tasks 
through ordering and sub-structuring 

  can tune granularity using k 

  enables spatial locality of accesses in matrix 

Data affinity/reuse  graph model for scheduling 
can increase temporal locality in accesses to 
vector 

 For graphs and meshes, there are  k-level 
counterparts that are similar to csr-k for matrices 

Algorithm based fault tolerance can be wrapped in 

 



CSR-k Patterns for Domain Specific 
Optimizations? 

(a) Data affinity/reuse chain     
graph of independent equal 
length tasks (mat-vec, on 
multicore) 

synchronization 

synchronization 

synchronization 

(b)Packs of (a) with synchronization 
between packs ( tri-solve  or bfs 
on multicore) 
 

(c)Packs of (a) with partial 
synchronization  between packs, 
e.g. tree-like, for cross multicore 
nodes, accelerators  



The need for domain specific 
optimizations 

CSR-k is a simplified abstraction for high 
performance sparse computations on NUMA 
multicores 

Needs a domain language/domain specific 
optimization approach to be widely usable and 
adaptable to new hardware 

Run-time optimizations and dynamic approaches 
to scheduling will be needed in practical 
applications to leverage tunable parameters of 
CSR-k and to  variations in hardware 

 
 



Looking ahead 

 

 

Parallel computing for all --- programming 
language and compilation technologies can be 
the driver! 

 

 
 



Parallel Computing: A Second Sustainable 
Surge? 

“A truly transformational technology will always have its immediate 
consequences overestimated and its long-term consequences 
underestimated”  Francis Collins, 2010 

Time 

Im
p

a
c
t 

 1990-2000:  
 NSF launches supercomputer centers program 
 Early breakthroughs in physics based modeling & 

simulation through parallel “capability” computing 
 2000-2010:  

 1000x growth in peak computing rates  
 Big growth in modeling & simulation for science 
 High throughput science data generation 

 2010- 
 1000x growth in peak computing rates  
 Multicore revolution: abundant TeraOps 
 Data deluge: 1000x faster growth than computing 
 

 
 

 
 



Expanding Opportunities: 
Large Sparse Data Sets 

Grand Science 
& Engineering 

Challenges 

Major 
advances in 
Algorithms, 

Models, 
Systems 

Science Data 
Explosion 

Telescopes, environmental 
observatories, high-
throughput sequencers, fMRI, 
atom probes  

Bayesian analysis, PDE-
models, molecular 
modeling, machine 
learning, parallel 
algorithms, cloud 
computing 

Sustainability 
Health 
Advanced manufacturing 
Critical infrastructure 



Sparse data processing 
o  Few  ops-per-data 

o O(N) – or lower “sublinear” data 
accesses define performance 
efficiencies 

o Parallelism at fine, medium, 

coarse scales  

 

 

 

 

Where are the Opportunities? 

H/W trends 
o Fast, hot to slower, cooler 

o 2x cores/threads@18months 

o Heterogeneous 

o Process variability, GPUs 

o  Unreliable    Soft Errors 

 

 

 

 

 



 Sparse Algorithms 

 

 

 

Increasing Need for Programming 
Models/ Run-Time Approaches 

 H/W features 

 

 

 

 

 

 

Programming models & 
compilation technologies 



Addressing Performance Challenges 

         Scaling, Efficiency, Reliability, Quality  
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