
Toward Programming Models for
Parallel Processing of Sparse Data Sets

Padma Raghavan

Computer Science and Engineering
The Pennsylvania State University

Languages and Compilers

for Parallel Computing, 2015 Research Supported by NSF

Outline

Background on sparse data processing

 k-level representations of sparse data and
computations

 achieving high performance on NUMA multicores

 as an abstraction for domain specific
programming models and optimizations

 Looking ahead: the increasing role of compiler
technologies

Background

Where do sparse data come from?

Why exploit sparsity?

How to exploit sparsity?

From …. Data, Text and Image mining

High Dimensional Hyper-
Sparse Data

Wikipedia mining
Disease networks
Gene networks (images are from google)

From …. Discretizing space + local
interactions to model global transforms

Mesh Based
Animation: Tekalp
& Osterman@U.
Rochester

Micron scale: MATCASE@PSU cm^3: Mechanics, Kershaw@ LLNL

From Approximations

• Approximate N-body interactions

Atomistic: MATCASE@PSU Astrophysics: P. Hut et al, Hubble Telescope

Performance Challenges

 Scaling, Efficiency, Reliability, Quality

Applications Data & Algorithms
 Systems &
 Hardware

Why exploit Sparsity?

Sparsity= Enables “Big Data” and “Big Simulation”
based science that is otherwise beyond reach

Opportunity=Order(s) of magnitude reduction in
Memory and Computational costs

 Increasingly important – as shown by recent
development of Sparse HPCG Type-2 benchmarks
vs Dense Linpack Type-1

 What are general approaches ?

• Identify structure that is
latent in sparse data

• Multiple representations can
be used interchangeably to
find useful sub-structures

• Contributions by many
Catalyurek, … Demmel,…
Gilbert, … Ng, Raghavan, …
Ucar, Yelick …

Graph,
symbolic

Mesh,
geometric

Matrix,
numeric

Match: Matrix to Graph to Matrix ?

Matrix Graph Matrix

X

B C

Y
Z

A

Why? Geometry Counts!

• Graph maps to clean geometric embedding
=Planar =Separable!

Geometric

=

• N vertices= 2 halves + separator

• Elegant theory

N

• Not separable even
when sparser

• Almost all random
matrices are not
separable (Szermedi)

Some abstractions for High Performance
on NUMA Multicores

 Large packs of independent equal-length tasks

 Multilevel data sub-structuring

Data reuse aware task scheduling

 Sparse matrix examples ---approach extends to
graphs and meshes

Multilevel Sub-structuring of Data

Level 3 Level 2

Level 1 Spatial
locality in
matrix or
graph

 Temporal
locality in
vector (reuse)

CSR-k Sparse Mat-Vec

 In parallel for each super-super-row l = 1….r

 for each super-row j in super-row l

 for each row k in super-row j

 y(i) = 0

 for each nonzero in row i

 Load subscript k, A[i][k], x(k)

 y(i) = y(i) + A[i][k] *x(k)

 end for

 …………………………..

Represents higher levels
beyond traditional CSR

Speeding-up Sparse Computations on Multicores:
What techniques are known to work?

Ordering of matrix affects data locality & reuse in x
Profile reducing orderings (e.g. RCM) are generally good

for mat-vec
Level set and coloring are generally good for triangular

solve

Utilizing dense sub-blocks to reduce loading of nonzero
subscripts can help
Tradeoffs between # of loads & # of operation
Dense blocks can be artificially created by adding fill or

dense blocks that exist naturally can be exploited

 CSR-k: A multilevel form of CSR
 Example: for K=3, symmetric A

 Start with A1 =A and G1= graph of A1
 Coarsen G1 to get G2 (with super-rows); Order G2
 Coarsen G2 to get G3 (with super-super-rows); Order G3
 Expand G3 to G2; refine ordering in each super-super-row
 Expand G2 to G1; refine ordering in each super-row

Motivation: To get packs of uniform length,
independent tasks at a desired granularity, with
spatial locality in A, and options for temporal
locality/reuse in x through scheduling

CSR-k + Scheduling: 2 examples

Mat-Vec (Ax=y)
 Coarsen: heavy edge matching or consecutive rows of a

band ordering
 Ordering of G2, G3 : a weighted form of band ordering
 Published, HiPC 2014, Kabir, Booth, R.

Tri- Solve (Ly = b)
 Coarsen : same as above
 Ordering of G2, G3: Coloring (serialization is removed)
 To appear, SC15, Kabir, Booth, Aupy, Benoit, Robert, R.

Data affinity and reuse graph model of scheduling: To
utilize temporal locality in vector and promote reuse

Data affinity and Reuse Graph
for Scheduling

 n uniform length tasks, n is large
 Simplified model: edge between t_i and t_(i+1), i= 1, …, n-1
if vector elements are shared

 If cores are identical, equal partition is optimal schedule

(Aupy, Benoit, Robert)
 Actual graphs are not chains but we use ordering so that

the “chain” reflects main reuse component

t_1 t_2 t_3 t_4 …………. t_n

CSR-2 : Mat-Vec

CSR-3: Tri-Solve

0

1000

2000

3000

4000

5000

6000

7000

8000

 8 15 31 61 123 246 491 983 1,966 3,931 7,862 15,725

Tunable Degree of Parallelism:
 # Tasks vs Task Granularity

#
 o

f
Ta

sk
s

Task Size in Thousands of Operations

21

CSR-K:
 How does it perform?

 CSR-2 Sparse Mat Vec (HiPC 2014,

Kabir, Booth, R.)
 CSR-3 Tri-Solve (SC 2015, Kabir,

Booth, Aupy, Benoit, Robert, R.)

Sparse Matrix Suite for Tests
Matrix # of Rows # of Nonzeroes Row Density

G1: ldoor 952,203 42,493,817 44.63

D1: rgg_n_2_21_s0 2,097,152 31,073,142 14.82

S1: nlpkkt160 8,345,600 225,422,112 27.01

D2: delaunay_n23 8,388,608 58,720,176 7.00

D3: road_central 14,081,816 47,948,642 3.41

D4: hugetrace-20 16,002,413 64,000,039 4.00

D5: delaunay_n24 16,777,216 117,440,418 7.00
D6: hugebubbles-0 18,318,143 73,258,305 4.00

D7: hugebubbles-10 19,458,087 77,817,615 4.00

D8: hugebubbles-20 21,198,119 84,778,477 4.00

D9: road_usa 23,947,347 81,655,971 3.41

D10: europe_osm 50,912,018 159,021,338 3.12

Intel Westmere NUMA

L1 access: 4 cycles (private)
L2 access:10 cycles (private)
L3 access: 38-170 cycles (shared)
Memory access: 175– 290 cycles (shared)

Mat-Vec: MKL, pOSKI, and CSR-2 on 32 cores

Dynamic Power and Energy: 32 cores

 Lowest Dynamic Energy;
 High H/W Power leads to

faster execution

 CSR-2: Highest Dynamic
Power !!

Total Energy: Static + Dynamic 32 cores

 CSR-2 uses only 44% of energy of pOSKI
 MKL uses the most energy

 Mat-Vec: MKL, pOSKI and CSR-2:
 Total Time Over All Matrices, 1-32 Cores

0

1

2

3

4

5

6

7

8

9

1 2 4 8 16 24 32

Ti
m

e
(S

e
c)

of Cores

CSR-2

pOSKI

MKL

Tri-Solve : Level- Set and CSR-3 with
coloring, 32 cores

Tri-Solve: Speed-ups Relative to Level Set

 CSR-3 is 20x faster than level-set

 Relative Speed-up

Serial Steps in Level Set Relative to CSR-3 with coloring

Average Number of Parallel Tasks in CSR-3 Relative to Level Set

Tri-Solve : Effect of Reuse Aware
Scheduling within 1 pack

CSR-k: A simple model for performance
tuning

 Large packs of equal length independent tasks
through ordering and sub-structuring

 can tune granularity using k

 enables spatial locality of accesses in matrix

Data affinity/reuse graph model for scheduling
can increase temporal locality in accesses to
vector

 For graphs and meshes, there are k-level
counterparts that are similar to csr-k for matrices

Algorithm based fault tolerance can be wrapped in

CSR-k Patterns for Domain Specific
Optimizations?

(a) Data affinity/reuse chain
graph of independent equal
length tasks (mat-vec, on
multicore)

synchronization

synchronization

synchronization

(b)Packs of (a) with synchronization
between packs (tri-solve or bfs
on multicore)

(c)Packs of (a) with partial
synchronization between packs,
e.g. tree-like, for cross multicore
nodes, accelerators

The need for domain specific
optimizations

CSR-k is a simplified abstraction for high
performance sparse computations on NUMA
multicores

Needs a domain language/domain specific
optimization approach to be widely usable and
adaptable to new hardware

Run-time optimizations and dynamic approaches
to scheduling will be needed in practical
applications to leverage tunable parameters of
CSR-k and to variations in hardware

Looking ahead

Parallel computing for all --- programming
language and compilation technologies can be
the driver!

Parallel Computing: A Second Sustainable
Surge?

“A truly transformational technology will always have its immediate
consequences overestimated and its long-term consequences
underestimated” Francis Collins, 2010

Time

Im
p

a
c
t

 1990-2000:
 NSF launches supercomputer centers program
 Early breakthroughs in physics based modeling &

simulation through parallel “capability” computing
 2000-2010:

 1000x growth in peak computing rates
 Big growth in modeling & simulation for science
 High throughput science data generation

 2010-
 1000x growth in peak computing rates
 Multicore revolution: abundant TeraOps
 Data deluge: 1000x faster growth than computing

Expanding Opportunities:
Large Sparse Data Sets

Grand Science
& Engineering

Challenges

Major
advances in
Algorithms,

Models,
Systems

Science Data
Explosion

Telescopes, environmental
observatories, high-
throughput sequencers, fMRI,
atom probes

Bayesian analysis, PDE-
models, molecular
modeling, machine
learning, parallel
algorithms, cloud
computing

Sustainability
Health
Advanced manufacturing
Critical infrastructure

Sparse data processing
o Few ops-per-data

o O(N) – or lower “sublinear” data
accesses define performance
efficiencies

o Parallelism at fine, medium,

coarse scales

Where are the Opportunities?

H/W trends
o Fast, hot to slower, cooler

o 2x cores/threads@18months

o Heterogeneous

o Process variability, GPUs

o Unreliable Soft Errors

 Sparse Algorithms

Increasing Need for Programming
Models/ Run-Time Approaches

 H/W features

Programming models &
compilation technologies

Addressing Performance Challenges

 Scaling, Efficiency, Reliability, Quality

Applications Data & Algorithms
 Systems &
 Hardware

Acnowledgements

• Joint work with:

– Guillaume Aupy, Josh Booth, Humayun Kabir
(Penn State)

– Anne Benoit (LIP, École Normale Supérieure de
Lyon, France), and Yves Robert (LIP, École Normale
Supérieure de Lyon, France & Univ of Tennessee)

• Thanks to

– National Science Foundation & Penn State

– LCPC organizers and attendees

