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Abstract. Many recently proposed BigData processing frameworks make
programming easier, but typically expect the datasets to fit in the mem-
ory of either a single multicore machine or a cluster of multicore ma-
chines. When this assumption does not hold, these frameworks fail. We
introduce the InfiniMem framework that enables size oblivious processing
of large collections of objects that do not fit in memory by making them
disk-resident. InfiniMem is easy to program with: the user just indicates
the large collections of objects that are to be made disk-resident, while
InfiniMem transparently handles their I/O management. The InfiniMem
library can manage a very large number of objects in a uniform manner,
even though the objects have different characteristics and relationships
which, when processed, give rise to a wide range of access patterns re-
quiring different organizations of data on the disk. We demonstrate the
ease of programming and versatility of InfiniMem with 3 different prob-
abilistic analytics algorithms, 3 different graph processing size oblivious
frameworks; they require minimal effort, 6–9 additional lines of code.
We show that InfiniMem can successfully generate a mesh with 7.5 mil-
lion nodes and 300 million edges (4.5 GB on disk) in 40 minutes and it
performs the PageRank computation on a 14GB graph with 134 million
vertices and 805 million edges at 14 minutes per iteration on an 8-core
machine with 8 GB RAM. Many graph generators and processing frame-
works cannot handle such large graphs. We also exploit InfiniMem on a
cluster to scale-up an object-based DSM.

1 Introduction
BigData processing frameworks are an important part of today’s data science
research and development. Much research has been devoted to scale-out per-
formance via distributed processing [8,12,13,17] and some recent research ex-
plores scale-up [1,6,11,15,16,21]. However, these scale-up solutions typically as-
sume that the input dataset fits in memory. When this assumption does not
hold, they simply fail. For example, experiments by Bu et al. [4] show that dif-
ferent open-source Big Data computing systems like Giraph [1], Spark [21], and
Mahout [19] often crash on various input graphs. Particularly, in one of the ex-
periments, a 70GB web graph dataset was partitioned across 180 machines (each
with 16 GB RAM) to perform the PageRank computation. However, all the sys-
tems crashed with java.lang.OutOfMemoryError, even though there was less
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than 500MB of data to be processed per machine. In our experiments we also
found that GTgraph’s popular R-MAT generator [2], a tool commonly used to
generate power-law graphs, crashed immediately with a Segmentation Fault from
memory allocation failure when we tried to generate a graph with 1M vertices
and 400M edges on a machine with 8GB RAM.

Motivated by the above observations, in this paper, we develop InfiniMem,
a system that enables Size Oblivious Programming – the programmer develops
the applications without concern for the input sizes involved and InfiniMem
ensures that these applications do not run out of memory. Specifically, the In-
finiMem library provides interfaces for transparently managing a large number
of objects stored in files on disk. For efficiency, InfiniMem implements differ-
ent read and write policies to handle objects that have different characteristics
(fixed size vs. variable size) and require different handling strategies (sequential
vs. random access I/O). We demonstrate the ease of programming with Infin-
iMem by programming BigData analysis applications like frequency estimation,
exact membership query, and Bloom filters. We further demonstrate the ver-
satility of InfiniMem by developing size oblivious graph processing frameworks
with three different graph data representations: vertex data and edges in a single
data structure; decoupled vertex data and edges; and the shard representation
used by GraphChi [11]. One advantage of InfiniMem is that it allows researchers
and programmers to easily experiment with different data representations with
minimal additional programming effort. We evaluate various graph applications
with three different representations. For example, a quick and simple shard im-
plementation of PageRank with InfiniMem performs within ∼30% of GraphChi.

The remainder of the paper is organized as follows: Section 2 motivates the
problem and presents the requirements expected from a size oblivious program-
ming system. Section 3 introduces the programming interface for size oblivious
programming. Section 4 describes the object representation used by InfiniMem
in detail. Section 5 describes the experimental setup and results of our evaluation.
Related work and conclusions are presented in Sections 6 and 7, respectively.

2 Size Oblivious Programming
The need to program processing of very large data sets is fairly common today.
Typically a processing task involves representing the data set as a large collec-
tion of objects and then performing analysis on them. When this large collection
of objects does not fit in memory, the programmer must spend considerable ef-
fort on writing code to make use of disk storage to manage the large number
of objects. In this work we free the programmer from this burden by develop-
ing a system that allows the programmer to write size oblivious programs, i.e.,
programs where the user need not explicitly deal with the complexity of using
disk storage to manage large collections of objects that cannot be held in avail-
able memory. To enable the successful execution of size oblivious programs, we
propose a general-purpose programming interface along with an I/O efficient
representation of objects on disk. We now introduce a few motivating applica-
tions and identify requirements to achieve I/O efficiency for our size oblivious
programming system.



Size Oblivious Programming with InfiniMem 3

Motivating applications: Consider an application that is reading continuously
streaming input into a Hash Table in heap memory (lines 1–3, Algorithm 1); a
website analytics data stream is an excellent example of this scenario. When the
memory gets full, the insert on line 3 could fail, resulting in an application
failure. Similarly, consider the GTGraph [2] graph generator which fails to gen-
erate a graph with 1M edges and 400M vertices. Consider a common approach
to graph generation which assumes that the entire graph can be held in memory
during generation, as illustrated by lines 8–15 in Algorithm 1. First, memory for
NUM-VERTICES is allocated (line 8) and then the undirected edges are generated
(lines 11-13). Note that the program can crash as early as line 8 when memory
allocation fails due to a large number of vertices. Finally, consider the problem
of graph processing, using SSSP as a proxy for a large class of graph process-
ing applications. Typically, such applications have three phases: (1) input, (2)
compute, and (3) output. The pseudocode for SSSP is outlined in lines 16–31 in
Algorithm 1, highlighting these three phases. Note that if the input graph does
not fit in memory, this program will not even begin execution.

Algorithm 1: Motivating applications: Membership Query, Mesh Gener-
ation and Graph Processing.

1 HashTable ht;

2 while read(value) do
3 ht.insert(value);

4 while more items do
5 if ht.find(item) then
6 print(“Item found”);

7 —————————————————
8 Mesh m(NUM-VERTICES)

9 foreach node n in Mesh m do
10 i ← rand(0, MAX);
11 for j=0; j < i; j++ do
12 n.addNeighbor(m[j]);
13 m[j].addNeighbor(n);

14 foreach Node n in Mesh m do
15 Write(n)

16 Graph g;
17 while not end of input file do
18 read next;
19 g.Add( α(next) );

20 repeat
21 termCondition ← true;
22 forall the Vertices v in g do
23 for int i=0; i<v.nbrs(); i++ do
24 Vertex n = v.neighbors[i];
25 if v.dst>n.dst+v.wt[i] then
26 v.dst←(n.dst+v.wt[i]);

27 if NOT converged then
28 termCondition ← false;

29 until termCondition is true;

30 foreach Node n in Graph g do
31 Write(n);

Our solution: We focus on supporting size oblivious programming for C++
programs via the InfiniMem C++ library and runtime. Examples in Algorithm
1 indicate that the data structures that can grow very large are represented as
collections of objects. Size Oblivious Programming with InfiniMem simply re-
quires programmers to identify potentially large collections of objects using very
simple abstractions provided by the library and these collections are transpar-
ently made disk-resident and can be efficiently and concurrent accessed. We now
analyze these representative applications to tease out the requirements for size
oblivious programming that have influenced the architecture of InfiniMem.

Let us reconsider the pseudocode in Algorithm 1, mindful of the requirement
of efficient I/O. Lines 5–6 will execute for every key in the input; similarly, lines
9 and 14 indicate that lines 10–13 and line 15 will be executed for every node in
the mesh. Similarly, line 22 indicates that lines 23–26 will be performed on every
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vertex in the graph. It is natural to read a contiguous block of data so that no
additional I/O is required for lines 24–26 for the vertices and is an efficient disk
I/O property. Moreover, this would be useful for any application in general, by
way of decreasing I/O requests and batching as much I/O as possible. Therefore,
we have our first requirement:

Support for efficient block-based IO.

Consider next, the example of the hash table where the input data is not
sorted; then, line 3 of Algorithm 1 motivates need for random access for indexing
into the hash table. As another example, observe that line 24 in Algorithm 1
fetches every neighbor of the current vertex. When part of this graph is disk-
resident, we need a way of efficiently fetching the neighbors, much like random
access in memory. This is important because any vertex in a graph serves two
roles: (1) vertex and (2) neighbor. For the role (1), if vertices are contiguously
stored on disk block-based I/O can be used. However, when the vertex is accessed
as a neighbor, the neighbor could be stored anywhere on disk, and thus requires
an imitation of random access on the disk. Hence our next requirement is:

Support for efficient, random access to data on disk.

To make the case for our final requirement, consider a typical definition of the
HashTable shown in Figure 1a. Each key can store multiple values to support
chaining. Clearly, each HashTableEntry is a variable sized entity, as it can hold
multiple values by chaining. As another example, consider the definition for a
Vertex shown in Figure 1b: the size of neighbors array can vary; and with the
exception of the neighbors member, the size of a Vertex can be viewed as a fixed-
size object. When reading/writing data from/to the disk, one can devise very
fast block-based I/O for fixed-size data (Section 4). However, reading variable-
sized data requires remembering the size of the data and performing n reads of
appropriate sizes; this is particularly wasteful in terms of disk I/O bandwidth
utilization. For example, if the average number of neighbors is 10, every time
a distance value is needed, we will incur a 10x overhead in read but useless
data. As a final example, Figure 1c is an example of an arbitrary container that
showcases the need for both fixed and variable sized data. Hence we arrive at
our final requirement from InfiniMem:

Support to speed up I/O for variable-sized data.

template <typename K, typename V>
struct HashTableEntry {

K key;
V* values; /* for chaining */

};

(a) Hash Table

struct Vertex {
int distance;
int* weights; /*Edge weights*/
Vertex* neighbors; /*Array*/

};

(b) Graph Vertex

template<typename T>
struct Container{

T stackObjects[96]; /* Fixed */
T *heapObjects; /* Variable */

};

(c) Arbitrary container

Fig. 1: Common data structure declarations to motivate the need for explicit
support for fixed and variable sized data, block based and random IO.
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The goal of InfiniMem is to transparently support disk-resident versions of
object collections so that they can grow to large sizes without causing programs
to crash. InfiniMem’s design allows size oblivious programming with little effort
as the programmer merely identifies the presence and processing of potentially
large object collections via InfiniMem’s simple programming interface. The de-
tails of how InfiniMem manages I/O (i.e., uses block-based I/O, random access
I/O, and I/O for fixed and variable sized data) during processing of a disk-
resident data structure are hidden from the programmer.

3 The InfiniMem Programming Interface

InfiniMem is a C++ template library that allows programmers to identify size
oblivious versions of fixed- and variable-sized data collections and enables trans-
parent, efficient processing of these collections. We now describe InfiniMem’s
simple application programming interface (API) that powers size oblivious pro-
gramming. InfiniMem provides a high-level API with a default processing strat-
egy that hides I/O details from the programmer; however the programmer has
the flexibility to use the low-level API to implement any customized processing.

template<typename T>
struct Container: public Box<T> { // or Bag<T>

T data;
void update() { /* for each T */

...
}

void process();
};

typedef Container<int> intData;

typedef Container<MyObject> objData;

int main() {
Infinimem<intData> idata;
idata.read("/input/file");
idata.process();

Infinimem<objData> odata;
odata.read("/input/data/");
odata.process();

}

template<typename T>
T Box::fetch(ID);

template<typename T>
T* Box::fetchBatch(ID, count);

template<typename T>
void Box::store(ID, const T*);

template<typename T>
void Box::storeBatch(ID, count);

template<typename T>
T Bag::fetch(ID);

template<typename T>
T* Bag::fetchBatch(ID, count);

template<typename T>
void Bag::store(ID, const T*);

template<typename T>
void Bag::storeBatch(ID, count);

Fig. 2: Programming with InfiniMem: the Box and Bag interfaces are used for
fixed size and variable sized objects; process drives the computation using the
user-defined update() methods and the low-level fetch() and store() API.

Identifying Large Collection of Objects: In InfiniMem, the programmer
identifies object collections that potentially grow large and need to be made disk-
resident. In addition, the programmer classifies them as fixed or variable sized.
This is achieved by using the Box and Bag abstractions respectively. The Box

abstraction can be used to hold fixed-size data, while the Bag holds flexible-sized
data. Figure 2 illustrates an example and lists the interface. The programmer
uses the Box or Bag interface by simply inheriting from the Box (or Bag) type and
provides an implementation for the update() method to process each object in
the container. Here, Container is the collection that can potentially grow large,
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as identified by the programmer. Infinimem is the default processing engine;
InfiniMem’s process() function hides the details of I/O and fetches objects as
needed by the update() method, thereby enabling size oblivious programming.

Processing Data: The process() method is the execution engine: it imple-
ments the low-level details of efficiently fetching objects from the disk, applies the
user-defined update() method and efficiently spills the updated objects to disk.
Figure 3 details the default process(). By default, the process()-ing engine
fetches, processes and store-es data in batches of size BATCH_SIZE which is
automatically determined from available free memory such that the entire batch
fits and can be processed in memory.

// SZ = SIZEOF_INPUT; BSZ = BATCH_SIZE;

Box<T>::process() { // or Bag<T>

for(i=0; i<SZ; i+=BSZ) {

// fetch a portion of Box<T> or Bag<T>

cache = fetchBatch(ID(i), BSZ);

for(j=0; j<BSZ; j++)

cache[j].update();

}

}

Fig. 3: InfiniMem’s generic batch process()-ing.

While InfiniMem pro-
vides the default implemen-
tation for process() shown
in Figure 3, this method
can be overridden: pro-
grammers can use the acces-
sors and mutators exposed
by InfiniMem (Figure 2) to
write their own processing
frameworks. Notice that In-
finiMem natively supports both sequential/block-based and random accessors
and mutators, satisfying each of the requirements formulated earlier. For block-
based and random access, InfiniMem provides the following intuitively named
fetch and store APIs: fetch(), fetchBatch(), store() and storeBatch().

Illustration of InfiniMem for graph processing: We next demonstrate
InfiniMem’s versatility and ease of use by programming graph applications using
three different graph representations. We start with the standard declaration of
a Vertex as seen in Figure 1b. An alternate definition of Vertex separates the
fixed sized data from variable sized edgelist for IO efficiency, and used in many
vertex centric frameworks [12,11]. Finally, we program GraphChi’s [11] shards.

Figure 4a declares the Graph to be a Bag of vertices, using the declaration
from Figure 1b. With this declaration, the programmer has identified that the
collection of vertices is the potentially large collection that can benefit from size
oblivious programming. The preprocess() phase partitions the input graph
into disjoint intervals of vertices to allow for parallel processing. These examples
use a vertex-centric graph processing approach where the update() method of
Vertex defines the algorithm to process each vertex in the graph. The process()
method of Graph uses the accessors and mutators from Figure 2 to provide a
size oblivious programming experience to the programmer. Figure 4b declares
a Graph as the composition of a Box of Vertex and a Bag of EdgeLists, where
EdgeList is an implicitly defined list of neighbors. Finally, Figure 4c uses a
similar graph declaration, with the simple tweak of creating an array of N shard

partitions; a shard imposes additional constraints on the vertices that are in the
shard: vertices are partitioned into intervals such that all vertices with neighbors
in a given vertex interval are all available in the same shard [11], enabling fewer
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random accesses by having all vertices’ neighbors available before processing
each shard. Note that representing shards in InfiniMem is very simple.

void Vertex::update() {
foreach(neighbor n)

distance = f(n.distance);
}

template <typename V>
class Graph {

Bag<V> vertices;

public:
void process();

};

int main() {
Graph<Vertex> g;
g.read("/path/to/graph");
g.preprocess(); //Partition
g.process();

}

(a) Graph for Vertex in Fig-
ure 1b.

void Vertex::update() {
foreach(neighbor n)

distance = f(n.distance);
}

template <typnam V,typnam E>
class Graph {

Box<V> vertices;
Bag<E> edgeLists;

public:
void process();

};

int main() {
Graph<Vertex, EdgeList> g;
g.read("/path/to/graph");
g.preprocess(); //Partition
g.process();

}

(b) Decoupling Vertices
from Edgelists.

void Vertex::update() {
foreach(neighbor n)

distance = f(n.distance);
}

template <typename V,typename E>
class Graph {

Box<V> vertexShard[N];
Bag<E> edgeShard[N];

public:
void processShard(int);

};

int main() {
Graph<Vertex, EdgeList> g;
g.read("/path/to/graph");
g.createShards(N);//Preprocess
for(int i=0; i<N; i++)

g.processShard(i);
}

(c) Using Shard representa-
tion of graphs.

Fig. 4: Variations of graph programming, showcasing the ease and versatility of
programming with InfiniMem, using its high-level API.

// SZ = SIZEOF_INPUT;
// BSZ = BATCH_SIZE;
// vb = vertices;

Graph<V>::process() {
for(i=0; i<SZ; i+=BSZ) {
// fetch a batch
vb=fetchBatch(ID(i), BSZ);

for(j=0; j<BSZ; j++)
vb[j].update();

storeBatch(vb, BSZ);
}

}

(a) process()-ing graph
in Figure 1b.

// SZ = SIZEOF_INPUT;
// BSZ = BATCH_SIZE;
// v = vertices;
// e = edgeLists;

Graph<V, E>::process() {
for(i=0; i<SZ; i+=BSZ) {
// fetch a batch
vb=v.fetchBatch(ID(i), BSZ);

// fetch corr. edgelist
eb=e.fetchBatch(ID(i), BSZ);

for(j=0; j<BSZ; j++)
vb[j].update(eb[j]);

storeBatch(vb, BSZ);
}

}

(b) process() for decou-
pled Vertex.

// NS = NUM_SHARDS;
// SS = SIZEOF_SHARD;
// vs = vertexShard;

Graph<V, E>::process() {
for(i=0; i<NS; i++) {
// fetch entire memory shard
mshrd = vs[i].fetchBatch(..,SS);

// fetch sliding shards
for(j=0; j<NS; j++)
sshrd += vs[j].fetchBatch(.,.);

sg = buildSubGraph(mshrd,sshrd);

foreach(v in sg)
v.update();

storeBatch(mshrd, SS);
}

}

(c) Custom process() for
shards.

Fig. 5: Default and custom overrides for process() via low-level InfiniMem API.

Figure 5a illustrates the default process(): objects in the Box or Bag are
read in batches and processed one at a time. For graphs with vertices decoupled
from edgelists, vertices and edgelists are read in batches and processed one vertex
at a time (Figure 5b); batches are concurrently processed. Figure 5c illustrates
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custom shard processing: each memory shard and corresponding sliding shards
build the subgraph in memory; then each vertex in the subgraph is processed [11].

4 InfiniMem ’s I/O Efficient Object Representation
We now discuss the I/O efficient representation provided by InfiniMem. Specifi-
cally, we propose an Implicitly Indexed representation for fixed-sized data (Box);
and an Explicitly Indexed representation for variable-sized data (Bag).
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Fig. 6: Indexed disk representation of fixed- and
variable-sized objects.

As the number of
objects grows beyond
what can be accommo-
dated in main memory,
the frequency of object
I/O to/from disk stor-
age will increase. This
warrants an organiza-
tion of the disk stor-
age that reduces I/O
latency. To allow an
object to be addressed
regardless of where it
resides, it is assigned
a unique numeric ID

from a stream of non-negative, monotonically increasing integers. Figure
6 shows the access mechanism for objects using their IDs: fixed-sized
data is stored at a location determined by its ID and its fixed size:
FILE_START + (sizeof(Object)*ID). For variable-sized data, we use a metafile
whose fixed-sized address entries store the offset of the variable-sized data into
the datafile. The Vertex declared in Figure 4a for example, would only use the
explicitly indexed Bag notation to store data, while the representations in Figure
4b and Figure 4c use both the Box and Bag for the fixed size Vertex and the vari-
able sized EdgeList respectively. Thus, fixed-sized data can be fetched/stored
in a single logical disk seek and variable-sized data in two logical seeks. This en-
sures fetch and store times are nearly constant with InfiniMem and independent
of the number of objects in the file (like random memory access), and enabling:

– Efficient access for Fixed-Sized objects: Using the object ID to index into
the datafile, InfiniMem gives fast access to fixed-sized objects in 1 logical seek.
– Efficient access for Variable-Sized objects: The metafile enables fast,
random-access access to objects in the datafile, in at most 2 logical seeks.
– Random Access Disk I/O: The indexing mechanism provides an imitation
of random access to both fixed and variable sized objects on disk.
– Sequential/Batch Disk I/O: To read n consecutive objects, we seek to the
start of the first object. We then read sizeof(obj)*n bytes and up to the end of
the last object in the sequence for fixed- and variable-sized objects, respectively.
– Concurrent I/O: For parallel processing, different objects in the datafile
must be concurrently and safely accessed. Given the large number of objects, in-
dividual locks for each object would be impractical. Instead, InfiniMem provides
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locks for groups of objects: to decrease lock conflicts, we group non-contiguous
objects using modulo ID modulo a MAX_CONCURRENCY parameter set at 25.

5 Evaluation
We now evaluate the programmability and performance of InfiniMem. This eval-
uation is based upon three class of applications: probabilistic web analytics,
graph/mesh generation, and graph processing. We also study the scalability of
size oblivious applications written using InfiniMem with degree of parallelism
and input sizes. We programmed size oblivious versions of several applications
using InfiniMem and are listed in Table 1. We begin with data analytics bench-
marks: frequency counting using arrays, membership query using hash tables, and
probabilistic membership query using Bloom filters. Then, in addition to mesh
generation, in this evaluation, we use a variety of graph processing algorithms
from diverse domains like graph mining, machine learning, etc. The Connected
Components (CC) algorithm finds nodes in a graph that are connected to each
other by at least one path, with applications in graph theory. Graph Coloring
(GC) assigns a color to a vertex such that it is distinct from those of all its
neighboring vertices with applications in register allocation etc. In a web graph,
PageRank (PR) [14] iteratively ranks a page based on the ranks of pages with in-
bound links to the page and is used to rank web search results. NumPaths (NP)
counts the number of paths between a source and other vertices. From a source
node in a graph, Single Source Shortest Path (SSSP) finds the shortest path to
all other nodes in the graph with applications in logistics and transportation.

5.1 Programmability

Application Additional LoC Application Additional LoC

Probabilistic Web Analytics Graph Processing

Freq. Counting 2 + 3 + 3 = 8 Graph Coloring

1 + 3 + 2 = 6
Member Query 2 + 3 + 3 = 8 PageRank
Bloom Filter 2 + 4 + 3 = 9 SSSP

Graph/Mesh Generation Num Paths
Mesh Generation 2 + 2 + 2 = 6 Conn. Components

Table 1: Between 6 and 9 additional lines of code are needed to make these
applications size oblivious. Graph processing uses decoupled version (Figure 4b).

Writing size oblivious programs with InfiniMem is simple. The programmer
needs to only: (a) initialize the InfiniMem library, (b) identify the large collec-
tions and Box or Bag them as necessary, and (c) use the default process()-ing
engine or provide a custom engine. Table 1 quantifies the ease of programming
with InfiniMem by listing the number of additional lines of code for these tasks
to make the program size oblivious using the default processing engine. At most
9 lines of code are needed in this case and InfiniMem does all the heavy lifting
with about 700 lines for the I/O subsystem, and about 900 lines for the run-
time, all of which hides the complexity of making data structures disk-resident
from the user. Even programming the shard processing framework was rela-
tively easy: about 100 lines for simplistic shard generation and another 200 lines
for rest of the processing including loading memory and corresponding sliding
shards, building the subgraph in memory and processing the subgraph; rest of
the complexity of handling the I/O etc., are handled by InfiniMem.
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5.2 Performance

Input Graph |V | |E| Size

Pokec 1,632,804 61,245,128 497M
Live Journal 4,847,571 68,993,773 1.2G
Orkut-2007 3,072,627 223,534,301 3.2G
Delicious-UI 33,778,221 151,772,443 4.2G
RMAT-536-67 67,108,864 536,870,912 8.8G
RMAT-805-134 134,217,728 805,306,368 14G

Table 2: Inputs used in this evaluation.

We now present the run-
time performance of applica-
tions programmed with In-
finiMem. We evaluated In-
finiMem on a Dell Inspiron
machine with 8 cores and
8GB RAM with a commod-
ity 500GB, 7200RPM SATA
3.0 Hitachi HUA722050CLA330

hard drive. For consistency, the disk cache is fully flushed before each run.

Size Oblivious Graph Processing: We begin with the evaluation of graph
processing applications using input graph datasets with varying number of ver-
tices and edges, listed in Table 2. Orkut, Pokec, and LiveJournal graphs are
directed graphs representing friend relationships. Vertices in the Amazon graph
represent products, while edges represent purchases. The largest input in this
evaluation is rmat-805-134 at 14GB on disk, 805M edges and 134M vertices.
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Fig. 7: Percentage(%) of IO and execu-
tion time for decoupled over coupled
representations for various applications
on the ‘Delicious-UI’ input.

We first discuss the benefits of de-
coupling edges from vertices. When
vertex data and edgelists are in the
same data structure, line 22 in Algo-
rithm 1 requires fetching the edgelists
for the vertices even though they are
not used in this phase of the compu-
tation. Decoupling the edgelists from
vertex data has the benefit of avoiding
wasteful I/O as seen in Table 3. The
very large decrease in running time
is due to the extremely wasteful I/O
that reads the variable sized edgelists
along with the vertex data even though only the vertex data is needed.

Figure 7 shows the I/O breakdowns for various benchmarks on the moder-
ately sized Delicious-UI input. While the programming effort with InfiniMem is
already minimal, switching between representations for the same program can
be easier too: with as little as a single change to data structure definition (figures
4a-4b), the programmer can evaluate different representations.

Tables 4 and 5 show the frequencies and percentage of total execution time
spent in various I/O operations for processing the decoupled graph representation
with InfiniMem, as illustrated in Figure 4b. Observe that the number of batched
vertex reads and writes is the same in Table 4 since both vertices and edgelists are
read together in batches. There are no individual vertex writes since InfiniMem
only writes vertices in batches. Moreover, the number of batched vertex writes
is less than the reads since we write only updated vertices and as the algorithm
converges, in some batches, there are no updates. Observe in Table 5 that as
described earlier, the maximum time is spent in random vertex reads.
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Input Graph
PageRank Conn Comp Numpaths Graph Coloring SSSP

Co DeCo Co DeCo Co DeCo Co DeCo Co DeCo

Pokec 2,228 172 352 60 37 8 277 28 48 7
Live Journal 8,975 409 1,316 122 106 14 602 58 133 70
Orkut 3,323 81 3,750 277 459 11 3,046 140 660 154
Delicious-UI 32,743 1,484 15,404 904 1,112 67 9,524 365 1,453 65
rmat-536-67 23,588 3,233 12,118 2,545 1,499 861 5,783 1,167 1,853 584
rmat-805-134 25,698 3,391 >8h 3,380 3,069 1,482 11,332 2,071 >8h 2,882

Table 3: Decoupling vertices and edgelists avoids wasteful I/O (runntime time
shown is in seconds). ‘Co’ and ‘DeCo’ refer to coupled and decoupled respectively.

I/O Operation LiveJournal Orkut Delicious-UI rmat-536-67 rmat-805-134

Vertex Batched Reads 7,891 421 40,578 12,481 24,052
Edge Batched Reads 7,891 421 40,578 12,481 24,052
Vertex Individual Reads 865e+6 188e+6 2.8e+9 1.8e+9 2.5e+9
Vertex Batched Writes 7,883 413 40,570 12,473 24,044

Table 4: Frequencies of operations for various inputs for PageRank.

I/O Operation LiveJournal Orkut Delicious-UI rmat-536-67 rmat-805-134

Vertex Batched Reads 0.05% 0.02% 0.31% 0.12% 0.13%
Edge Batched Reads 8.48% 2.75% 11.25% 7.75% 9.72%
Vertex Individual Reads 54.80% 71.59% 76.96% 86.47% 81.73%
Vertex Batched Writes 0.12% 0.03% 0.37% 0.04% 0.10%

Total IO 63.45% 74.39% 88.89% 94.38% 91.68%

Table 5: Percentage of time for I/O operations for various inputs for PageRank.

Sharding with InfiniMem: In the rest of this discussion, we always use the
decoupled versions of Vertex and EdgeLists. We now compare various versions
of graph processing using InfiniMem. Table 6 compares the performance of the
two simple graph processing frameworks we built on top of InfiniMem with that
of GraphChi-provided implementations in their 8 thread configuration. Infin-
iShard refers to the shard processing framework based on InfiniMem. In general,
the slowdown observed with InfiniMem is due to the large number of random
reads generated, which is O(|E|). For PageRank with Orkut, however, we see
speedup for the following reason: as the iterations progress, the set of changed
vertices becomes considerably small: ∼50. So, the number of random reads gen-
erated also goes down considerably, speeding up PageRank on the Orkut input.
With Connected Components, our InfiniMem runs slower primarily because the
GraphChi converges in less than half as many iterations on most inputs. Table
6 also presents the data for PageRank that processes shards with our InfiniMem
library as compared to the very fine-tuned GraphChi library. The speedup ob-
served in Table 6 from InfiniMem to InfiniShard is from eliminating random
reads enabled by the shard format. Notice that even with our quick, unopti-
mized ∼350 line implementation of sharding, the average slowdown we see is
only 18.7% for PageRank and 22.7% for Connected Components compared to
the highly tuned and hand-optimized GraphChi implementation. Therefore, we
have shown that InfiniMem can be used to easily and quickly provide a size
oblivious programming experience along with I/O efficiency for quickly evaluat-
ing various representations of the same data.
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Input Graph
PageRank Time (sec) Conn. Comp. Time (sec)

InfiniMem InfiniShard
GraphChi

InfiniMem InfiniShard
GraphChi

(speedup) (speedup) (speedup) (speedup)

Pokec 172 (0.72) 121 (1.02) 124 60 (0.40) 26 (0.92) 24
LiveJournal 409 (0.90) 488 (0.76) 371 122 (0.49) 80 (0.75) 60
Orkut 81 (1.91) 190 (0.82) 156 277 (0.44) 142 (0.87) 123
Delicious-UI 1,484 (0.43) 730 (0.89) 652 904 (0.17) 191 (0.78) 149
rmat-536-67 3,233 (0.36) 1,637 (0.70) 1,146 2,545 (0.21) 746 (0.71) 529
rmat-805-134 3,391 (0.44) 2,162 (0.69) 1,492 3,380 (0.30) 1,662 (0.61) 1,016

Table 6: InfiniMem (decoupled) vs. InfiniShard ; Speedups over GraphChi.

Size-Oblivious Programming of Probabilistic Apps: Here, we present the
throughput numbers for the probabilistic applications in Table 7. We evaluated
these applications by generating uniformly random numeric input. Frequency
counting is evaluated by counting frequencies of random inserts while member-
ship query and Bloom filter are evaluated using uniformly generated random
queries on the previously generated uniformly random input. Jenkins hashes are
used in Bloom filter. Bloom filter achieves about half the throughput of Fre-
quency Counting since Bloom filter generates twice as many writes.

Application Throughput (qps)

Frequency Counting 635,031
Membership Query 446,536
Bloom Filter 369,726

Table 7: QPS for the probabilistic apps.

We also experimented with query-
ing. We searched for entries using
the Orkut input file (3.2GB on disk)
as an input file. Using a naive, se-
quential scan and search took 67
seconds. Using InfiniMem with 1
thread took 15 seconds, while using 4 threads took 5 seconds for the same naive
implementation. The highly optimized GNU Regular Expressions utility took an
average of 4.5 seconds for the same search. This shows that in addition to ease of
programming, InfiniMem performs well even with very simple implementations.

5.3 Scalability

Next, we present data to show that InfiniMem scales with increasing parallelism.
Figure 8a shows the total running times for various applications on the 14GB
rmat-805-134 input: for most applications InfiniMem scales well up to 8 threads.

However, given that the performance of applications is determined by the
data representation and the number of random accesses that result in disk I/O,
we want to study how well InfiniMem scales with increasing input size. To objec-
tively study the scalability with increasing number of edges with fixed vertices
and controlling for variations in distribution of vertex degrees and other input
graph characteristics, we perform a controlled experiment where we resort to
synthetic inputs with 4M vertices and 40M, 80M, 120M, 160M and 200M edges.
Figure 8c shows the time for each of the for these inputs. We see that with in-
creasing parallelism, InfiniMem scales well for increasing number of edges in the
graph. This shows that InfiniMem effectively manages the limited memory re-
source by orchestrating seamless offloading to disk as required by the application.
The performance on real-world graphs is determined by specific characteristics
of the graph like distribution of degrees of the vertices etc. But for a graph of a
specified size, Figure 8c can be viewed as a practical upper bound.
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Figure 8b illustrates the scalability achievable with programming with In-
finiMem with parallelism for the Frequency counting, Exact membership query
and Probabilistic membership query using Bloom filters. Notice that these appli-
cations scale well with increasing number of threads as well as increasing input
sizes. The execution time for Bloom filter is significantly larger since Bloom fil-
ter generates more random writes, depending on the number of hash functions
utilized by the filter; our implementation uses two independent hashes.
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Fig. 8: Scalability of InfiniMem with parallelism and input size.

Figure 8d illustrates that very large graph generation is feasible with Infin-
iMem by showing the generation of a Mesh with 7.5M vertices and 300M edges
which takes about 40 minutes (2400 seconds). We observe that up to 5M ver-
tices and 200M edges, the time for generation increases nearly linearly with the
number of edges generated after which the generation begins to slow down. This
slowdown is not due to the inherent complexity of generating larger graphs: the
number of type of disk operations needed to add edges is independent of the size
of the graph – edge addition entails adding the vertex as the neighbor’s neighbor
and accessing the desired data in InfiniMem requires a maximum of 2 logical
seeks. The reason for the observed slowdown is as follows: modifications of vari-
able sized data structures in InfiniMem are appended to the datafile on disk; this
data file, therefore, grows very large over time and the disk caching mechanisms
begin to get less effective. Compare this with the fact that GTGraph crashed
immediately for a graph with just 1M vertices and 400M edges.

5.4 Integration with Distributed Shared Memory (DSM)
Next we demonstrate the applicability of Size Oblivious Programming in the
context of Distributed Shared Memory. While clusters are easy to scale out,
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multi-tenant environments can restrict memory available to user processes or
certain inputs may not fit in the distributed memory. In either case, it would be
beneficial to have the programs run successfully without rewrites. We applied
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Fig. 9: Extra overhead of RocksDB over
InfiniMem in our DSM.

the InfiniMem framework to seam-
lessly make our object based DSM [9]
size oblivious. When the data allo-
cated to the node does not fit in
available memory, the DSM system
spills data to local disk and fetches
it back to local memory as demanded
by the application. When running
distributed software speculation with
75% of the input in memory and the
rest spilt to disk, InfiniMem has much
lower overhead as compared to an al-
ternative solution based upon RocksDB [7]: Figure 9 shows that RocksDB based
programs run up to ∼20.5% slower than using InfiniMem. Compared to when all
the data fits in memory, InfiniMem introduces a small overhead of 5% over our
baseline DSM, i.e. at this small cost, InfiniMem makes our DSM size oblivious.
6 Related Work
The closest file organization to that used by InfiniMem and illustrated in Figure
6 is the B+ tree representation used in database systems. The primary differences
in our design are the following: (1) InfiniMem uses a flat organization, with at
most one level index for variable sized data. (2) InfiniMem provides O(1) time
I/O operations for random access while the B+ trees require O(log n) time.
Out-of-core Computations– In this paper, we enable applications with very
large input data sets to efficiently run on a single multicore machine, with mini-
mal programming effort. The design of the InfiniMem transparently enables large
datasets become disk-resident while common out-of-core algorithms [5,10,20] ex-
plicitly do this. As demonstrated with shards, it should be easy to program these
techniques with InfiniMem.
Processing on a Single Machine– Traditional approaches to large-scale data
processing on a single machine involve using machines with very large amounts
of memory, while InfiniMem does not have that limitation. Examples include
Ligra [16], Galois [15], BGL [18], MTGL [3], Spark [21] etc. FlashGraph [6] is a
semi-external memory graph processing framework and requires enough memory
to hold all the edgelists; InfiniMem has no such memory requirements.

GraphChi [11] recently proposed the Parallel Sliding Window model based
on sharded inputs. Shard format enables a complete subgraph to be loaded in
memory, thus avoiding random accesses. GraphChi is designed for and works
very well with algorithms that depend on static scheduling. InfiniMem is general-
purpose and recognizes the need for sequential/batched and random input for
fixed and variable sized data and provides simple APIs for rapid prototyping.
7 Conclusion
We have presented the InfiniMem system for enabling size oblivious program-
ming. The techniques developed in this paper are incorporated in the versatile
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general purpose InfiniMem library. In addition to various general purpose pro-
grams, we also built two more graph processing frameworks on top of InfiniMem:
(1) with a simple data format and (2) to process GraphChi-style shards. We have
shown that InfiniMem performance scales well with parallelism, increasing in-
put size and highlight the necessity of concurrent I/O design in a parallel set up.
Our experiments show that InfiniMem can successfully generate a graph with
7.5 million vertices and 300 million edges (4.5 GB on disk) in 40 minutes and
it performs the PageRank computation on an RMAT graph with 134M vertices
and 805M edges (14GB on disk) an 8-core machine in about 54 minutes.
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Abstract. DISC is a newly proposed parallel programming paradigm that
models many classes of iterative scientific applications through specifica-
tion of a domain and interactions among domain elements. Accompanied
with an associated runtime, it hides the details of inter-process communi-
cation and work partitioning (including partitioning in the presence of het-
erogeneous processing elements) from the programmers. In this paper, we
show how these abstractions, particularly the concepts of compute-function
and computation-space objects, can be also used to leverage low-overhead
fault-tolerance support. While computation-space objects enable automated
application level checkpointing, replicated execution of compute-functions
helps detect soft errors with low overheads. Experimental results show the
effectiveness of the proposed solutions.

1 Introduction

High performance computing is undergoing a significant transformation in the sense
that resilience is becoming as equally important as performance. Computing power
is constantly being increased with more number of cores, hence with more paral-
lelism. This trend results in a significant decrease in Mean Time To Failure (MTTF)
rates in HPC systems due to the large number of components. At the same time,
parallel machines are becoming more memory and I/O bound. These two trends
together are implying that resilience is not only a major problem, but also the
commonly used solutions for fault-tolerance, mostly based on system-level check-
pointing, are becoming too expensive. The total cost of fault-tolerance support with
checkpointing, which is the sum of the costs of taking checkpoints (which increases
as checkpointing frequency increases), the net time spent on recomputation (which
increases as checkpointing frequency decreases), and the time spent on restart after
a failure, can dominate the actual execution time. An analysis of a 100,000 core
job, where each node has a MTTF of 5 years, indicates that these three costs can
add up to 65% of the total execution time, i.e. only 35% of the time will be produc-
tively used [10]. Technology trends indicate that this situation will only get worse
in the near future in the sense that MTTF values will become so small that the
time required to complete a checkpoint can exceed the MTTF making the existing
approach completely inapplicable [4].

Moreover, in recent years, there is a growing concern about a new class of
failures, namely, soft errors. These errors involve bit flips in either processing cores,
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the memory, or the disk. Although radiation has been considered the main cause
of such random bit flips [20], use of smaller and smaller transistors and efforts
to improve power-efficiency in hardware are now attributed as the cause of these
faults occurring more frequently [25]. Many recent publications have summarized
the observed frequency of these faults [10], for example, double bit flips (which
cannot be corrected by Error Correcting Codes) occur daily at a national lab’s
Cray XT5, and similary, such errors were frequent in BG/L’s unprotected L1 cache.
Although the traditional solutions to deal with soft errors have been implemented
at the hardware level, clearly there is a need for software solutions to this problem.

These developments are imposing new challenges for application programmers.
On one hand, they need to be able to manually implement efficient application-level
checkpointing and recovery. Even more challenging for them is to implement tech-
niques for dealing with soft errors. One pressing question is whether programming
models can help automate fault-tolerant solutions.

In this paper, we address this question in the context of the DISC programming
model recently developed by the authors. DISC [15] is a programming model and
associated runtime system based on domain and domain element interaction con-
cepts and particularly targets iterative scientific applications with structured grids,
unstructured grids and N-body simulation patterns. While these applications have
different communication patterns, they are similar in an important way, i.e, they
have an underlying domain, and most of the computation occurs due to the in-
teractions among domain elements. Our programming model supports an API by
which the domain, interaction among domain elements, and functions for updat-
ing any attributes of these domain elements can be explicitly specified. Starting
from this model, inter-process partitioning of the work and the communication is
handled automatically by the runtime system. Our previous work has shown how
the system is almost as efficient as MPI for homogeneous clusters, while allowing
repartitioning of work for dealing with heterogenous configurations.

In this paper, we examine another important application of this programming
model. We extended DISC model so that it also leverages low-overhead fault-
tolerance support. We show that the abstractions that DISC model provides to
hide the details of process communication and work partitioning/re-partitioning
help also identify the main execution state and the functions that are the most
susceptible to soft errors. Exposure of such vital program state and instructions is
utilized in order to implement two fault-tolerance mechanisms within the runtime.
First, with the concept of computation-space objects, DISC API makes it feasible
to support automated, yet efficient, application-level checkpointing. This as a re-
sult can reduce checkpointing overheads significantly. Second, with the concept of
compute-functions, DISC runtime is capable of detecting soft errors using a partial
replication strategy. Here, only the set of instructions most likely to corrupt the
main execution state is executed with redundancy and the results are compared
efficiently with computed checksums.

To show the effectiveness of our approach, we have developed two stencil compu-
tations, one unstructured grid based computation, and a molecular dynamics mini-
application (MiniMD, a representative of a full-scale molecular dynamics applica-
tion). We first compare the cost of checkpointing in our model, against system-level
checkpointing in MPI (which is the only automated solution available today). Next,
we compare the performance of DISC implementations with replication support to
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normal execution without any redundancy and show how further improvements in
replication overheads can be achieved.

2 Related Work

Fault-tolerance for high performance computing against hard errors has been exten-
sively studied. Much of this research specifically targets MPI [26, 14, 1, 6, 3, 12, 17].
Recent efforts on optimizing the process include combination of coordinated and
uncoordinated checkpointing [23] and compression for reducing the overheads of
checkpointing [13]. Another approach is algorithm-level fault-tolerance [19, 2, 5, 7],
where properties of an algorithm are exploited (typically to build-in redundancy).
While this approach can overcome many of the overheads of general checkpointing,
it has two key limitations: 1) as the name suggests, the solution is very specific to a
particular algorithm, and 2) the fault-tolerant algorithm needs to be implemented
by the programmer manually while developing the application. As for soft errors,
the general detection approach is through redundant execution. This redundancy
can be achieved at various levels. For instance, in [18], each computing node in
execution is paired with a buddy node that performs the same work. Paired nodes
checkpoint and exchange their local state periodically and the resulting computa-
tions in paired nodes are cross compared through their respective checkpoints. [10]
provides a new MPI implementation that creates replica MPI tasks and performs
online verification during communication only on MPI messages. Studies in [22,
24] execute all dynamic instructions in a program twice by redundant threads and
compare the first and second result. If there is a mismatch, both threads restart
execution from the faulty instruction. There have been some efforts to reduce the
overheads associated with redundancy; [27] exploits high-level program informa-
tion at compile time to minimize data communication between redundant threads,
whereas [21] explores the partial redundant threading spectrum, in which only a
dynamic subset of instructions is duplicated to near single threaded execution per-
formance at the expense of limited fault coverage. [9] combines redundant thread-
ing with symptom-based detectors by quantifying the likelihood that a soft-error
impacting an instruction creates a symptom such as branch mispredicts or cache
misses. Resultingly, it only duplicates the instructions that can not generate any
such symptoms. Although the proposed solutions achieve significant reductions
in associated overheads, none of them attempts to implement redundancy at the
programming model level. As we show in next sections, proper abstractions at pro-
gramming model level can expose the most vital program state and instructions
and can help automate redundant execution with small overheads.

3 DISC Programming Model

In this section, we present the key concepts of DISC programming model as a back-
ground for next section which explains how its abstractions leverage low-overhead
fault-tolerance support.

3.1 Domain and Subdomain
DISC model treats the entire input space of an application as a multidimensional
domain, which consists of domain elements. At the beginning of execution, pro-
grammers provide information about the domain. This information is used to ini-
tialize the runtime system and it includes 1) whether the domain represents a
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structured grid, an unstructured grid or a particle set, 2) number of dimensions
and boundary values for each dimension and 3) the type of interaction among do-
main elements. Once this information is passed to the runtime, it decomposes the
entire domain into non-overlapping rectilinear regions referred as subdomains and
assigns each subdomain to a processing unit. Since subdomain decomposition and
assignment is performed by the runtime, it is able to hold a high-level view of the
domain.

As a concrete example, consider a molecular dynamics application such as Min-
iMD which simulates the motion of a large number of atoms in three-dimensional
space throughout a predefined number of time-steps. When implemented using
DISC model, the three-dimensional space is treated as an N-body simulation do-
main and each atom in the simulation corresponds to a domain element. DISC
runtime for MiniMD is initialized with the following lines of code;

// provide domain information and initialize DISC runtime
DomainProps props;
props.set ndims(3); // number of dimensions
props.set min bounds(0, 0, 0); // x, y, z min−bounds
props.set max bounds(XMAX, YMAX, ZMAX); // x, y, z max−bounds
NBodyDomain domain(props);

3.2 Attributes

Each domain element in a DISC domain has associated coordinate values. In some
domain types such as structured grids, coordinate values of domain elements might
stay fixed during the entire execution and can be inferred directly from the bound-
ary values of assigned subdomains. However, for other domain types, they might be
updated periodically and their initial values should be explicitly provided by pro-
grammers. In addition to coordinates, each domain element can also be associated
with a set of attributes. For instance, each atom in MiniMD has three additional
attributes that store velocity values of the corresponding atom on x, y and z axis.
The key advantage of DISC model is its ability to perform data exchange opera-
tions based on the interaction pattern automatically and to re-partition the domain
on the fly in presence of heterogeneity by migrating domain elements within the
domain. To fulfill both of these promises, programmers register coordinates and
attributes of domain elements within each subdomain via DISC API, so that the
runtime is informed of the data structures that maintain associated information on
each domain element. Using the same example, the code snippet below shows how
attributes of domain elements in MiniMD are passed to the runtime through DISC
objects called DoubleAttribute;

DoubleAttribute velocities[3]; // x, y, z velocities
/∗ fill in attribute object velocities with initial values of x, y, z velocities ∗/
domain.register attributes(&velocities);
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3.3 Compute-Function and Computation-Space

In DISC model, each processing unit performs computations for the assigned por-
tion of the domain. In other words, the domain elements that a processing unit
processes lie within the boundaries of the subdomain that has been assigned to it
by the runtime. DISC requires programmers to express underlying computation,
which typically comprises of calculating new values for attributes associated with
domain elements, in a single or a set of functions referred as compute-functions.
Compute-functions generally host the portion of code on which most of the execu-
tion time is spent. Programmers specify these functions by passing function pointers
to the runtime. At each iteration during a program’s execution, the runtime invokes
these functions in the order that they are specified.

For each compute-function, programmers explicitly declare one or more objects
called computation-space. A computation-space object coupled with a compute-
function stores the results of computation carried out by that function. It generally
contains an entry for each domain element in the corresponding subdomain and
programmers perform any updates related to the domain elements directly on the
computation-space object itself. This way, the runtime is aware of what additional
data structures along with coordinates and attributes describe the domain ele-
ments in a subdomain completely. This abstraction leverages automated migration
of domain elements within the domain if needed. Note that mapping a value in
computation-space to the corresponding domain element can be inferred from do-
main type in most cases. Otherwise, programmers can pass additional functions to
the runtime that dictate this mapping.

In MiniMD, atoms interact with other atoms in a given radius and this inter-
action results in recomputation of coordinates and velocities of each atom at every
time-step. The code snippet below reflects this by defining six computation-space
objects (three for new coordinates and three for new velocities). These objects are
coupled with the compute-function minimd kernel and passed to the runtime via
DISC API;

DoubleAttribute computation space[6]; // new x, y, z coords and velocities
domain.add compute function(minimd kernel, &computation space);

3.4 Interaction between domain elements

As indicated before, a key advantage of DISC model is that the runtime handles
communication automatically based on the type of interaction between domain
elements. Currently, DISC model supports three types of communication; based
on nearest neighbor interactions in stencil kernels, based on radius-based interac-
tions in molecular dynamics applications and based on a list provided explicitly
by programmers that dictates pair-wise interactions. Further details for runtime
communication generation can be found in [15].

4 Fault-Tolerance Support

We now describe two fault-tolerance approaches that have been implemented for
the applications developed using DISC model.
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meta-data

computation-space

computation-space entry for grid point 
at coordinate (50,20) in represented 
subdomain  

…val:

subdom_no:   1
iteration_no: 20
xmin,xmax:  (50,70)
ymin,ymax:  (20,40)

(a) Structured Grid

meta-data

computation-space

(x1,y1,z1,vx1,vy1,vz1)
represent
the state of first 
point in represented 
subdomain

…x:

subdom_no:   1
iteration_no: 20
xmin,xmax:  (20,40)
ymin,ymax:  (45,70)
zmin,zmax:  (50,75)

x1

…y: y1

…z: z1

…vx: vx1

…vy: vy1

…vz: vz1

(b) Particle Set

Fig. 1. Sample checkpoint files for a 2D stencil (a) and 3D molecular dynamics application
(b). Both files consist of two parts as meta-data and computation-space objects.

4.1 Checkpointing

DISC model automates application-level checkpointing, alleviating the need for
expensive system-level checkpointing that is normally used for programming models
like MPI. Like any checkpointing-based approach, we assume the existence of a
persistent storage where the checkpoint files can be written into.

Two important questions for application-level checkpointing are: 1) when should
checkpoints be taken, and 2) what data structures will be needed to restart the
computation in case of a failure, and therefore, need to be checkpointed. It turns
out that the DISC model simplifies these decisions. Particularly, the end of an
iteration of the time-step loop (after data exchange and main computation have
been completed by the runtime system) is a natural point for taking the checkpoint.
Compared to system-level checkpointing, we get a coordinated checkpoint (in the
sense that there is no need for message logging for recovery), while not requiring
any time-consuming coordination between processes.

Now, let us return to the question of which data structures need to be check-
pointed. DISC model encapsulates the computational progress made on each do-
main element in objects that we introduced in previous section; attribute and
computation-space objects. At each iteration, attribute objects store the current
information associated with domain elements, whereas computation-space objects
capture the updates on them performed through compute-functions. As a con-
crete example, if we consider MiniMD, after each time-step, the attributes and the
computation-space objects contain previous and updated coordinate and velocity
values of each atom. The collection of attribute and computation-space objects
represent the main execution state of applications at any given time. This collec-
tion along with the high-level information such as initial domain decomposition
(boundaries of each subdomain) can be used to recover the state of DISC runtime
and the underlying application completely.
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If an application has multiple compute-functions, not all computation-space
objects may be live at the end of an iteration of the time-step loop, i.e, certain
computation-space objects could have been consumed already. Moreover, some of
the attribute objects might entirely depend on and be calculated from a small set of
remaining attributes without incurring a significant recomputation cost. This im-
plies that during failure recovery not all of the attributes and computation-space
objects are needed to recreate the execution state of domain elements. Some of
them can be ignored by the checkpointing mechanism to save bandwidth, hence
time, and also storage space. While compiler analysis can provide this information,
our model currently asks the programmers to explicitly annotate this information
by passing additional arguments during instantiation of these objects. This way,
programmers can explore the tradeoff space in checkpointing the entire domain
state vs. recalculation of a small portion from saved data structures. Note that any
other application state besides the ones associated directly with domain elements
should be explicitly checkpointed by programmers. However, considering the com-
putation patterns that DISC model targets, such additional state is limited and
recomputed efficiently from checkpointed attribute and computation-space objects.

Checkpointing frequency as well as other important information like the file
path where the checkpoint files will reside can be set via DISC API. We insert
some meta-data information to the head of checkpoint files including the current
iteration number, and also the boundaries of the subdomain that attribute and
computation-space objects represent. This meta-data is utilized to reconstruct the
application state during recovery. Figures 1(a) and (b) illustrate the content of
sample checkpoint files, which are taken at the 20th iteration of a 2D stencil grid
computation and a 3D molecular dynamics application. In both (a) and (b), only
the computation-space objects are saved.

Recovery During recovery from a failure, DISC model is able to restart the com-
putation both with the same or a fewer number of processes, unlike the current
checkpointing approaches in MPI, which can only allow restart with the same num-
ber of processes. For instance, assuming that there are N processing units in the
system before the failure, if the computation is restarted with a fewer number of
nodes, say N − 1, the domain is decomposed into N − 1 subdomains.

Whether with the same or fewer number of nodes, the most critical operation
for recovery is to recreate the computational state of a subdomain from existing
checkpoint files. If a processing unit has been assigned the same subdomain as
before, it will be sufficient to access that subdomain’s checkpoint file and load its
content into computation-space object in entirety. However, after decomposition,
a change in subdomain boundaries is very likely. Therefore, each processing unit
may need to read several checkpoint files. In such cases, the metadata information
mentioned previously is utilized to filter down the checkpoint files either completely
or at least partially, i.e. we check if there is an intersection between processing
unit’s newly assigned subdomain and the boundaries of the subdomain that the
checkpointed computation-space object represents.

Once computation-space objects for the new domain have been reconstructed
from the checkpoint files, application can restart from the iteration in which the
last checkpoint was taken.
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compare
checksum

exchange data

original thread and computation-space

invoke
compute_function

invoke
compute_function

compute
checksum

compute
checksum

“match”

“no match”

start recovery

replica thread and computation-space

Fig. 2. Flow of execution at each iteration when replication strategy is in use.

4.2 Replication
Soft error detection has drawn significant attention from community in recent years.
Such error detection could be from a variety of sources including hardware or
software error detection codes such as ECC, symptom-based error detectors [11] and
application-level assertions. One approach to detect such errors is to create two or
more independent threads of execution and compare the execution state of different
threads. This work has been done at multiple levels – replication at process level [10]
or replication at the instruction level [9]. However, trivial replication of the entire
program execution and comparison of resulting computation might incur significant
overheads. We claim that concepts of compute-functions and computation-space
objects in DISC model can be used to implement a partial replication strategy to
reduce associated overheads substantially.

As emphasized before, compute-functions contain the lines of code to which
majority of program execution time is devoted. A soft error in combinatorial logic
components including register values, ALUs and pipeline latches is most likely
to occur when processing cores carry out the instructions expressed in compute-
functions. Since computations, and hence updates on domain elements, defined
in compute-functions are directly reflected on the computation-space objects cou-
pled with them, a soft error occurring during the execution of these functions
eventually corrupts the computation-space objects, either directly and transitively.
This observation suggests that soft errors can be efficiently detected by replication
of compute-functions only and cross-comparison of their associated computation-
space objects after each iteration. Note that replication mechanism described next
assumes that processor components other than the memory are susceptible to soft
errors. A produced value is assumed to be resilient once it leaves the processor and
is stored back in memory. Control flow variables and memory references are pro-
tected by other means such as invariant assertions against the possibility of causing
fatal errors such as segmentation faults. Hence, we mainly protect execution against
soft errors on calculated values that are used to update computation-space objects.

Replication mechanism Figure 2 demonstrates the execution flow at each iter-
ation when this partial replication strategy is implemented in the DISC runtime.
After data exchange operations are performed, the runtime splits the main exe-
cution thread into two as original and replica. Each thread is associated with its
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own computation-space object, but they both invoke the same compute-function
in parallel. During compute-function execution, both original and replica threads
use the same set of input space, i.e. attributes of domain elements and any global
data structures in application code. Sharing the same memory space, except the
computation-space objects, leads to a significant reduction in overall memory foot-
print of replication strategy.

Currently, the replication strategy in DISC model makes the assumption that
compute-functions provided by the programmer are side-effect free, meaning that
they do not modify any global data structures. This is mainly to avoid possible race
conditions. Note that one can synchronize original and replica threads by pragma
directives with respect to the threading library used by the DISC runtime.

Checksum calculation After both threads finish executing the compute-function,
they calculate a checksum value over their own computation-space object. We em-
ploy integer module operation as the checksum function. Regardless of their data
type, we treat the bit representation of values in computation-space objects as an
integer and accumulate them into a single sum [16]. After checksum calculation,
the two threads merge and checksum values are compared by the main thread.
If the values match, application advances to the next iteration. Otherwise, DISC
runtime ceases the execution and informs the programmer that a soft error has
been detected and a recovery procedure should be initiated.

Improvements for cache utilization The initial replication scheme calculates
checksums over computation-space objects once individual threads finish execution
of compute-functions. Although checksum calculation can be performed quite effi-
ciently, especially in architectures with vector units, accessing the entire computation-
space objects once again leads to a large number of cache misses, and hence to high
overheads, especially when computation-space objects are large. To remedy this, we
present an improvement on top of the plain replication scheme presented previously.
Instead of performing it in a separate step, we incorporate checksum calculation
directly into compute-functions. Particularly, pure compute-functions provided by
programmers are modified in a way that entries in a computation-space object con-
tribute to the checksum on the fly, right after they are assigned a value. On the fly
checksum calculation increases temporal locality of overall replication strategy and
helps us avoid the data access costs incurred by an isolated checksum calculation
phase.

Another source of overhead is the need to create a second copy of computation-
space objects. Having additional computation-space objects for replica threads both
increases the total memory footprint and at the same time diminishes overall cache
utilization. Thus, as a second improvement, we avoid creating replica computation-
space objects by modifying compute-functions further. Particularly, assignments
to computation-space objects in replica thread are replaced by instructions that
accumulate the assigned variables to the checksum values instead. Having no replica
computation-space object in replica threads results in further improvements in data
locality. In the next section, we demonstrate how these two optimizations affect
performance of replication strategy, especially for applications with large output
space.
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Fig. 3. Normal execution and checkpointing times of MPI and DISC implementations of
four applications with varying number of nodes.

5 Experiments

In this section, we present results from a number of experiments we conducted
to evaluate the fault-tolerance solutions that we implemented within DISC model.
Our evaluation is based on four applications. We chose one molecular dynamics
application (MiniMD), one application involving an unstructured grid (Euler), and
two smaller kernels involving stencil computations (Jacobi and Sobel).

5.1 Checkpointing
One of the key advantages of DISC model is the support for automated application-
level checkpointing. We now show how the cost of checkpointing with our approach
compares with the only automated solution currently available with MPI, which
is system-level checkpointing. Moreover, we also examine how the total execution
time of our system and MPI versions compare, when checkpointing overheads are
included.

For checkpointing support in MPI implementations, we used MPICH2-BLCR,
which is one of the most popular system-level checkpoint/restart libraries. MPI
versions of all evaluated applications have been written by ourselves, except Min-
iMD which was obtained from the Mantevo suite3. Experiments in this section
are performed on a cluster where each node has two quad-core 2.53 GHz Intel(R)
Xeon(R) processors, with 12 GB RAM, executing RedHat Enterprise Linux Server

3 Please see https://software.sandia.gov/mantevo
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release 6.1, and Gigabit ethernet as the interconnect. Our programming model is
implemented in C++ language and uses MPICH2 (version 1.4.1p1) as the under-
lying communication library. The comparisons have been performed over a varying
number of nodes ranging between 16 and 128 (with only one core at each node),
consistent with our focus on distributed memory parallelism. Both in this and next
section, we repeated each experiment 5 times and report the average results.

Figure 3(a) and (b) demonstrate the execution times of Jacobi and Sobel, as
we increase the number of nodes. Gray portions of the bars correspond to normal
execution times, whereas red portion on top of each bar shows the additional time
spent for checkpointing. For both applications, we use a grid structure with 400 mil-
lion elements, execute them for 1000 iterations and trigger checkpoint mechanism
every 250 iterations. Compared to the MPI versions, our model’s implementations
have average overheads less than 1% for Jacobi and 4% for Sobel in normal execu-
tion times. The size of each global checkpoint in Jacobi and Sobel is 6 GB for MPI
and 3 GB for our model. Corresponding figures show that checkpointing operations
in our model are completed approximately in half of the time than MPI.

Figure 3(c) and (d) report the same results for MiniMD and Euler. In MiniMD,
we simulate the behavior of 4 million atoms, whereas we use 12 million nodes
for Euler. We run each application for up to 1000 iterations and take checkpoints
every 100 iterations. Results show that implementing MiniMD and Euler with DISC
brings an average overhead less than 5% in normal execution without checkpointing.
In MiniMD, each global checkpoint of MPI version is nearly 2 GB in size, whereas
with our programming model, the application-level checkpoint is only 192 MB.
Consequently, on the average, checkpointing time of MPI is nearly 12 times higher.
As the number of nodes increases, checkpointing times increase, due to the fact
that more nodes are contending for pushing the data to file system at the same
time. In Euler, the global snapshot size is again 2 GB for MPI, and 640MB with
our programming model. As a result, the time required for checkpointing in MPI
is nearly 4 times higher.

It is also useful to note that in all cases, after adding the normal execution
and checkpointing times, our model is faster. In some of the cases, particularly,
execution of MiniMD and Euler on 128 nodes, our model reduces the total exe-
cution time at least by a factor of 2, when checkpointing overheads are included.
Furthermore, we can see that with increasing number of nodes, as well as with in-
creasing complexity of applications, the relative advantage of our model increases.
The former is because of increasing contention for I/O related to checkpointing,
whereas, the latter is because a full application has many more structures than
those that need to be checkpointed at the application level. Because Jacobi and
Sobel are small templates, the application-level checkpoint is nearly 50% of the
size of system-level checkpoint. In comparison, for a more complex application like
MiniMD, the ratio is close to 10%. Thus, we can see that for most applications, we
can expect significant performance from our model.

5.2 Replication

Next, we present the results for DISC implementations of the previous applica-
tions, when we replicate compute-function execution in each process. We evaluate
our partial replication approach on Intel Xeon Phi 7110P many-core coprocessor.
The reason for choosing this architecture is that many-core systems are likely to be
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Fig. 4. Execution times of four applications without any replication (no rep), with plain
replication (rep) and replication with improvements for cache utilization (rep+ofc and
rep+ofc+ncs). Execution times for no rep with 1 process are 307.9, 398.9, 2686.2 and
213.2 seconds in Jacobi, Sobel, MiniMD and Euler, respectively. The same execution
times for the best replication version rep+ofc+ncs are 316.2, 474.5, 2738.3 and 214.8
seconds.

common in the exascale era, where soft errors will also be more likely. Specifically,
the coprocessor we have used has 61 cores running at 1.1GHz with 32KB L1 cache,
512 KB L2 cache per core and 8GB device memory for all cores, and is capable of
running 244 hardware threads with hyperthreading support. All applications were
compiled by Intel icpc-13.1.0 compiler with -O3 optimization with auto vectoriza-
tion flag on. Each process replicates the compute-function execution step using
OpenMP multi-threading library. We run all applications for 100 iterations. To
mitigate the impact of system noise, we dedicate core0 of Xeon Phi to the OS and
pin DISC processes to hardware threads between core1 and core60. Original and
replica threads in each process are pinned to the same core, except configurations
where we have 1 and 30 processes.

Figure 4(a) and (b) present the replication results for Jacobi and Sobel. For
each application, we compare the performance of four DISC versions; 1) execu-
tion without any replication (no rep), 2) execution with plain replication (rep),
3) execution with replication and on the fly checksum calculation (rep+ofc), and
finally 4) execution with replication, on the fly checksum calculation and no replica
computation-space (rep+ofc+ncs). All DISC versions are run with 1, 30, 60, 120
processes. For 240 processes, we only report the results for no replication version,
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normal execution with error injection
rep rep+ofc+ncs rep rep+ofc+ncs

Jacobi 0% 0% 100% 100%
Sobel 0% 0% 100% 100%
MiniMD 0% 0% 100% 100%
Euler 0% 0% 24% 100%

Table 1. Error detection rates for plain replication (rep) and replication with on the fly
checksum and no replica computation-space object (rep+ofc+ncs) versions both without
and with soft error injection.

since the replication versions utilize all of the 240 hardware threads with 120 pro-
cesses. The figure shows that for Jacobi at 120 processes DISC replication versions
rep, rep+ofc and rep+ofc+ncs have 118%, 44% and 33% overheads, respectively,
over execution with no replication. Note that because the 240 thread no rep version
does not have better performance over the 120 thread version, the results from 120
threads can be used to establish overheads of replication over the most efficient
execution without replication. For Sobel, with the same number of processes, the
overheads are 102%, 51% and 45%. These results indicate that two improvements
over the plain replication scheme lead to significant reductions in total overhead
by reducing data access costs during checksum calculation and improving overall
cache utilization.

Figure 4(c) and (d) present the results for MiniMD and Euler. At 120 processes,
DISC replication strategy causes 13%, 15% and 9% overheads in MiniMD, respec-
tively for rep, rep+ofc and rep+ofc+ncs versions. In Euler, the same overheads
are 34%, 41% and 24%. Although the overheads with the plain replication version
itself is quite small, we see that the suggested improvements do not lead to sub-
stantial benefits compared to Jacobi and Sobel. This is mainly due to the fact that
computation-space objects in MiniMD and Euler have a smaller size and they fit
in the L2 cache of Xeon Phi cores. Another potential reason is the following. Xeon
Phi employs software and hardware-based data prefetching to reduce data access
latencies. The prefetching mechanism works very aggressively for stencil kernels
and accessing the same data within a core both by original and replica threads
might lead to capacity and conflict misses. Furthermore, an existing analysis on
Xeon Phi in [8] reports drops in bandwidth when different threads access the same
memory space simultaneously due to the effects of contention at the interconnect
level. Hence, we believe that any data locality optimization such as on the fly
checksum calculation and no replica computation-space object for kernels such as
stencils result in substantial improvements. On the other hand, due to the irregu-
lar data access patterns in MiniMD and Euler, the amount of data prefetching is
limited. The overhead for plain replication is not too high to begin with and the
improvements in rep+ofc and rep+ofc+ncs versions are less visible.

As the last experiment, we show how effective DISC partial replication strat-
egy is in detecting soft errors. Table 1 reports error detection rates when the four
applications are run both when there is no soft error occurrence during execu-
tion and when a single soft error is injected. Error injection is done manually by
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flipping a single bit of a random stack variable during the execution of compute-
functions. We repeat the same experimental setup for two versions; plain replication
(rep) and replication with on the fly checksum and no replica computation-space
(rep+ofc+ncs). Each configuration is performed 50 times and error detection rates
show how many times DISC detected an error in these runs as a percentage. Results
show that when there is no soft error injection, error detection rate for both versions
is 0% meaning that DISC replication strategy does not produce any false positives.
Moreover, in Jacobi, Sobel and MiniMD, both versions are able to detect injected
soft errors and achieve 100% error detection rate. As the only exception, in Euler,
plain replication version detects only 24% of injected errors, whereas rep+ofc+ncs
again achieves a 100% detection rate. This is due to the fact that in Euler each cor-
rupted stack variable makes two contributions to the computation-space objects,
one being positive and the other negative. When checksums are calculated in plain
replication scheme, positive and negative contributions seem to cancel out each
other reducing overall detection rate. In contrary, rep+ofc+ncs version is insuscep-
tible to such cancellation, since checksums are calculated by using the corrupted
assigned values directly and ignoring their sign.

6 Conclusion

In this paper, we presented how DISC, a parallel programming model for iterative
scientific applications based on structured, unstructured grids and N-body simu-
lations, is extended to leverage low-overhead fault-tolerance support. We showed
that the existing abstractions in DISC model for automated inter-process com-
munication and work partitioning/re-partitioning can be also used for automated
application-level checkpointing and replicated execution to detect soft error oc-
currences. The experimental evaluation shows that checkpointing in DISC model
provides significant improvements over system-level checkpointing scheme and soft
errors can be detected by a partial replication strategy with low overheads.
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Abstract. We extend contention adapting trees (CA trees), a family of concur-
rent data structures for ordered sets, to support linearizable range queries, range
updates, and operations that atomically operate on multiple keys such as bulk
insertions and deletions. CA trees differ from related concurrent data structures
by adapting themselves according to the contention level and the access patterns
to scale well in a multitude of scenarios. Variants of CA trees with different per-
formance characteristics can be derived by changing their sequential component.
We experimentally compare CA trees to state-of-the-art concurrent data structures
and show that CA trees beat the best data structures we compare against with
up to 57% in scenarios that contain basic set operations and range queries, and
outperform them by more than 1200% in scenarios that also contain range updates.

1 Introduction

Data intensive applications on multicores need efficient and scalable concurrent data
structures. Many concurrent data structures for ordered sets have recently been proposed
(e.g [2, 4, 8, 11]) that scale well on workloads containing single key operations, e.g.
insert, remove and get. However, most of these data structures lack efficient and scalable
support for operations that atomically access multiple elements, such as range queries,
range updates, bulk insert and remove, which are important for various applications
such as in-memory databases. Operations that operate on a single element and those that
operate on multiple ones have inherently conflicting requirements. The former benefit
from fine-grained synchronization due to better scalability, while the latter benefit from
more coarse-grained synchronization. The few data structures with scalable support for
some multi-element operations [1, 3] have to be parameterized with the granularity of
synchronization. Setting this parameter is inherently difficult since the usage patterns
and contention level are sometimes impossible to predict. This is especially true when
the data structure is provided as a general purpose library.

Contention adapting trees (CA trees) [18] is a new family of concurrent data struc-
tures for ordered sets, that adapt their synchronization granularity according to the
contention level and the access patterns even when these change dynamically. In this
work, we extend CA trees with support for operations that atomically access multiple
elements. As we will see, CA trees provide good scalability both in contended and
? Research supported in part by the European Union grant IST-2011-287510 “RELEASE: A

High-Level Paradigm for Reliable Large-scale Server Software” and the Linnaeus centre of
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uncontended situations. Moreover they are flexible: CA tree variants with different
performance characteristics can be derived by selecting their underlying sequential data
structure component. CA trees support the common interfaces of sets, maps and key-
value stores as well as range queries, range updates, bulk inserts, bulk removes and other
operations that atomically access multiple keys. Experiments on scenarios with a variety
of mixes of these operations show that CA trees provide performance that is significantly
better than that obtained by state-of-the-art data structures for ordered sets and range
queries. All these make CA trees suitable for a multitude of applications, including
in-memory databases, key-value stores and general purpose data structure libraries.

Definitions. A range query operation atomically takes a snapshot of all elements belong-
ing to a range [a, b] of keys. A range update atomically applies an update function to all
values associated with keys in a specific key range. A bulk insert atomically inserts all
elements in a list of keys or key-value pairs. (A bulk remove is defined similarly.) We call
operations that operate on a range of elements range operations and use multi-element
operations as a general term for operations that atomically access multiple elements.

Overview. We start by reviewing related work (Section 2) before we introduce the CA
trees in detail (Section 3) and compare them experimentally to related data structures
(Section 4). The paper ends with some discussion and concluding remarks (Section 5).

2 Related Work

In principle, concurrent ordered sets with linearizable range operations can be imple-
mented by utilizing software transactional memory (TM): the programmer simply wraps
the operations in transactions and lets the TM take care of the concurrency control to en-
sure that the transactions execute atomically. Even though some scalable data structures
have been derived by carefully limiting the size of transactions (e.g. [1, 7]), currently
transactional memory does not offer a general solution with good scalability; cf. [1].

Brown and Helga have extended the non-blocking k-ary search tree [4] to provide
lock-free range queries [3]. A k-ary search tree is a search tree where all nodes, both
internal and leaves, contain up to k keys. The internal nodes are utilized for searching,
and leaf nodes contain all the elements. Range queries are performed in k-ary search
trees with immutable leaf nodes by using a scan and a validate step. The scan step scans
all leaves containing keys in the range and the validate step checks a dirty bit that is
set before a leaf node is replaced by a modifying operation. Range queries are retried
if the validation step fails. Unfortunately, non-blocking k-ary search trees provide no
efficient way to perform atomic range updates or multi-element modification operations.
Additionally, k-ary search trees are not balanced, so pathological inputs can easily make
them perform poorly. Robertson investigated the implementation of lock-free range
queries in a skip list: range queries increment a version number and a fixed size history
of changes is kept in every node [15]. This solution does not scale well because of the
centralized version number counter. Also, it does not support range updates.

Functional data structures or copy-on-write is another approach to provide lineariz-
able range queries. Unfortunately, this requires copying all nodes in a path to the root in
a tree data structure which induces overhead and makes the root a contended hot spot.



The Snap tree data structure [2] provides a fast O(1) linearizable clone operation by
letting subsequent write operations create a new version of the tree. Linearizable range
queries can be performed in a Snap tree by first creating a clone and then performing
the query in the clone. Snap’s clone operation is performed by marking the root node as
shared and letting subsequent update operations replace shared nodes while traversing the
tree. To ensure that no existing update operation can modify the clone, an epoch object is
used. The clone operation forces new updates to wait for a new epoch object by closing
the current epoch and then waits for existing modifying operations (that have registered
their ongoing operation in the epoch object) before a new epoch object is installed.
The Ctrie data structure [13] also has a fast clone operation whose implementation and
performance characteristics resembles Snap; see [3].

Range operations can be implemented in data structures that utilize fine-grained
locking by acquiring all necessary locks. For example, in a tree data structure where all
elements reside in leaf nodes, the atomicity of the range operation can be ensured by
locking all leaves in the range. This requires locking at least n/k nodes, if the number of
elements in the range is n and at most k elements can be stored in every node. When
n is large or k is small the performance of this approach is limited by the locking
overhead. On the other hand, when n is small or k is large the scalability is limited by
coarse-grained locking. In contrast, as we will see, in CA trees k is dynamic and adapted
at runtime to provide a good trade-off between scalability and locking overhead.

The Leaplist [1] is a concurrent ordered set implementation with native support for
range operations. Leaplist is based on a skip list data structure with fat nodes that can
contain up to k elements. The efficient implementation of the Leaplist uses transactional
memory to acquire locks and to check if read data is valid. The authors of the Leaplist
mention that they tried to derive a Leaplist version based purely on fine-grained locking
but failed [1], so developing a Leaplist without dependence on STM seems to be difficult.
As in trees with fine-grained locking, the size of the locked regions in Leaplists is
fixed and does not adapt according to the contention as in CA trees. Furthermore, the
performance of CA trees does not depend on the availability and performance of STM.

Operations that atomically operate on multiple keys can be implemented in any data
structure by utilizing coarse-grained locking. By using a readers-writer lock, one can
avoid acquiring an exclusive lock of the data structure for some operations. Unfortunately,
locking the whole data structure is detrimental to scalability if the data structure is
contended. The advantage of coarse-grained locking is that it provides the performance
of the protected sequential data structure in the uncontended case. As we will soon see,
CA trees provide the high performance of coarse-grained locking in the uncontended
cases and the scalability of fine-grained synchronization in contended ones by adapting
their granularity of synchronization according to the contention level.

3 Contention Adapting Search Trees

The structure and components of CA trees are as follows. The elements (key-value pairs
or keys) contained in a CA tree are stored in sequential ordered set data structures (e.g.,
AVL trees, skip lists, etc.) which are rooted by base nodes. Each base node contains a lock
that maintains statistics about the current level of the node’s contention. The synchroniza-
tion of accesses to a particular base node is handled independently of all other base nodes.



Fig. 1: The structure of a CA tree.
Numbers denote keys, a node whose
flag is valid is marked with a green
hook; an invalid one with a red cross.

Base nodes are linked together by routing nodes
as depicted in Fig. 1. The routing nodes do
not contain elements; instead they contain keys
which are only used to facilitate searching. As
in ordinary binary search trees, all elements con-
tained in the left branch of a routing node with
keyK have keys smaller thanK and all elements
contained in the right branch have keys greater
than or equal to K. When it is detected that con-
tention on a particular base node B is high, the
subtree rooted by B is split to reduce the con-
tention. Symmetrically, if contention on a base
node B is detected to be low, B is joined with a
neighbor base node to reduce the search path and
to make atomic access of larger parts of the CA
tree more efficient. An example of a split and a
join operation is shown in Fig. 2.

Contention detection is done by simply checking whether waiting for the lock of a
base node was required or not, and increasing or decreasing the statistics counter (which
is located in the base node lock) accordingly. Thresholds for this counter are used to
decide when adaptation shall be performed. A good heuristic is to do adaptation for high
contention eagerly and adaptation for low contention only when the contention has been
low for many operations. This heuristics also avoids too frequent adaptations back and
forth [18]. This mechanism for contention detection has low overhead and works well
in practice. Still, other mechanisms can be used, e.g., based on the back-off time in an
exponential back-off spin lock [12].

Searching in the routing node layer is done without acquiring any locks. However,
as seen in Fig. 1, besides a key, routing nodes also have a valid flag (3or 7) and a lock.
These are used to synchronize between concurrent join operations (i.e., adaptations for
low contention). Since, as explained above, join operations happen relatively infrequently
in CA trees, the locks in the routing nodes do not limit scalability in practice.

Single-key Modification Operations. Operations such as insert and remove start from the
root of the CA tree and search for the base node B under which the element/key that is
given as parameter to the operation will be inserted or removed. Recall that the traversal
of the routing nodes does not acquire any locks. When B is reached, it is locked and
then its valid flag is checked. If this flag is false (7), the search needs to be retried. A
base node becomes invalid when it is replaced by a split or a join. A search that ends up
in an invalid base node thus needs to be retried until a valid base node is found. When
this has happened, the operation is simply forwarded to the sequential data structure
rooted by the base node. Before the base node is unlocked and the operation completes,
we check if enough contention or lack of contention has been detected to justify an
adaptation. If high contention is detected, the elements in the base node are split into two
new base nodes that are linked together by a routing node. Figures 2a and 2b show CA
trees before and after base node B2 and the data structure Y is split (75 is the split key).
In the reverse direction, if low contention is detected, the sequential data structure of the



(a) Initial CA tree (b) CA tree after a split (c) CA tree after a join

Fig. 2: Effect of the split and join operations on the CA tree of Fig. 2a.

base node B is joined with that of a neighbor base node and the parent routing node of
B is spliced out together with B. Figures 2a and 2c show CA tree structures before and
after base node B2 is spliced out from the tree and the elements of its Y structure are
joined with those of X . We refer to [18] for pseudocode and a detailed description of the
algorithms for splitting and joining base nodes and single key operations.

Single-key Read-only Operations. Read-only operations like get, contains, findMax,
etc. can work in a similar fashion as modification operations. However, acquiring even
a RW lock for read-only operations on a multicore system can cause bad scalability
due to increased cache coherence traffic. Therefore, the performance and scalability
of read-only operations can be improved if acquiring a lock can be avoided. By using
a sequence lock [10] in the base nodes, read-only operations can attempt to perform
the operation optimistically by checking the sequence number in the lock before and
after the read-only operation has been performed on the base node. If the optimistic
attempt fails, the base node lock can be acquired non-optimistically. This sequence lock
optimization avoids writing to shared memory in the common case when the base node
is not contended, which greatly improves performance in practice [18]. The concurrency
in the data structure can be further improved by using a sequence lock with support for
concurrent execution of read-only critical sections. By using such a lock. one can acquire
the base node lock in read-only mode when the optimistic read attempt fails, and thus
allowing concurrent reads to read from the base node at the same time. An optimistic
read does not contribute any contention and should thus not change the statistics counter
(which would also defeat the purpose of optimistic reads). If the optimistic read fails and
the lock is acquired in read mode, our implementation adds to the contention statistics to
decrease the likelihood of optimistic read failures in the future1.

Multi-element Operations. CA trees also support operations that atomically operate on
several keys, such as bulk insert, bulk remove, and swap operations that swap the values
associated with two keys. Generic pseudocode for such operations appears in Fig. 4a; its

1 We perform the change to the contention statistics counter non-atomically. Thus, it is possible
for a concurrent read operation to overwrite the change. Note that this does not effect the
correctness of the data structure as it only affects the frequency of its adaptations.



1 void manageCont(BaseNode base, boolean contended) {
2 if (contended) base.lock.statistics += FAIL_CONTRIB;
3 else base.lock.statistics -= SUCC_CONTRIB;
4 if (base.lock.statistics > MAX_CONTENTION) {
5 if (size(base.root) < 2) base.lock.statistics = 0;
6 else highContentionSplit(tree, base, base.parent);
7 } else if (base.lock.statistics < MIN_CONTENTION) {
8 if (base.parent == null) base.lock.statistics = 0;
9 else lowContentionJoin(tree, base, base.parent);

10 }
11 }

(a) Manage contention

1 BaseNode, List<RouteNode>
2 getNextBaseNodeAndPath(BaseNode b, List<RouteNode> p) {
3 List<RouteNode> newPathPart;
4 BaseNode bRet;
5 if (p.isEmpty()) { // The parent of b is the root
6 return null, null;
7 } else {
8 List<RouteNode> rp = p.reverse();
9 if (rp.head().left == b) {

10 bRet, newPathPart =
11 leftmostBaseNodeAndPath(rp.head().right);
12 return bRet, p.append(newPathPart);
13 } else {
14 K pKey = rp.head().key; // pKey = key of parent
15 rp.removeFirst();
16 while (rp.notEmpty()) {
17 if(rp.head().isValid() && pKey <= rp.head().key){
18 bRet, newPathPart =
19 leftmostBaseNodeAndPath(rp.head().right);
20 return bRet, rp.reverse().append(newPathPart);
21 } else {
22 rp.removeFirst();
23 }
24 }
25 }
26 return null, null;
27 }
28 }

(b) Find next base node

Fig. 3: Helper functions for Fig. 4.

helper function manageCont appears in Fig. 3a.
Such operations start by sorting the elements
given as their parameter (line 7). Then all the
base nodes needed for the operations are found
(line 11) and locked (lines 14–15) in sorted order.
Locking base nodes in a specific order prevents
deadlocks. The method lockIsContended in
the base node, locks the base node lock and re-
turn true if contention was detected while lock-
ing it and the method lockNoStats locks the
base node lock without recording any contention.
When multi-element operations are given keys
that all reside in one base node, only this base
node needs to be locked. One simply has to query
the sequential data structure in the current base
node for the maximum key (line 26) to see which
of the given elements must belong to a base node.
This can be compared to data structures that uti-
lize non-adaptive fine-grained synchronization
and thus either need to lock the whole data struc-
ture or all involved elements individually. Finally,
multi-key operations end by adjusting the con-
tention statistics, unlock all acquired locks and
if required split or join one of the base nodes
(lines 33–43).

Range Operations. We will now describe an algorithm for atomic range operations
that locks all base nodes that can contain keys in the range [a, b]. Generic pseudocode
for such operations can be seen in Fig. 4b and its helper function manageCont and
getNextBaseNodeAndPath can be seen in Fig. 3. To prevent deadlocks, the base nodes
are always locked in increasing order of the keys that they can contain. Therefore, the
first base node to lock is the one that can contain the smallest key a in the range. This
first base node can be found (line 4) and locked (line 5) using the algorithm described
for single-key operations. Finding the next base node (line 20) is not as simple as it
might first seem, since routing nodes can be spliced out and base nodes can be split. The
two problematic cases that may occur are illustrated in Fig. 2. Suppose that the base
node marked B1 has been found through the search path with routing nodes with keys
80, 40, 70, 60 as depicted in Fig. 2a. If the tree stays as depicted in Fig. 2a, the base
node B2 would be the next base node. However, B2 may have been spliced out while
the range operation was traversing the routing nodes (Fig. 2c) or split (Fig. 2b). If one
of these cases happens, we will detect this since we will end up in an invalid base node
in which case the attempt to find the next base node will be retried. When we find the
next base node we will not end up in the same invalid base node twice if the following
algorithm is applied (also depicted in Fig. 3b):

1. If the last locked base node is the left child of its parent routing node P then find the
leftmost base node in the right child of P (Fig. 3b, line 11).



2. Otherwise, follow the reverse search path from P until a valid routing node R with
a key greater than or equal to the key of P is found (Fig. 3b, line 17). If such an
R is not found, the current base node is the rightmost base node in the tree so all
required base nodes are already locked (Fig. 3b, lines 6 and 26). Otherwise, find the
leftmost base node in the right branch of R (Fig. 3b, line 19).

The argument why this algorithm is correct is briefly as follows. For case 1, note that
the parent of a base node is guaranteed to stay the same while the base node is valid; cf.
also [16]. For case 2, note that once we have locked a valid base node we know that no
routing nodes can be added to the search path that was used to find the base node, since
the base node in the top of the path must be locked for a new routing node to be linked
in. Also, the above algorithm never ends up in the same invalid base node more than
once since the effect of a split or a join is visible after the involved base nodes have been
unlocked. Finally, if the algorithm ever finds a base node B2 that is locked and valid
and the previously locked base node is B1, then there cannot be any other base node B′

containing keys between the maximum key of B1 and the minimum key of B2. This is
true because if a split or a join had created such a B′, then B2 would not be valid.

An Optimistic Read Optimization for Range Queries. For the same reasons, as discussed
previously for single-key read-only operations, it can be advantageous to perform range
queries without writing to shared memory. This can be done by first reading the sequence
numbers (in the locks) and validating the base nodes containing the elements in the
range. This optimistic attempt is aborted if a sequence number indicates that a write
operation is currently changing the content of the base node. After acquiring sequence
numbers for all involved base nodes, the range query is continued by reading all elements
in the range, checking the sequence number again after the elements in a base node
have been read. If the sequence numbers have not changed from the initial scan to after
the elements have been read, then one can be sure that no write has interfered with the
operation. Thus, the range query will appear to be atomic. As soon as a validation of a
sequence number fails or inconsistent state is detected in the sequential data structure,
the optimistic attempt will abort. Range queries for which the optimistic attempt failed
are performed by acquiring the base node locks belonging to the range in read mode.

Contention Statistics in Multi-element Operations. A multi-element operation performed
by non-optimistic locking that only requires one base node changes the contention
statistics counter in the same way as single-element operations and also uses the same
split and join thresholds as single-element operations. The pseudocode that handles
contention in this case can be found in Fig. 3a and is called from line 34 in Fig. 4a and
line 36 in Fig. 4b. When contention is detected, the contention statistics counter in that
base node is increased (line 2) to make a base node split more likely and otherwise the
contention statistics counter is decreased (line 3) to make a base node join more likely.
Lines 4 to 10 check if one of the thresholds for adaptation has been reached and performs
the appropriate adaptation in that case.

If a multi-element operation performed by non-optimistic locking requires more
than one base node, the contention statistics counter is decreased (lines 39–40 in Fig. 4a
and lines 43–44 in Fig. 4b) in all involved base nodes to reduce the chance that future



1 K[] doBulkOp(CATree tree, Op op, K[] keys){
2 keys = keys.clone();
3 values = values.clone();
4 K[] returnArray = new K[keys.size];
5 boolean first = true;
6 boolean firstContended = true;
7 sort(keys);
8 Stack<BaseNode> lockedBaseNodes = new Stack<>;
9 int i = 0; while( i < keys.size ){

10 find_base_node_for_key:
11 BaseNode baseNode = getBaseNode(tree, keys[i]);
12 if(baseNode != lockedBaseNodes.top()){
13 if(first) {
14 firstContended = baseNode.lockIsContended();
15 } else baseNode.lockNoStats();
16 if (!baseNode.isValid()) {
17 baseNode.unlock();
18 goto find_base_node_for_key; // retry
19 } else {
20 first = false;
21 }
22 lockedBaseNodes.push(baseNode);
23 }
24 returnArray[i] = op.execute(baseNode.root, keys[i]);
25 i++;
26 K baseNodeMaxKey = baseNode.maxKey();
27 while(keys[i] <= baseNodeMaxKey){
28 returnArray[i] = op.execute(baseNode.root, keys[i]);
29 i++;
30 }
31 }
32 BaseNode[] lockedBaseNodesArray = lockedBaseNodes.toArray();
33 if( lockedBaseNodes.size() == 1 ) {
34 manageCont(lockedBaseNodesArray[0], firstContended);
35 lockedBaseNodesArray[0].unlock();
36 } else {
37 for(int i = 0; i < lockedBaseNodes.size(); i++){
38 if( i == (lockedBaseNodes.size() -1 ) ) {
39 manageCont(lockedBaseNodesArray[0], false);
40 } else base.lock.statistics -= SUCC_CONTRIB;
41 baseNode.unlock();
42 }
43 }
44 return returnArray;
45 }

(a) Bulk operations

1 K[] rangeOp(CATree tree, Op op, K lo, K hi){
2 List<RouteNode> path;
3 Stack<BaseNode> lockedBaseNodes = new Stack<>();
4 fetch_first_node: baseNode, path = getBaseNodeAndPath(lo);
5 boolean firstContended = baseNode.lockIsContended();
6 if ( ! baseNode.isValid() ) {
7 baseNode.unlock();
8 goto fetch_first_node;
9 }

10 while ( true ) {
11 lockedBaseNodes.push(baseNode);
12 K baseNodeMaxKey = baseNode.maxKey();
13 if ( baseNodeMaxKey != null && hi < baseNodeMaxKey ) {
14 break; // All needed base nodes are locked
15 }
16 BaseNode lastLockedBaseNode = baseNode;
17 List<RouteNode> pathBackup = path.clone();
18 search_next_base_node:
19 baseNode, path =
20 getNextBaseNodeAndPath(lastLockedBaseNode, path);
21 if( baseNode == null ){
22 break; // All needed base nodes are locked
23 }
24 baseNode.lockNoStats();
25 tryAgain = ! baseNode.isValid();
26 if( tryAgain ) {
27 baseNode.unlock();
28 path = pathBackup;
29 goto search_next_base_node;
30 }
31 }
32 Buffer<K> retBuff = Buffer<K>;
33 BaseNode[] lockedBaseNodeArray = lockedBaseNodes.toArray();
34 if( lockedBaseNodesArray.size() == 1 ){
35 retBuff.add(performOpToKeysInRange(baseNode, lo, hi, op));
36 manageCont(lockedBaseNodesArray[0], firstContended);
37 lockedBaseNodesArray[0].unlock();
38 } else {
39 for( int i = 0; i < lockedBaseNodesArray.size(); i++ ) {
40 baseNode = lockedBaseNodeArray[i];
41 retBuff.add(performOpToKeysInRange(baseNode, lo, hi, op));
42 if( i == (lockedBaseNodesArray.size() -1 ) ) {
43 manageCont(lockedBaseNodesArray[0], false);
44 } else base.lock.statistics -= SUCC_CONTRIB;
45 baseNode.unlock();
46 }
47 }
48 return retBuff.toArray();
49 }

(b) Range operations

Fig. 4: Pseudocode for bulk operations and range operations.

multi-element operations will require more than one base node. Before unlocking the
last base node, low-contention join or high-contention split is performed on that base
node if the thresholds are reached (line 39 in Fig. 4a and line 43 in Fig. 4b).

Range operations where the optimistic attempt succeeds do not change the contention
statistics of any of the base nodes that they use. Doing so would defend the purpose of
the optimistic attempt which is to avoid writing to shared state. However, if the optimistic
attempt fails, the contention statistics is updated as described above.

Correctness. In a previous publication [18] we provided proofs for that the algorithm
for single-key operations is deadlock free, livelock free as well as a proof sketch for
its linearizability. Here, we will briefly repeat the outlines of the proofs for single-key
operations and provide a proof sketch that the properties deadlock freedom, livelock
freedom and linearizability are all provided by CA trees when extended with the range
operations and bulk operations that we have described in detail in this paper. The
interested reader can find more detailed proofs in a technical report available online [16].



Deadlock freedom can be shown by proving that all locks are acquired in a specific
order. All single-key operations (except operations that perform a low-contention join)
acquire a single lock; cf. [16]. Low-contention join can acquire base node locks in
different orders but since this is done with a non-blocking try lock call and all locks that
the operation is holding are released if the try lock call fails, this cannot cause a deadlock.
The proof for deadlock freedom can easily be extended to also include bulk operations
and range operations that we have described in this paper. As presented earlier, these
operations acquire the base node locks in a specific order (increasing order of the keys
that they can store), with the exception that they might also perform a low-contention
join which cannot cause deadlocks as we have described above. Thus, a CA tree with
multi-element operations is deadlock free since there is a specific order in which the
locks are acquired. Whenever locks are acquired in a different order, this is done with a
try lock call and all held locks are released if the try lock call fails.

Livelock freedom can be shown by proving that when an operation or part of an
operation has to be retried due to interference from another thread, some other thread
must have made progress. The two types of retries are the same for both multi-element
operations and single-key operations. The first type of retry can happen in the function
for low-contention join and is caused by a concurrent low-contention join that removes
a routing node. This can not cause a livelock since, if a retry is triggered at this point,
another thread must have successfully spliced out a routing node from the tree and this
routing node will not be observed when we retry; cf. [16]. The second type of retry
happens when an invalid base node is observed. An invalid base node is only observed
if another thread has successfully performed a contention-adapting split or join which
means that another thread has made progress. Single-key operations handle this case
by retrying the whole operation, while operations involving multiple keys only need to
retry the search for the next base node. When the search for a base node is retried the
same invalid base node will not be found since the effect of the split or join that sets the
base node to invalid will be visible after the base node(s) involved in the split or join
has(have) been unlocked.

Linearizability. The linearization point of an operation that locks all base nodes that
it reads or writes to is at some point while holding the base node locks of all the base
nodes that it operates on. The linearization point of an operation that is successfully
performed with an optimistic read attempt is somewhere between the first and second
sequence number scan. If the optimistic read attempt fails, the operation will instead
acquire the locks non-optimistically and the linearization point will be at some point
while holding all the base node locks. It can be proven [16] that CA trees maintain the
following property: If a thread t has searched in a CA tree for a key K using the binary
search tree property and ended up in base nodeB that it has locked and validated, thenK
must be in B and not in any other base node if it is in the abstract set represented by the
CA tree. Using this property as well as the properties mentioned above in the arguments
for the correctness of range operations it is easy to see that the CA tree operations appear
to happen atomically at their linearization points, since they are either holding locks
of all base nodes that can contain keys involved in the operation or ensuring that no
other thread has changed any key involved in the operation while the operation is being
performed by the final check of the sequence numbers in the sequence locks.



Flexibility of CA Trees. A split operation in an ordered set data structure splits the data
structure into two data structures so that all elements in one are smaller than the elements
in the other. The join operation merges two data structures where the greatest key in
one of them is smaller than the smallest key in the other. Any sequential ordered set
data structure that has efficient support for the split and join operations can be used to
store elements under the base nodes of CA trees. This property makes CA trees highly
flexible since the underlying sequential data structure can be changed without changing
the CA tree structure itself. The sequential data structure component of a CA tree could
be passed as a parameter by the user when creating a CA tree instance. One could even
change the sequential ordered set data structure at run time depending on which type of
operations are most frequent; however, it is beyond the scope of this paper to investigate
the effect of this possibility.

Many ordered set data structures support efficient split and join operations including
red-black trees and AVL trees that do these operations in O(log(N)) time [9, 19]. Skip
lists are randomized data structures for ordered sets that also have efficient support for
split2 and join [14]. By using both back and forward pointers in the skip list, both split
and join as well as maxKey have constant time implementations. Skip lists also provide
efficient support for range operations since all elements are connected in an ordered
list at the top level of a skip list. Using a skip list with so called fat nodes, i.e., nodes
that contain more than one element, we can further increase the performance of range
operation due to improved locality. We will experiment with AVL trees and skip lists
with fat nodes in the next section. Our skip list implementation can store up to k elements
in its nodes. The nodes are split if an insert would cause a node to contain k+1 elements,
and nodes are spliced out if a remove operation would create an empty node. The keys
in the skip list are kept in compact arrays to improve cache locality when searching and
performing range operations.

4 Experiments

Let us now investigate the scalability of two CA tree variants: one with an AVL tree
as sequential structure (CA-AVL) and one with a skip list with fat nodes (CA-SL) as
sequential structure. We compare them against the lock-free k-ary search tree [3] (k-ary),
the Snap tree [2] (Snap) and a lock-free skip list [8] (SkipList). All implementations are
those provided by the authors, except SkipList which is implemented by Doug Lea in
the Java Foundation Classes as the class ConcurrentSkipListMap.3

SkipList marked with dashed gray lines in the graphs does not cater for linearizable
range queries nor range updates. We include SkipList in the measurements only to show
the kind of scalability one can expect from a lock-free skip list data structure if one is
not concerned about consistency of results from range operations. Range operations are

2 The efficient skip list split operation splits the data structure so that on average half the keys
will be in each resulting split.

3 We do not compare experimentally against the Leaplist [1] whose main implementation is in C.
Prototype implementations of the Liplist in Java were sent to us by its authors, but they ended
up in deadlocks when running our benchmarks which prevented us from obtaining reliable
measurements. Instead, we refer to Section 2 for an analytic comparison to the Leaplist.



implemented in SkipList by calling the subSet method which returns an iterable view
of the elements in the range. Since changes in SkipList are reflected in the view returned
by subSet and vice versa, range operations are not atomic.

In contrast, the k-ary search tree supports linearizable range queries and the Snap
tree supports linearizable range queries through the clone method. However, neither the
k-ary nor the Snap tree provide support for linearizable range updates. In the scenarios
where we measure range updates we implement them in these data structures by using a
frequent read optimized readers-writer lock4 with a read indicator that has one dedicated
cache line per thread. Thus, all operations except range updates acquire the RW-lock in
read mode. We have confirmed that this method has negligible overhead for all cases
where range updates are not used, but use the implementations of the data structures
without range update support in scenarios that do not have range updates.

We use k = 32 (maximum number of elements in nodes) both for CA-SL and k-ary
trees. This value provides a good trade-off between performance of range operations
and performance of single-key modification operations. For the CA trees, we initialize
the contention statistics counters of the locks to 0 and add 250 to the counter to indicate
contention; we decrease the counter by 1 to indicate low contention. The thresholds
−1000 and 1000 are used for low contention and high contention adaptations.

The benchmark we use measures throughput of a mix of operations performed by
N threads on the same data structure during T seconds. The keys and values for the
operations get, insert and remove as well as the starting key for range operations are
randomly generated from a range of size R. The data structure is pre-filled before the
start of each benchmark run by performing R/2 insert operations. In all experiments
presented in this paper R = 1000000, thus we create a data structure containing roughly
500000 elements. In all captions, benchmark scenarios are described by a strings of the
form w:A% r:B% q:C%-R1 u:D%-R2, meaning that on the created data structure the
benchmark performs (A/2)% insert, (A/2)% remove, B% get operations, C% range
queries of maximum range sizeR1, andD% range updates with maximum range sizeR2.
The size of each range operation is randomly generated between 1 and the maximum
range size. The benchmarks presented in this paper were run on a machine with four
AMD Opteron 6276 (2.3 GHz, 16 cores, 16M L2/16M L3 Cache), giving a total of 64
physical cores and 128 GB or RAM, running Linux 3.10-amd64 and Oracle Hotspot
JVM 1.8.0_31 (started with parameters -Xmx4g, -Xms4g, -server and -d64). 5 The
experiments for each benchmark scenario were run in a separate JVM instance and we
performed a warm up run of 10 seconds followed by three measurement runs, each
running for 10 seconds. The average of the measurement runs as well as error bars for
the minimum and maximum run are shown in the graphs, though often they are very
small and therefore not visible.

Benchmarks without Range Updates. Let us first discuss the performance results in
Fig. 5, showing scenarios without range updates. Figure 5a, which shows throughput

4 We use the write-preference algorithm [5] for coordination between readers and writers and the
StampedLock from the Java library for mutual exclusion.

5 We also ran experiments on a machine with four Intel(R) Xeon(R) E5-4650 CPUs (2.70GHz
each with eight cores and hyperthreading) both on a NUMA setting and on a single chip,
showing similar performance patterns as on the AMD machine. Results are available online [6].
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Fig. 5: Scalability of throughput (ops/µs) on the y-axis and thread count on the x-axis.

in a scenario with a moderate amount of modifications (20%) and small range queries,
shows that the k-ary and CA-AVL tree perform best in this scenario, tightly followed
by the CA-SL and SkipList with the non-atomic range queries. We also note that the
Snap tree does not scale well in this scenario, which is not surprising since a range
query with a small range size will eventually cause the creation of a copy of every node
in the tree. Let us now look at Fig. 5b showing throughputs in a scenario with many
modifications (50%) and larger range queries, and Fig. 5c corresponding to a scenario
with the same maximum range query size and a more moderate modification rate (20%).
First of all, the better cache locality for range queries in CA-SL and k-ary trees is visible
in these scenarios where the range sizes are larger. k-ary only beats CA-AVL with a
small amount up to 32 threads and then k-ary’s performance drops. This performance
drop might be caused by its starvation issue in the range query operation that can cause a
range query to be retried many times (possibly forever). This can be compared to the CA
trees that acquire locks for reads if the first optimistic attempt fails and thus reducing the
risk of retries. The scalability of the CA trees shown in Fig. 5b, i.e., in a scenario with
50% modification operations, shows that the range queries in the CA trees tolerate high
contention. Finally, the scenario of Fig. 5d with very wide range queries and moderate
modification rate (20%) shows both the promise and the limit in the scalability of CA-SL.
However, we note that SkipList, which does not even provide atomic range queries, does
not beat CA-SL that outperforms the other data structures by at least 57% at 16 threads.
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Fig. 6: Scalability of throughput (ops/µs) on the y-axis and thread count on the x-axis.

Benchmarks with Range Updates. Let us now look at the scenarios that also contain
range updates shown in Fig. 6. The first of them (Fig. 6a) shows that k-ary tree’s
scalability flattens out between 16 and 32 threads even with as little as 1% range updates.
Instead, the CA trees provide good scalability all the way. Remember that we wrap the
k-ary operations in critical sections protected by an RW-lock to provide linearizable
range updates in the k-ary tree. In the scenario of Fig. 6b, where the percentage of
range updates is 15%, we see that the k-ary tree does not scale at all while the CA trees
and SkipList with the non-atomic range operations scale very well, outperforming the
k-ary tree with more than 1200% in this case. The two scenarios in Fig. 6c and 6d have
the same rate of operations but different maximum size for range queries and range
updates. Their results clearly show the difference in performance characteristics that can
be obtained by changing the sequential data structure component of a CA tree. CA-SL
is faster for wider range operations due to its fat nodes providing good cache locality,
but CA-SL is generally slower than the CA-AVL in scenarios with small range sizes.
In Fig. 6d, where the conflict rate between operations is high, CA-SL reaches its peak
performance at 32 threads where it outperforms all other data structures by more than
two times.

We also report average base node counts for the CA trees in the end of running two
sets of scenarios. The numbers in Table 1a show node counts (in k) for running with
64 threads but varying the maximum range sizeR. Table 1b shows node counts (also in k)



R 10 100 1000 10000
CA-SL 14.4 8.8 4.0 2.5

CA-AVL 15.6 8.7 3.6 2.2

(a) w:3% r:27% q:50%-R u:20%-R

threads 2 4 8 16 32 64
CA-SL 0.36 0.73 1.2 1.9 2.7 4.0

CA-AVL 0.34 0.68 1.1 1.6 2.4 3.6

(b) w:3% r:27% q:50%-1000 u:20%-1000

Table 1: Average base node counts (in k) at the end of running two sets of benchmarks:
one using 64 threads but varying the range sizeR, and one varying the number of threads.

for scenarios with R fixed to 1000 but varying the number of threads. These numbers
confirm that the CA trees’ synchronization is adapting both to the contention level
(increasing the number of threads results in more base nodes) and to the access patterns
(increased range size results in fewer base nodes). We also confirmed by increasing
the running time of the experiments that the number of base nodes stabilizes around a
specific value for each scenario, which means that base nodes do not get split indefinitely.

5 Concluding Remarks

Given the diversity in sizes and heterogeneity of multicores, it seems rather obvious that
current and future applications will benefit from, if not require, data structures that can
adapt dynamically to the amount of concurrency and the usage patterns of applications.

This paper has advocated the use of CA trees, a new family of lock-based concurrent
data structures for ordered sets of keys and key-value pair dictionaries. CA trees’ salient
feature is their ability to adapt their synchronization granularity according to the current
contention level and access patterns. Furthermore, CA trees are flexible and efficiently
support a wide variety of operations: single-key operations, multi-element operations,
range queries and range updates. Our experimental evaluation has demonstrated the good
scalability and superior performance of CA trees compared to state-of-the-art lock-free
concurrent data structures in a variety of scenarios.

In other work [17], we have described the use of CA trees for speeding and scaling
up single-key operations of the ordered_set component of the Erlang Term Storage,
Erlang’s in-memory key-value store. We intend to extend that work with support for
atomic multi-element and range operations and evaluate the performance benefits of
doing so in “real-world” applications. The experimental results in this paper strongly
suggest that the performance gains will be substantial. In addition, we intend to investi-
gate CA trees with more kinds of adaptations: for example, adaptations in the underlying
sequential data structure component.
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Abstract. Orchestrating data transfers between CPU and a coprocessor manually is cumbersome, particu-
larly for multi-dimensional arrays and other data structures with multi-level pointers common in scientific
computations. This paper describes a system that includes both compile-time and runtime solutions for this
problem, with the overarching goal of improving programmer productivity while maintaining performance.
We find that the standard linearization method performs poorly for non-uniform dimensions on the copro-
cessor due to redundant data transfers and suppression of important compiler optimizations such as vector-
ization. The key contribution of this paper is a novel approach for heap linearization that avoids modifying
memory accesses to enable vectorization, referred to as partial linearization with pointer reset. From a run-
time perspective, especially in the context of Intel Many-Integrated Core Architecture (Xeon Phi), we find
that the existing mechanism for tracking dirty pages (for minimizing data transfers) implemented as part
of MYO runtime ends up imposing huge overheads. By modifying the coherence mechanism and disabling
tracking of dirty pages, we are able to significantly optimize the existing MYO library. As the compile-
time solution, where applicable, continues to outperform the optimized runtime mechanism, we combine
performance with generality by devising a mechanism for integrating static and runtime approaches.
We implement partial linearization with pointer reset as the compile time solution, whereas runtime solu-
tion is implemented as an enhancement to MYO library. We evaluate our approach with respect to multiple
C benchmarks. Experimental results demonstrate that our best compile-time solution can perform 2.5x-5x
faster than original runtime solution, and the CPU-MIC code with it can achieve 1.5x-2.5x speedup over
the 16-thread CPU version.

1 Introduction
Many-core coprocessors can provide orders of magnitude better performance and efficiency for parallel work-
loads as compared to multi-core CPUs, and are being widely adopted as accelerators for high performance
computing. The x86-compatible Intel Xeon Phi (MIC) coprocessor is a relatively recent member in the many-
core coprocessor family. It is designed to leverage existing x86 experience and leverages popular parallelization
tools, libraries, and programming models, including OpenMP [7], MPI [11], CilkPlus [3] and TBB [23]. Even
with the support of these programming models, there are many challenging technical issues that need to be
solved to allow accelerators to become mainstream.

Accelerating parallel computing using many-core coprocessors requires specification of code regions (and
corresponding data variables) that can be profitably offloaded to the coprocessor. Orchestrating data transfers
between CPU and coprocessor gets challenging as the complexity of the data structures increases.

With the goal of improving developer productivity and maximizing application performance, we focus on
compile time and runtime solutions for automating data transfers. While static arrays can be automatically
handled by ICC compiler5 today, and solutions proposed in the literature [22, 12, 16, 15, 20] handle dynami-
cally allocated one-dimensional arrays, handling of dynamically allocated multi-dimensional arrays and other
structures with multi-level pointers is an open problem.

It turns out that the problem is quite complex, particularly because the choice of the mechanism used for
automatically inserting data transfer clauses impacts memory layouts and access functions (subscripts) on the
coprocessor. Because of the nature of the accelerators, the performance can be impacted in multiple ways.
Overall, in order for a solution to perform well:

5 Intel C++ Compiler. http://www.intel.com/Compilers.



offload synchronization data transfer data reuse
LEO #pragma offload <signal,wait> <in,out,inout> nocopy

OpenAcc #pragma acc kernels <async,wait> <copy,copyin,copyout> present
OpenHMPP #pragma hmpp codelet <asynchronous,synchronize> args[item].io=<in,out,inout> args[item].noupdate=true

OmpSs #pragma omp task <input,output,taskwait> <copy_in,copy_out> by default
OpenMPC #pragma cuda gpurun OpenMP <nowait> <c2gmemtr,g2cmemtr> <nog2cmemtr,noc2gmemtr>

Table 1: Key Directives in Common Directive-based Languages for Accelerator Programming

– Redundant data transfers between the CPU and the accelerator should be eliminated or minimized due to
the significant data transfer time and the limited device memory,

– Data transfer time should be reduced by utilizing Direct Memory Accesses (DMA) since it can be as
significant as kernel runtime,

– Memory allocation overheads on the accelerator (or even the host) should be kept low since memory
allocation is expensive on the accelerator, and

– Memory layout and access should allow for aggressive memory-related compiler optimizations (e.g., vec-
torization and prefetching) from the native compiler, as they are critical for obtaining performance from
accelerators.

We observe that the prior solutions [14, 16, 22] do not consider these factors together, as they focus primarily
on data transfer reduction. In particular, the effect of memory layout [29, 6] on DMA, cache, and compiler
optimizations have been largely overlooked.

This paper describes an automated framework that uses both compile-time and runtime solutions to address
this problem. This system includes a simple but effective compile-time solution, where we linearize the heap
without having to modify the memory accesses (subscripts), by using a pointer reset approach. The idea is to
identify and parse all the malloc statements for a given multi-dimensional array and generate code for obtaining
the total memory size (say s) for that multi-dimensional array. The malloc statements for the given array are then
replaced by a single malloc statement that allocates a memory chunk of size s. Code is generated to correctly
reset all the pointers of the array into this large chunk of memory. This allows the memory accesses to stay
unmodified. This method scores well on all the four metrics mentioned above and maintains code readability.

For the cases where our compile-time approach cannot apply, we also explore runtime solutions. We in-
vestigate and optimize the performance of the runtime memory management approach, by providing certain
improvements to the existing coherence protocol. The best compile-time solution consistently outperforms the
optimized runtime scheme, but is not as generally applicable. In order to combine performance with generality,
we describe a mechanism for integrating the two disjoint approaches using a simple source-to-source transfor-
mation. The idea is to simultaneously and selectively insert implicit and explicit data transfer clauses in the
application at compile time.

We have implemented our compile-time solution as a transformation using the Apricot framework [22], and
evaluated it within the context of application execution on Xeon Phi coprocessor. We use a test suite comprising
benchmarks from different sources, which involve dynamically allocated multi-level pointers. We show that our
proposed compile-time solution can perform 2.5x-5x faster than original runtime solution, and the CPU-MIC
code with our compile-time solution can achieve 1.5x-2.5x speedup comparing to the 16-thread CPU version.

2 Motivation and Problem Definition

1: int *A, *B;
2: A = (int *) malloc(n ∗ sizeof(int));
3: B = (int *) malloc(n ∗ sizeof(int));
4: #pragma offload target(mic) in(B:length(n)) out(A:length(n))
5: {
6: #pragma omp parallel for private(i)
7: for (i = 0; i < n; ++i) {
8: A[i] = a * B[i];
9: ...
10: }
11: }

Fig. 1: One-Dimensional Array Offload

Table 1 summarizes popular directive-based languages, which allow the developer to mark code regions
in the application from which offloadable tasks can be generated by the compiler. These APIs are intended to
improve developer productivity and simplify code maintenance, by hiding the details of data transfers and allo-
cation on the accelerators. In this paper we work with LEO (Language Extension for Offload), which supports
the coprocessor offload interface (COI), and is the primary annotation language for Xeon Phi. LEO provides
#pragma offload directive for marking offloadable code regions. This is similar to OpenAcc’s #pragma acc



kernels6. Execution on the CPU is suspended when #pragma offload is encountered, continued on the co-
processor and then resumed on the CPU after the offloaded code region has executed to completion. Special
synchronization primitives (e.g., signal/wait) can be used for enabling asynchronous offload (Table 1).

1: #define ALLOC alloc_if(1) free_if(0) //allocate data
2: #define REUSE alloc_if(0) free_if(0) //keep data
3: #define FREE alloc_if(0) free_if(1) //free data
4: int **A, **B; int size[m];...
5: /* allocate pointers on CPU */
6: A = (int **) malloc(m ∗ sizeof(int *));
7: B = (int **) malloc(m ∗ sizeof(int *));
8: for (i = 0; i < m; ++i){
9: A[i] = (int *) malloc(size[i] * sizeof(int));
10: B[i] = (int *) malloc(size[i] * sizeof(int));
11: }
12: /* allocate pointers on coprocessor */
13: #pragma offload target(mic) nocopy(A:length(m) ALLOC)
14: nocopy(B:length(m) ALLOC)
15: {}
16: /* allocate pointers and copy data in */
17: for (i = 0; i < m; ++i){
18: #pragma offload target(mic) in(A[i]:length(size[i])
19: ALLOC) in(B[i]:length(size[i]) ALLOC)
20: {}
21: }
22: #pragma offload target(mic) nocopy(A:length(m) REUSE)
23: nocopy(B:length(m) REUSE)
24: {
25: /* computation kernel/offloadable code region */
26: #pragma omp parallel for private(i, j)
27: for (i = 0; i < m; ++i) {
28: for (j = 0; j < size[i]; ++j) {
29: A[i][j] = a ∗ B[i][j];
30: ...
31: }
32: }
33: }
34: /* copy data out */
35: for (i = 0; i < m; ++i){
36: #pragma offload target(mic) out(A[i]:length(size[i])
37: FREE) nocopy(B[i]:length(size[i]) FREE)
38: {}
39: }

Fig. 2: Naive Two-Dimensional Array Offload (significantly more complex than one-dimensional case)

2.1 Challenges in CPU-to-coprocessor Data Transfers
In order to orchestrate data transfers between CPU and coprocessor, the developer has to specify in/out/inout
clauses along with size for each data variable. Fig. 1 and 2 show examples for handling one-dimensional and
multi-dimensional arrays, respectively. In the case of a single-dimensional array, only one contiguous memory
region needs to be transferred. For multi-dimensional arrays, on the other hand, numerous array components
scattered over memory have to be handled. This can be complex, cumborsome and non-performant. Note that
this complexity arises because of the way C versions of most existing scientific applications allocate memory–
an N dimensional array is allocated by allocating one-dimensional arrays inside an N − 1 dimensional loop
(similar to the example in Fig. 2). In benchmarks such as Multi-Grid (MG) arrays are non-rectangular, which
adds to the complexity.

Recall that in the previous section, we had stated four requirements while addressing the problem, which
included needs for fully utilizing DMA, and reducing memory allocation overheads. To motivate their impact,
we present certain experimental observations. Consider the code snippet in Fig. 2. Each of the memory regions
is allocated and transferred independently, using a separate offload statement (in a for loop). Automating this
is not hard, once the malloc statements, memory accesses and offload code regions have been tracked. This
is similar to what CGCM [14] does, which is the state-of-the-art compiler-based communication management
system for GPUs. However, this approach leads to high memory allocation overheads as well as DMA sup-
pression (since multiple small memory regions are transferred separately). Fig. 3(a) compares the performance
of this approach with one where data is linearized and transferred by a single offload statement, for a matrix
addition micro-benchmark. Fig. 3(b) shows the impact of number of offload statements on data transfer time.
The results are shown for various array sizes. For a fixed array size, using fewer offload statements results in
better DMA utilization and lower offload and memory allocation overhead.

6 OpenACC: Directives for Accelerators. http://www.openacc-standard.org/
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Fig. 3: (a) Performance of Matrix Addition with Non-Linearized vs. Linearized Data Transfers, (b) Relationship between
Number of Offload Statements (for different array components) and Data Transfer Time. (For a fixed data size, using
fewer offload statements is beneficial, due to better DMA utilization and smaller memory allocation and offload overhead.)
(c) Performance Comparison between MYO and Explicit Data Transfers using Linearization for dgemm, (d) Total Data
Transfer Size for both. (MYO transfers less data but performs worse.)

1: int _Cilk_shared **A;
2: int _Cilk_shared **B;
3: /* computation kernel */
4: _Cilk_shared void kernel(){
5: #pragma omp parallel for private(i, j)
6: for (i = 0; i < m; ++i) {
7: for (j = 0; j < size[i]; ++j) {
8: A[i][j] = a ∗ B[i][j];
9: ...
10: }
11: }
12: }
13: void main(){
14: /* allocate and initialize arrays A and B */
15: ...
16: _Cilk_offload kernel();
17: ...
18: }

Fig. 4: Two-Dimensional Array Offload using MYO (no explicit data transfers)

In addition to the explicit data specification model, LEO also supports an implicit data transfer model and
corresponding runtime mechanism (called MYO [25]) to automate data transfers between CPU and copro-
cessor. Any data element marked with the _Cilk_shared clause is automatically synced between the two
processors. In the implicit model, offloadable code regions are marked with _Cilk_offload. Fig. 4 shows
a simple example. MYO resembles state-of-the-art memory management solutions for GPU (Dymand [13] and
AMM [21]), which all implement runtime data coherence mechanisms and create the illusion of virtual shared
memory between the CPU and coprocessor.

We evaluate MYO with respect to a number of benchmarks and find that explicit data transfer specifica-
tion using in/out clauses outperforms MYO by up to 3x (Fig. 3(c) and (d) show an example for matrix
multiplication). To understand the performance difference, we investigate bottlenecks of the runtime memory
management scheme and find that the mechanism that keeps track of dirty pages for minimizing redundant
data transfers ends up imposing huge overheads. We disable tracking of dirty pages, we are able to significantly
improve performance of the runtime management scheme.

3 Background: Complete Linearization
Array linearization is commonly used to minimize the number of pointer indirections (and load instructions) for
static arrays. For example, a two-dimensional array A[i][j] would be accessed as A[i∗N+j] instead of (A[i])[j],
where N is the stride for i. The memory layout is not changed, only the memory accesses are linearized. This
approach can be extended to facilitate efficient transfer of dynamically allocated multi-dimensional arrays
between CPU and coprocessor, by linearizing the memory layout in addition to the memory accesses for dy-
namically. We refer to this approach as complete linearization. Next, we will describe this approach and point
out its limitations.

In complete linearization, all malloc statements for a given multi-dimensional array are replaced by a single
malloc statement in the application source code. Instead of allocating multiple small chunks of memory for dif-
ferent array components, a single contiguous chunk of memory is allocated. Accordingly, the memory accesses
are linearized as well, as shown in Fig. 6. In essence, the complete linearization transforms a dynamically
allocated multi-dimensional array into a one-dimensional array, as shown in Fig. 5 (a).
Algorithm To formally state the underlying compile-time transformation: let Dm be the data layout for a multi-
dimensional array in the original code, let Am be a memory access, let Ds be the data layout for the array in the
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Fig. 5: Different Linearization Schemes for Handling Data Transfers for Dynamically Allocated Multi-Dimensional Arrays

transformed code and let As be a memory access, our goal is to implement two functions: (i) F : Dm → Ds
and (ii) M : Am → As.

Let sz0, sz1,..,szk be the size of the elements in a given dimension. The malloc statement corresponding to
element i in the original source code would be malloc(szi ∗ sizeof(datatype)). For a dimension with equal-
sized elements the stride value would be s = sz0 = sz1,.., = szk. For a dimension with variable-size elements
(as in Fig. 5 (a)), the stride value would be chosen as s = max(sz0, sz1, .., szk). For dimension di let the stride
be si and the number of elements of the first dimension be m. For an n-dimensional array, the total memory
size would be total = m ∗ s1 ∗ s2.. ∗ sn−1 and the corresponding malloc statement in the transformed source
code would be malloc(total ∗ sizeof(datatype)).

Let A be an n-dimensional array. Memory access A[m1][m2]..[mn] in the original source code is trans-
formed into A[m1 ∗ s1 ∗ s2..sn−1 + m2 ∗ s2 ∗ s3..sn−1.. + mn].

After applying functions F and M , corresponding offload statements and data transfer clauses are inserted
as shown in Fig. 6.

1: int *A, *B;
2: int size[m];//size array for the second dimension
3: /* collect length info from malloc stmts */
4: /* and calculate stride for each dimension */
5: A_s1 = B_s1 = 0;
6: for(i = 0; i < m; ++i) {
7: A_s1 = max(A_s1, size[i]);
8: B_s1 = max(B_s1, size[i]);
9: }
10: A_len = A_s1 ∗ m;
11: B_len = B_s1 ∗ m;
12: /* allocate linearized data on CPU */
13: A = (int *) malloc(A_len ∗ sizeof(int));
14: B = (int *) malloc(B_len ∗ sizeof(int));
15: /* copy and allocate linearized data on coprocessor */
16: #pragma offload target(mic) in(B:length(B_len))
17: inout(A:length(A_len))
18: {
19: /* computation kernel */
20: #pragma omp parallel for private(i, j)
21: for (i = 0; i < m; ++i) {
22: for (j = 0; j < size[i]; ++j) {
23: /* modified memory access */
24: A[i∗A_s1 + j] = a ∗ B[i∗B_s1 + j];
25: ...
26: }
27: }
28: }

Fig. 6: Two-Dimensional Array Computation Offload (using complete linearization)

Pros and Cons As compared to allocating each row and column of the multi-dimensional structure separately,
there are four distinct benefits of this approach: (i) since multiple malloc statements are replaced by a single
statement, memory allocation overhead is reduced on both the CPU and coprocessor side, (ii) the overall data
locality is improved because of contiguity, (iii) DMA utilization is maximized, since one large chunk of mem-
ory is transferred instead of multiple small chunks, and (iv) only one offload statement is required for data
transfer.



This method has three main drawbacks. First, all memory accesses have to be identified, analyzed and
modified using function M . Strong alias analysis is required. The mapping can potentially be complex and thus
a source of bugs in the generated code, not to mention the loss of readability.

Second, since the subscripts are made complex, important compiler optimizations get suppressed in many
cases. Optimizations like auto-vectorization and prefetching are sensitive to compiler’s ability to recognize the
memory access pattern. As we show later, losing important compiler optimizations (especially vectorization)
can lead to significant performance loss on Intel MIC.

Third, for multi-dimensional arrays that have variable sized rows or columns, there is a trade-off between
the linearized data size and the complexity of functions F and M . If we use uniform (maximum) length for
each row or column, functions F and M are simplified, but redundant data transfers are introduced, as shown
in Fig. 5 (a). If variable stride values are used for each row/column, no redundant data transfers take place, but
the complexity of F and M increases substantially. The stride values need to be stored in a table, transferred to
the coprocessor and looked up during memory access. For example, instead of mapping A[i][j] to A[i∗ s1 + j],
it has to be mapped to A[i ∗ stride_lookup(i) + j]. This results in increased data transfer overheads and
suppression of compiler optimizations. The use of uniform (maximum) stride typically performs better than a
stride-lookup approach.

3.1 Stride-bucket Optimization
To address the multi-dimensional arrays that have variable sized rows or columns, we design an optimization to
reduce the amount of redundant data transfers, without significantly increasing the complexity of functions F
and M . This optimization strives for a balance between the complexity of linearization and the amount of data
transfer. The basic idea is to partition the multi-dimensional array into a finite number of buckets along the first
dimension. Across these buckets, different stride values are used, whereas within each bucket, only one stride
value is used. The current design uses two buckets, as described next.

Let sz0, sz1,..,szl be the size of elements in the first dimension. It is partitioned into two buckets P1 and
P2, containing m + 1 and l −m elements respectively. For P1, the stride value sP 1 = max(sz0, sz1, .., szm).
Similarly for P2, the stride value sP 2 = max(szm+1, szm+2, .., szl). The element m serves as the bucket
boundary. The size of the final array would be size = sP 1 ∗ (m + 1) + sP 2 ∗ (l −m). Element m is picked
as the bucket boundary, such that size is minimized for m. For a given array, we first search for an optimal
partitioning by trying different bucket boundaries. Interestingly, with the help of two assistant arrays recording
the max stride values starting from the beginning and the end to the current position, our algorithm for picking
the optimal partitioning runs in O(l) time. Once the optimal partitioning is obtained, we calculate the total size
of the final array and insert the new malloc statement. We then parse the code to replace each array access with
the mapping function M . Finally, we generate code for data transfer and code offload.

Fig. 5(b) shows an example for a two-dimensional array– the bucket boundary is 2, the two stride values are
3 and 5 respectively. As compared to the the memory layout in Fig. 5(a), the new memory layout in Fig. 5(b)
is around two-thirds of the size. The mapping function M now contains a branch operation– the stride is
determined based on which of the two buckets the element belongs to. If the bucket boundary is k, the stride
for the first bucket is s1 and the stride for the second bucket is s2, element A[i][j] would be accessed as
A[index + j], where index = (i < k)?(i ∗ s1) : (k ∗ s1 + (i − k) ∗ s2). We show a code example for the
stride-bucket optimization in Fig. 7, in which the linearization function F is suitably tailored, and the branch
operation introduced by stride-bucket is in line 11 and 12.

1: int *A, *B;
2: int size[m];//size array for the second dimension
3: /* A_s1: bucket1 stride of A; A_s2: bucket2 stride */
4: /* B_s1: bucket1 stride of B; B_s2: bucket2 stride */
5: #pragma offload target(mic) in(B:length(B_len))
6: inout(A:length(A_len))
7: {
8: /* computation kernel */
9: #pragma omp parallel for private(i, j)
10: for (i = 0; i < m; ++i) {
11: int A_x = (i<k)?(A_s1∗i):(A_s1∗k+(i−k)∗A_s2);
12: int B_x = (i<k)?(B_s1∗i):(B_s1∗k+(i−k)∗B_s2);
13: for (j = 0; j < size[i]; ++j) {
14: /* modified memory access */
15: A[A_x + j] = a ∗ B[B_x + j];
16: ...
17: }
18: }
19: }

Fig. 7: Two-Dimensional Array Computation Offload (using complete linearization with stride-bucket)



4 Compile-time Automation of Data Transfers
In this section, we propose a novel linearization technique to handle the limitations of complete linearization
(with and without Stride-bucket optimization). This is the main contribution of the paper.

4.1 Partial Linearization with Pointer Reset
Basic Idea Complete linearization method suffers from three main drawbacks, as mentioned earlier. The first
and second drawbacks arise from modification of memory accesses (i.e., function M ). The third drawback
arises from the use of uniform strides during memory allocation (i.e, function F ), which allows simplification
of M but imposes data transfer overheads, since holes are included in the memory layout.

Algorithm 1 PartialLinearizationPointerReset(Mul_dim_var_set D)

1: for each multi-dim var A ∈D do
2: if A used by an offload region and satisfies legality checks then
3: Dsub.append(A)
4: end if
5: end for
6: for each multi-dim var A ∈Dsub do
7: /*Linearization Function Fdata()*/
8: . Parse malloc stmts of A
9: /*---Calculate total data size---*/

10: . Replicate the malloc stmts for last dimension
11: total_sz = 0
12: for each replicated malloc stmt:

A[m1]..[mn] = malloc(sizei∗sizeof(type)) do
13: . Replace it by: total_sz += sizei

14: end for
15: . Insert linear-alloc: dataA = malloc(total_sz * sizeof(type))
16: /*Pointer-Reset Function Fpointer()*/
17: /*---Allocate and reset pointers---*/
18: pda = dataA

19: for each original malloc-site for last dimension:
A[m1]..[mn] = malloc(sizei∗sizeof(type)) do

20: . Replace it by:
A[m1][m2]..[mn] = pda, pda += sizei

21: end for
22: /*---Generate offload code for coprocessor---*/
23: . Generate dataA malloc clause on coprocessor
24: . Replicate Fpointer() code on coprocessor
25: for each offload region R do
26: if A is used by R then
27: . Generate data transfer and offload clauses for coprocessor
28: end if
29: end for
30: . Apply data reuse and hoisting opt for dataA

31: end for

We note that all three drawbacks can be eliminated if: (i) memory accesses do not have to be modified, and
(ii) a single contiguous chunk of memory can be allocated for the entire multi-dimensional array without any
holes in it. Our partial linearization approach achieves these two goals, using the following simple observations.
First, only the last dimension of a multi-dimensional array contains the actual data, all the other dimensions only
contain pointer addresses to get to this data. Now, if the data in the last dimension is linearized (i.e. we address
the goal (ii)), the memory allocation and setting up of pointers can be done separately on both the CPU and
the coprocessor. More specifically, the pointer structure of the multi-dimensional array can be reconstructed on
the coprocessor side by simply replicating the CPU-side code. The pointer sizes do not have to be transferred.
There is no mapping function M in this approach, since memory accesses are not modified (and we accomplish



the goal (i)). This idea is explained with a code example involving two-dimensional arrays, shown in Fig. 8.
We explain this code as well as a general algorithm below.

1: int **A, **B; int size[m];//size array
2: /* calc total data size from malloc stmts for last dim */
3: for (i = 0; i < m; ++i){
4: t_sz_A += size[i]; t_sz_B += size[i];
5: }
6: /* allocate linearized data on CPU */
7: int *data_A = (int *) malloc(t_sz_A ∗ sizeof(int));
8: int *data_B = (int *) malloc(t_sz_B ∗ sizeof(int));
9: /* allocate and reset pointers */
10: A = (int **) malloc(m ∗ sizeof(int *));
11: B = (int **) malloc(m ∗ sizeof(int *));
12: int *pda = data_A; int *pdb = data_B;
13: for (i = 0; i < m; ++i){
14: A[i] = pda; pda += size[i];
15: B[i] = pdb; pdb += size[i];
16: }
17: /* allocate linearized data on coprocessor */
18: #pragma offload target(mic) nocopy(data_A:length(t_sz_A)
19: ALLOC) nocopy(data_B:length(t_sz_B) ALLOC)
20: {}
21: /* allocate and set pointers on coprocessor */
22: #pragma offload target(mic) nocopy(A:length(m) ALLOC)
23: nocopy(B:length(m) ALLOC)
24: {
25: int *pda = data_A; int *pdb = data_B;
26: for (i = 0; i < m; ++i){
27: A[i] = pda; pda += size[i];
28: B[i] = pdb; pdb += size[i];
29: }
30: }
31: /* copy data in/out */
32: #pragma offload target(mic) inout(data_A:length(t_sz_A)
33: REUSE) in(data_B:length(t_sz_B) REUSE )
34: {
35: /* computation kernel */
36: #pragma omp parallel for private(i, j)
37: for (i = 0; i < m; ++i) {
38: for (j = 0; j < size[i]; ++j) {
39: A[i][j] = a ∗ B[i][j]; ...
40: }
41: }
42: }

Fig. 8: Two-Dimensional Array Computation Offload (using partial linearization with pointer reset)

Algorithm The details of partial linearization are given in Algo. 1. The linearization procedure comprises three
main steps. In the first step (i.e., function Fdata), malloc statements for a given multi-dimensional array A are
parsed and code is generated for computing the total data size (total_sz) of the array by adding up the size
of each element in the last dimension. A malloc statement is generated to allocate a memory chunk dataA of
total_sz (Fig. 8, line 2 to 8).

In the second step (i.e., function Fpointer), malloc statements for the last dimension are replaced by assign-
ment statements, in order to set up the pointers into the contiguous chunk of memory allocated in the first step.
For example, for each malloc of an integer array A, the statement A[i] = (int∗)malloc(sizei ∗ sizeof(int))
is replaced by A[i] = pda, pda = pda + sizei, where sizei is the size of the ith element and pda is a mov-
ing pointer. Pointer pda is initialized to the starting address of the allocated memory chunk (i.e, dataA) and
incremented with every pointer assignment (Fig. 8, line 9 to 16).

In the third step, offload statements and data transfer clauses are generated for transferring the memory
chunk dataA to the coprocessor and back. The code for pointer allocation and construction (i.e, Fpointer) is
replicated on the coprocessor side. Therefore, no stride information needs to be transferred (Fig. 8, line 17
to 33).

As another note, placement of memory allocation statements and data transfer clauses in the code is impor-
tant for performance. In our implementation, we hoist malloc statements, offload statements and data transfer
clauses as far up the call graph as possible. By hoisting statements outside loops and up the call graph, redun-
dant execution is minimized and memory reuse (across multiple offloads) is enabled.
Legality Checks: Because partial linearization modifies the values of pointers, a compiler should perform the
code transformation in a very conservative way to ensure the correctness. In our case, our compiler applies



partial linearization with pointer reset only if certain conditions are met. We summarize these conditions as
follows. The first condition is that all elements in the multi-dimensional array must be of the same size. For
example, if the code is in C + +, we may have the polymorphism issue. An existing data flow analysis reported
in the literature [24] is used for this purpose. The second condition is that a pointer must have only one malloc
statement associated. The goal is to ensure that there is no memory reallocation or conditional memory alloca-
tion, which may make our transformation unsafe (if at all applicable), and we prefer not to apply them in our
implementation. For performing this check, malloc statements and memory accesses are tracked using use-def
chains for arrays/pointers that are used in offloadable code regions, as identified by liveness analysis module
within Apricot [22]. We collect all malloc sites for a specific multi-dimensional array, and check whether any
pointer is represented multiple times. The third condition is that the value of a pointer must be unchanged dur-
ing the computation. If the value of a pointer is changed, we may either miss copying data or read data from a
wrong place on the accelerator.

These legality conditions are checked by our source-to-source compiler for each array. If an array fails to
satisfy one or more conditions, it is annotated as such and handled by the runtime memory management system,
as described in Section 5.1. For most scientific computing benchmarks, these legality conditions hold and our
proposed approach can be applied.

4.2 Interaction with Compiler Optimizations
Our source-to-source translator (or another comparable system) depends upon the native compiler (ICC in the
case of Xeon Phi) for accelerator for obtaining performance. Our experiments have shown that the various
optimizations performed by the native compiler have a far more significant impact on the overall performance
than the overheads of data transfer and other operations associated with the offload. As we mentioned, one
of the critical considerations in automating handling of data transfers is preserving optimizations that would
normally be performed by the compiler.

In Intel MIC (Xeon Phi), the SIMD width of each core is 512-bit, which means up to 16 floating point
operations can be executed in one cycle on each of its 60 cores. This makes vectorization crucial for perfor-
mance. Also, with increasing parallelism, memory accesses can become the bottleneck, and therefore, soft-
ware prefetching is very important. Loop optimizations such as distribution, tiling, and interchange can also
significantly impact performance, especially when they enable additional vectorization or prefetching. A key
advantage of partial linearization is that original subscripts are not modified, whereas, complete linearization in-
troduces more complex subscripts. While theoretically a compiler should be able to handle complex linearized
subscripts, in practice, product compilers often fall short, due to aliasing, pointer arithmetic and complex in-
teractions between the different optimizations [18]. We have verified this for the latest version of ICC as of
writing this paper, as we now show through an example.

1: typedef struct{double W, X, Y;} point;
2: point *p = (point *) malloc(M ∗ N ∗ sizeof(point));
3: #pragma omp parallel for
4: for (i = 0; i < M; ++i){
5: for (j = 0; j < N; ++j){
6: p[i ∗ N + j].W = i + j + 0.1;
7: p[i ∗ N + j].X = i + j + 0.2;
8: p[i ∗ N + j].Y = i + j + 0.3;
9: }
10: }
11: double sum = 0.0;
12: #pragma omp parallel for reduction(+:sum)
13: for (i = 0; i < M; ++i){
14: for (j = 0; j < N; ++j){
15: sum + = p[i ∗ N + j].W ∗ p[i ∗ N + j].X
16: ∗ p[i ∗ N + j].Y;
17: }
18: }

Fig. 9: Vectorization Suppression Case I, from 330.art: Struct and Non-Unit Stride Access (after complete linearization)

Consider the example in Fig. 9, which involves a structure and a non-unit stride. From the optimization
reports, we see that for the version with non-linearized subscripts, data dependencies are correctly resolved and
the innermost loop is vectorized. While for the linearized version, auto-vectorization is not enabled by the com-
piler, which is likely because the compiler cannot conclude that there are no dependencies. In another example
involving a three-dimensional arrays addition inside an OpenMP loop (not shown due to space constraints),
we observed that software prefetching is not facilitated by the compiler. For the corresponding version with
non-linearized subscripts, 4 cache lines are prefetched for the outer-most loop and 24 lines are prefetched for
the inner-most loop. We continue this discussion in Section 6.



5 Runtime Memory Management
As we discussed in the previous section, an optimization like partial linearization may not apply in some cases,
if all pointers cannot be properly resolved. Thus, as an enhancement to the static approach, we present both a
runtime approach, and an integrated static and runtime approach.

Xeon Phi currently supports an implicit data transfer model and corresponding runtime mechanism (called
MYO) [25] to automate data transfers between CPU and coprocessor. MYO stands for Mine Yours Ours and
provides a virtual shared memory abstraction for the CPU and coprocessor. Any data element annotated with
_Cilk_shared is allocated in a memory region reserved for MYO, which is automatically synchronized
between the CPU and coprocessor. To reduce the data transfer overhead, MYO only copies dirty pages back
to the CPU after the coprocessor completes the computation. For example, if two pages A and B are allocated
in the virtual shared memory region, and there are no writes to page B on the coprocessor side, only data
associated with page A will be communicated from coprocessor to CPU at the end of the computation.

In a set of experiments, we observe that the mechanism used for keeping track of dirty bits imposes huge
overheads, as every read and write operation has to be monitored. Let us assume that data of size s1 is allocated
in the virtual shared memory region and data of size s2 (≤ s1) is written to. The coherence mechanism is
better suited for the cases where the ratio s2/s1 is very small. We further observe that an increase in the
amount of data transferred does not necessarily imply increase in execution time, because DMA allows overlap
of computation with communication. Thus, for cases where the ratio s2/s1 is not very small, we modify the
coherence mechanism in MYO, creating a mechanism that performs simply as follows. (1) When offloading a
task to the coprocessor, we copy all pages allocated in the shared memory region to the coprocessor. (2) And
after the coprocessor completes the task, all of the shared pages will be copied back to the CPU whether they
are updated or not. In the above example, both pages A and B will be synchronized, but overheads of tracking
the operations are avoided. This simple modification results in significant performance improvement, despite
an increase in the amount of data transferred.

5.1 Combined Static and Runtime Approach

Algorithm 2 Integrat(Mul_dim_var_set D, Off_set C)

1: for each multi-dim var Mul_V ar ∈D do
2: . Insert _Cilk_shared before Mul_V ar decl
3: end for
4: for each offload region Off_Reg ∈ C do
5: . Insert _Cilk_offload before Off_Reg
6: end for
7: . Linearize the possible vars, store into Dsub

8: Dsub = Compiler_Decider(D)
9: for each multi-dim var Mul_V ar ∈Dsub do

10: . Replace _Cilk_shared by _explicit_transfer
11: end for
12: for each offload region Off_Reg ∈ C do
13: if all Off.vars ∈ Off_Reg also ∈Dsub then
14: . Replace _Cilk_offload by _pragma_offload
15: end if
16: end for
17: . Generate the final code with offload directives

The motivation for this combination method is the need for improving the generality of the static method,
and the performance of the runtime method. The basic idea is as following: if the offloaded data structure
passes the legality check, our source-to-source compiler generates the data transfer code for the correspond-
ing offload regions automatically as an optimization. Otherwise, the data structure is marked as shared data
structure (_Cilk_shared), and the offload region is marked as shared offload region (_Cilk_offload)
by default. All shared structures and offload regions will be managed by our optimized MYO runtime library
automatically. The formal algorithm is shown in Algo. 2, and we explain it below.

Given a C program (potentially annotated with OpenMP), the pre-processor identifies the set of data vari-
ables D that need to be copied into and out of the coprocessor using liveness analysis [22, 12], assuming that
all offloadable code regions C have already been identified. All variables in D are declared to the shared. Now,
using currently implementation, MYO can automate data transfers for all the variables in D and the applica-
tion can execute successfully, though performance will likely be poor. Thus, in the next step, the pre-processor



short-lists all variables in D for which explicit data transfer clauses can automatically be inserted at the compile
time. This is done by analyzing the memory allocation statements and memory access sites for each variable
and running a set of legality checks (as described in Section 4.1). For all the variables in Dsub that can be han-
dled at compile-time, the pre-processor also identifies the corresponding offloadable code regions Csub where
they are accessed, and marks them for explicit transfer.

1: /* two dim array handled by explicit data transfer */
2: int **A;
3: /* linked list handled by implicit data transfer (MYO) */
4: struct node{ int x; struct node *next;} list;
5: list _Cilk_shared *head;
6: /* computation kernel 1 */
7: _Cilk_shared void kernel1(){
8: /* operations on list */
9: ...
10: }
11: void main(){
12: _Cilk_offload kernel1();
13: /* array A linearized using pointer reset approach */
14: ...
15: #pragma offload target(mic) inout(A_data:
16: length(A_len) REUSE) {
17: /* computation kernel 2 */
18: #pragma omp parallel for private(i, j)
19: for (i = 0; i < m; ++i) {
20: for (j = 0; j < n; ++j) {
21: /* operations on array A*/
22: ...
23: }
24: }
25: }
26: ...
27: }

Fig. 10: Integrating Compile Time and Runtime Solutions: Simultaneous Use of Explicit and Implicit Memory Management

When the source-to-source transformation is applied, it operates on variables annotated with _explicit
_transfer and generates corresponding memory allocation and data transfer statements. The #pragma
offload directive is inserted for code regions annotated with _pragma_offload along with corresponding
in/out clauses. The resulting source code uses both explicit data transfers as well MYO runtime memory
management as shown in Fig. 10.

6 Evaluation
In this section, we evaluate our compile-time and runtime solutions in detail, and compare our CPU-MIC
solution with multi-core CPU solution.
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Fig. 11: Overall Solution Architecture

6.1 Implementation
We have implemented the compile-time solution for automatic insertion of data transfer clauses using partial
linearization with pointer reset approach described in Section 4.1. It has been implemented as a source-to-
source transformation on top of the Apricot [22] framework. Apricot provides modules for liveness analysis,
handling of one-dimensional arrays and identification of offloadable code regions. We have also modified the
coherence mechanism in MYO as described in Section 5. The solution architecture is shown in Fig. 11.



Benchmark Source Description

MG NAS Parallel in C Multi-Grid on meshes
FT NAS Parallel in C 3D fast Fourier Transform
330.art SPEC OMP Image recognition by neural network
Heat3D Heat 3D Heat transfer simulation
27stencil EPCC 3-d stencil kernel
convolution CAPS OpenACC 2-d stencil kernel
dgemm LINPACK Double general matrix multiplication

Table 2: Benchmarks
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Fig. 12: Performance Comparisons for all Benchmarks: Optimized MYO, Complete Linearization with Stride-Bucket, and
Partial Linearization Compared with Respect to (a) Execution Time and (b) Total Data Transfer Sizes; (c) Execution Time
Comparison between Multi-Core CPU, and Multi-Core CPU+MIC for Large Input Data Sizes. The CPU-MIC Versions
are Obtained with our Partial Linearization

6.2 Experimental Methodology
The test suite consists of seven C benchmarks from different sources (shown in Table 2). These benchmarks
contain dynamically allocated multi-dimensional arrays/multi-level pointers and OpenMP parallel regions. We
particularly note that the first three benchmarks, MG, FT, and 330.art, are all more than 1, 500 lines each
(330.art is more than 2000), and are used to demonstrate the applicability of our approach (and the cur-
rent implementation) on full-scale applications. All experiments were conducted on a Xeon E5-2609 server
equipped with an Intel MIC (Xeon Phi) card and the necessary software. Xeon E5-2609 has 8 cores, each run-
ning at 2.40GHz with 2 threads per core. Xeon Phi has 61 cores each running at 1.05GHz with four threads
per core, a total of 32MB L2 cache and 8GB GDDR5 memory. Our source-to-source compiler is invoked on
each benchmark and the transformed source code is compiled with ICC at -O3 with additional compiler flags
(-openmp -parallel [-ansi-alias] [-fno-alias]).

There are several objectives in our evaluation. We evaluate the overall performance of our partial lineariza-
tion with pointer reset solution, and compare it with the runtime method through MYO, as well as the complete
linearization (optimized with stride-bucket, where applicable). Besides comparing the execution times, the
amount of data transferred over PCIe is also measured and reported. To demonstrate the benefits of using the
accelerator after applying our solution, we also evaluate the performance of our best multi-core CPU+MIC
version over the multi-core CPU version.

We also individually evaluate the benefits of particular optimizations. Performance of the runtime memory
management system (MYO) is evaluated with and without our optimization, and similarly, the performance of
the complete linearization approach is evaluated with and without the stride-bucket optimization.

6.3 Results and analysis
Overall Performance Evaluation The overall performance comparison is shown as Fig. 12. Fig. 12(a) com-
pares the performance of complete linearization (further optimizes using the stride-bucket method) with our
partial linearization approach. 1.6x-2.6x speedup is obtained with the partial linearization approach for five
out of the seven benchmarks, whereas nearly 1.25x speedup is observed for the other two. While the approach
benefits all benchmarks, the reasons for performance gains differ considerably. We now explain these, referring
also to data transfer volumes (Fig 12(b)), and details of compiler optimizations enabled for different versions
(Table 3).

For MG, majority of the speedup comes from reduction in the total amount of data transferred as shown
in Fig. 12(b), since it is a data-intensive benchmark with variable-size rows. We also notice more aggressive
prefetching for the partial linearization version: total number of cache lines prefetched goes up from 131 to 542



Benchmark Vectorization Prefetching LoopDist

Comple Linear Partial Linear Comple Linear Partial Linear Comple Linear Partial Linear

MG 10 10 131 542 0 3
FT 15 16 70 74 0 3
330.art 1 12 50 98 2 0
Heat3D 2 3 32 72 0 0
27stencil 2 3 40 48 0 12
convolution 1 1 10 10 0 0
dgemm 1 1 14 17 0 0

Table 3: Impact of the Two Linearization Approaches on Key Compiler Optimizations
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Fig. 13: Optimized MYO vs. MYO: (a) Execution Time, (b) Total Data Transfer Size; Performance of Complete Lineariza-
tion with and without Stride-Bucket Optimization for Varying Input Data Sizes: (c) Execution Time, (d) Total Data Transfer
Size

(Table 3). For Heat3D and 27stencil, the main loop gets vectorized for the partial linearization version,
resulting in a 2x speedup. Number of prefetched cache lines goes up from 32 to 72 for Heat3D. We also
notice a significant increase in loop distribution for 27stencil: with the pointer reset version 12 loops are
distributed as opposed to none for complete linearization. Both these benchmarks contain three-dimensional
arrays. For 330.art a total of 12 loops are vectorized with partial linearization, as opposed to 1 for complete
linearization. Prefetched cache lines go up from 50 to 98. This benchmark contains a two-dimensional struct
array (Fig. 9). For dgemm the outer loop gets vectorized for the pointer reset version, while the inner loop is
vectorized for the complete linearization version. With outer loop vectorization the performance goes up by
1.5x.

Fig. 12 (a) also compares the performance of optimized MYO with both complete linearization (using
stride-bucket) and pointer reset approach. Optimized MYO frequently outperforms complete linearization.
However, partial linearization with pointer reset comes out on top. It performs 1.5x-2.5x faster than optimized
MYO for most benchmarks and around 6x faster for FT.A.

Next, data transfer volumes are shown in Fig. 12 (b). Except for MG, pointer reset and complete linearization
have identical data transfers. Optimized MYO transfers around 1.5x more data on average for most benchmarks.

Finally, Fig. 12(c) shows the performance of the best CPU-MIC version for each benchmark (obtained with
the partial linearization approach) and compares it with the original CPU version. The original CPU version
uses 16 threads, while the CPU-MIC version uses 16 threads on the CPU and around 240 threads on Intel MIC.
The CPU-MIC version runs 1.5x-2.5x faster for six out of the seven benchmarks. No gains are obtained for
MG, which is a highly data intensive benchmark. Considering the benefits of using partial linearization that we
reported earlier, it can be seen that most performance gains from the use of the coprocessor will not be possible
without optimizing data transfers.

Optimizations Evaluation In our overall evaluation above, we use the optimized version of runtime MYO
solution and complete linearization (with stride-bucket) solution. We evaluate these optimizations as following
to validate their efficacy.
Optimized MYO: Fig. 13 (a) compares the performance of MYO with optimized MYO. Fig. 13 (b) shows the
total amount of data transferred for the two MYO versions. With the modified MYO, the amount of data transfer
increases by 1.5x on average (most of it comes from the increase in communication from coprocessor to CPU).
This is because dirty pages are not tracked in the modified coherence mechanism. Despite an increase in data
transfer, significant performance gains (1.5x-3.2x) are observed with modified MYO. There is a noticeable drop
in the execution time of coprocessor side code with the modified coherence mechanism. Also, we notice a very
small increase in the time spent on data transfers, which can be attributed to DMA.



Complete Linearization: Fig. 13 (c) compares the performance of the complete linearization approach with
the optimized one using stride-bucket, for varying input data sizes (class=W,A,B). MG is the only benchmark
in our test-suite containing arrays with variable-size elements in the first dimension. Optimized linearization
approach yields more than 1.5x speedup for classes A and B. There is no difference in the array data size
between classes A and B, hence similar speedup is observed. Xeon Phi coprocessor runs out of memory for
class C and above when using complete linearization. Data transfers are shown in Fig. 13 (d). Stride-bucket
linearization results in around 1.8x reduction in data size.

7 Related Work
In the last few years, numerous compilation systems have been built for accelerators. OpenMPC [16] com-
piler automatically converts OpenMP code to GPU kernels and in the process inserts data transfer clauses.
Baskaran et al. [1] achieve the same in a system where the primary focus is on using a polyhedral framework
for memory management. The PGI [12] compiler also automatically inserts data transfer clauses for OpenAcc
applications. JCUDA [28] based on Java can automatically transfer GPU function arguments between CPU and
GPU memories, however, it requires annotations indicating the live-in/out information for arguments. More re-
cently, Sidelnik et al. [27] handle data movement problem within the scope of supporting Chapel, a high level
parallel programming language, on GPUs, and provide both implicit and explicit data transfer mechanisms.
Because these, as well as other comparable systems, generate the accelerator (CUDA) code also, interaction of
the offload mechanism with optimizations inside the native compiler are not a concern for these systems.

Apricot [22] automatically inserts LEO offload and data transfer clauses in OpenMP applications for the
Intel MIC coprocessor, using liveness analysis to determine data variables that need to be copied into and
out of the coprocessor. It does not handle pointer arithmetic, aliasing or pointer indirection for dynamically
allocated data. Similarly, statically allocated arrays can be automatically handled by ICC for Intel MIC without
additional support. The challenge we have addressed here is to handle dynamically allocated multi-dimensional
arrays and other structures with multi-level pointers.

Our work is closest to CGCM [14], which is a state-of-the-art compiler-based data management and op-
timization system for GPUs. CGCM incorporates a runtime library that tracks memory allocation at runtime
and replicates allocation units on the GPU. It supports two key optimizations– map promotion and alloca pro-
motion, to hoist runtime library calls and local variables up the call graph. However, CGCM does not linearize
the heap. As a result, all the memory regions allocated for a multi-dimensional array or multi-level pointer are
allocated and transferred separately. This would suffer from high memory allocation overheads and DMA sup-
pression, as confirmed by our experiments for Intel MIC. More recently, Margiolas and O’Boyle [19] propose
a portable and transparent data communication optimization, which involves analyzing the memory allocations
for the data used in both CPU and GPU. Optimized memory allocation policies are then used for such memory
segments. Their work focuses on optimization of OpenCL code which already has (possibly non-optimal) data
transfer code, while our work focuses on generating the data transfer code automatically.

Moreover, some recent efforts with programming models like OmpSs [4] and libWater [10] handle data
transfers on heterogeneous clusters by using optimized runtime methods. Dubach et al. [8] also adapt an op-
timized runtime method to handle data transfer, while they compile Lime, a high level language targeting
heterogeneous systems. In addition, DyMand [13], AMM [21], and ADSM/GMAC [9] are all runtime systems
for automatic memory management for GPUs. Each of them implements runtime coherence mechanisms for
supporting a virtual shared memory abstraction for the CPU and the GPU. They bear strong resemblance to
MYO [25] and inherit the properties of software DSMs [17, 2] and, to an extent, the PGAS [26, 5] languages.
AMM uses compiler analysis to optimize placement of coherence checks, but tracks read and write operations
in order to monitor coherence status of Rails, similar to MYO’s Arenas. We have implemented our optimiza-
tions on top of MYO, and a novel component of our effort is integrated static and runtime optimizations.

8 Conclusions
This paper addresses the problem of automating and optimizing data transfers for coprocessors, with emphasis
on dynamically allocated multi-dimensional arrays and other data structures with multi-level pointers. Our
work includes a novel compiler-based approach, partial linearization with pointer-reset. The benefits of this
approach include reduced data transfer volumes, use of DMA, reduced overheads of memory allocations, and
most importantly, no modification to the memory access subscripts, which turns out to be crucial for preserving
key compiler optimizations. This approach outperforms complete linearization by 1.6x-2.5x on average. We
also devise a stride-bucket approach for optimizing the performance of the linearization method.

We investigate runtime data management solutions in the context of Xeon Phi and optimize performance by
modifying the coherence mechanism to disable tracking of dirty pages. This results in a significant speedup–
1.5x-3.2x. Finally, we integrate compile-time and runtime solutions by selectively inserting explicit data trans-
fer clauses when possible and using shared memory otherwise.
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Abstract. NUMA-aware parallel algorithms in runtime systems attempt
to improve locality by allocating memory from local NUMA nodes. Re-
searchers have suggested that the garbage collector should profile mem-
ory access patterns or use object locality heuristics to determine the tar-
get NUMA node before moving an object. However, these solutions are
costly when applied to every live object in the reference graph. Our earlier
research suggests that connected objects represented by the rooted sub-
graphs provide abundant locality and they are appropriate for NUMA
architecture.
In this paper, we utilize the intrinsic locality of rooted sub-graphs to
improve parallel copying collector performance. Our new topology-aware
parallel copying collector preserves rooted sub-graph integrity by moving
the connected objects as a unit to the target NUMA node. In addition, it
distributes and assigns the copying tasks to appropriate (i.e. NUMA node
local) GC threads. For load balancing, our solution enforces locality on
the work-stealing mechanism by stealing from local NUMA nodes only.
We evaluate our approach on SPECjbb2013, DaCapo 9.12 and Neo4j.
Results show an improvement in GC performance by up to 2.5x speedup
and 37% better application performance.

Keywords: NUMA, multi-core, work-stealing, runtime support, garbage collec-
tion

1 Introduction

Managed runtime systems—such as the Java Virtual Machine (JVM) and Com-
mon Language Runtime (CLR)—successfully abstract low-level platform-specific
details such as hardware configuration and memory management. However de-
velopment efforts for these runtime systems may struggle to cope with rapid
evolution and diversity in hardware deployments. Contemporary multicore pro-
cessors are often designed with a distributed memory architecture to improve
memory access bandwidth. This architectural layout means that individual pro-
cessor cores may incur non-uniform memory access (NUMA) latency. Therefore,
multi-threaded applications running on several cores may access remote mem-
ory. A garbage collected runtime may cause non-determinism in data placement,
which will lead to unpredictable, suboptimal application performance, if the run-
time system is not adapted to be aware of the underlying NUMA hardware.



A large body of research attempts to tackle data placement on NUMA archi-
tectures by means of improving locality and balancing allocation across memory
nodes, e.g. [6]. A data placement policy that allocates data close to the core
most frequently accessing it should minimize access time. However, locality-
aware data placement policies could conflict with NUMA, perhaps through im-
balance of access causing memory bus traffic saturation to some NUMA nodes.
Other problems with NUMA imbalance include cache capacity issues, whereas
using off-node caches may provide abundant memory space, e.g. [17].

In OpenJDK Hotspot (like many Java runtime systems) the generational
Garbage Collector (GC) moves objects between spaces in the heap. For NUMA
platforms, the existing memory placement policies of the GC require re-engineering.
Initially, the mutator threads use thread-local allocation buffers (TLABs) to al-
locate new objects in the young generation. Hotspot devolves memory mapping
to the operating system. For example, Linux uses the first-touch policy as the
default NUMA placement policy, which means that memory pages are mapped
to the NUMA node associated with the core that first accesses a memory address
in that page. As an advanced HotSpot configuration option, the user can choose
a pre-defined JVM NUMA allocation policy (-XX:+UseNUMA) to map TLAB
memory pages to local nodes.

Furthermore, GC threads also require local buffers, called promotion local
allocation buffers (PLABs). A PLAB is used to move objects to the survivor
spaces (in the young generation) and to the old generation. Mapping PLABs
to NUMA regions remains the responsibility of the OS. Thus, the GC has the
potential to change an object’s NUMA node location after moving that object,
which means subsequent mutator operations may incur remote access overhead.
There is a need for topology awareness in the GC, which must take into account
the NUMA architecture.

This paper extends our earlier work [1] which provided empirical observations
of strong object locality in portions of the reference graph reachable from a single
root reference. We refer to these graph components as rooted sub-graphs. In this
paper, we modify the copying collector of the Hotspot JVM and implement
a topology-aware parallel copying collector to preserve sub-graph locality and
integrity. We evaluate our algorithm with various benchmarks and the results
show that leveraging rooted sub-graph locality improves substantially the GC
performance (up to 2.5x speedup) and consequently improves application
performance by up to 37%.

In this paper, we describe the following key contributions to the HotSpot
GC:

a) We improve access locality by making the collector threads process mostly
local objects.

b) We improve work-stealing locality such that idle threads fetch work from
local threads’ queues.
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2 Motivation

The existing Parallel Scavenge copying GC in OpenJDK uses conventional tech-
niques for:

1. task generation: scanning memory areas that contain root references, e.g.
mutator stacks, static areas, JNI handlers. At least one GC thread is used
to scan each memory area. These task-generating threads enqueue root ref-
erences locally, in a per-thread queue. Our implementation distinguishes be-
tween root references and non-root references by storing them in different
queues; the default scheme does not do this.

2. distribution: each GC thread processes its own local queue of references—
following references and processing (e.g. copying objects). Our implementa-
tion directs references to appropriate queues, based on the underlying NUMA
topology.

3. load balancing: when a GC thread’s local reference queue is empty, it ran-
domly steals a single reference from the back of another thread’s queue. This
is a typical work-stealing approach. Our implementation steals from nearer
thread queues in terms of the NUMA topology, whereas the default scheme
steals from an arbitrary queue in a NUMA-agnostic fashion.

The key objective is to keep the GC threads busy collecting the heap re-
gardless of the complex NUMA architecture. However, if a GC thread processes
distant objects, it incurs remote memory access overhead. Further, the GC may
relocate objects to a different NUMA node (e.g. during a copy-promotion); hence
degrading mutator thread locality. Our topology aware GC scheme aims to al-
leviate both these problems.

Existing NUMA locality improvements for GC copying algorithms have a
per-object granularity of work. Tikir and Hollingsworth [29] calculate the target
NUMA node for an object copy by profiling thread access patterns to each
object. Ogasawara [22] identifies the dominant thread of an object, which is
likely to access the object most frequently. This analysis is based on references
from thread stacks or the object’s header.

Conversely, Alnowaiser [1] identifies rooted sub-graphs which contain a root
reference and its descendant references in the object graph. Rooted sub-graphs
are shown to exhibit abundant locality, i.e. the majority of objects in a sub-graph
are located in the same NUMA node as the root of that sub-graph. Selection of
the rooted sub-graph as the work granularity for GC is appropriate for NUMA
systems for two reasons:

1. When a GC thread processes a task, i.e. a rooted sub-graph, it is likely to
be processing objects in a single NUMA region—ideally local for that GC
thread.

2. If parallel GC threads operate in different NUMA regions on thread-local
data, there is a reduction in cross-node memory traffic, reducing bus con-
tention.
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3 Topology-Aware Copying Collector

Our proposed topology-aware parallel copying collector leverages the locality
that exists in rooted sub-graphs. Since we set the work granularity to be a
rooted sub-graph, the main principle in our approach is to preserve the sub-
graph integrity by processing its connected objects in a single NUMA node. As
a result, a GC thread would move the entire rooted sub-graph to a single new
location. For further locality gains, GC threads should process thread-local root
objects. We achieve this by organizing root objects according to NUMA nodes.

Moreover, when GC threads exhaust their local work queues, they should
prefer to steal references from non-empty local queues of sibling cores, i.e. cores
that are in the same NUMA node. This mechanism enables low access latency for
work-stealing threads, and benefits from accessing shared resources (e.g. caches).
Moreover, stolen objects will be moved to the same NUMA node as non-stolen
objects in the same rooted sub-graph. Therefore the locality remains consistent.

Fig. 1: Various topology-aware GC schemes. a) aggressive scheme only processes
thread-local tasks b) hybrid scheme distributes tasks across all nodes but steals
from local threads only. c) relaxed scheme processes random tasks from any node

3.1 Data Structures

Figure 1 illustrates the data structures used in our scheme. At VM initialization,
we create as many double-ended queues as there are NUMA nodes, to store root
references for processing. Since GC threads run concurrently, we need to ensure
that enqueue and dequeue operations are thread safe. For this purpose, we use
the OpenJDK Arora queue which supports single producer/multiple consumers.
GC threads pop root references from one end safely using atomic operations;
however, the other end is guarded such that a thread must lock the queue before
doing any enqueue operation.

To reduce lock contention on Arora queues, we buffer root references in
thread-local queues. When a GC thread completes its root scanning task, it
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enqueues discovered root references into the corresponding Arora queue. The
memory footprint of this design is small since the root set size is small compared
to the live object set.

Threads that complete root scanning tasks obtain root references from Arora
queues. In order to shorten the time between root scanning and enqueue oper-
ations, when a thread-local queue reaches a threshold length, the GC thread
batch enqueues all references in that thread-local queue to the corresponding
Arora queue. We set the threshold to 100 references.

3.2 Algorithm

Copying collection starts with a set of predefined tasks that are created in a
sequential block of code. The VM thread, which runs the sequential code, pop-
ulates a shared queue with three different kinds of tasks to handle the parallel
copying collection:

1. root scanning tasks to discover roots in various JVM data areas.
2. stealing tasks to balance the load among threads
3. a finaliser task to terminate the parallel phase.

These tasks are present in the default ParallelScavenge GC, however we have
modified their behavior to implement topology-awareness as follows. Root scan-
ning threads classify roots according to NUMA nodes and insert the references
into the appropriate local queue. Once a local queue reaches a threshold, the
thread locks the corresponding Arora queue and enqueues all discovered ref-
erences. Stealing threads compete on dequeuing a reference from non-empty
queues. When references in Arora queues are consumed, threads attempt to
acquire work from pending queues of NUMA-local threads. The thread that
acquires the final task performs the parallel phase termination.

Listing 1.1: Topology-Aware Copying Algorithm Pseudo Code

Task = acqu i r e g c t a s k ( )
switch (Task )
case s c an roo t s :

for ( a l l r o o t a r e a s ){
root = d i s c o v e r r o o t s ( )
node = r e t r i e v e r o o t n od e ( root )
enqueue loca l queue ( root , node )
i f ( queue ( node ) s i z e ()> thre sho ld )

for ( i =0; i<thre sho ld ; i++)
enqueue Arora queue ( root , node )

}
case s t ea l work :

node = get thread node ( )
while ( Arora queue ( node ) != empty){

r e f = dequeue ( node )
f o l l ow ( r e f )
}

while ( NUMA local queue ( node ) != empty){
r e f = dequeue ( )
f o l l ow ( r e f )
}

case f i n a l t a s k :
w a i t u n t i l a l l t h r e a d s t e rm i n a t e ( )
hand contro l to VM thread ( )
end

3.3 Optimization Schemes

We implement topology awareness for task distribution and work-stealing. How-
ever, retrieving an object’s NUMA-specific location requires an expensive NUMA
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system calls. Therefore, we also explore various optimization schemes that pre-
serve rooted sub-graph integrity but may not support locality for task distribu-
tion or work-stealing. Since we are optimizing two parallel techniques, we will
have three optimization schemes, as illustrated in Figure 1:
Aggressive: GC threads look up an object’s NUMA node at task generation
phase, and only steal references from NUMA-local threads as described in Sec-
tion 3.1 and Section 3.2.
Hybrid: GC threads process roots randomly however they steal from sibling
(NUMA-local) queues only.
Relaxed: GC threads process roots randomly and steal work from any queue.

4 Experimental Setup

4.1 System Configuration

We evaluated our work on an AMD Opteron 6366 system. The NUMA topology
consists of eight nodes on four sockets, with 64 cores in total. NUMA nodes are
connected by Hyper-Transport links with transmission speed up to 6 GB/sec.
Each node incorporates 64GB RAM, i.e. 512GB in total. The 64 cores are clocked
at 1.8 GHz, and the machine runs Linux 3.11.4 64-bit. We set the OS memory
policy to interleaved, which maps 4KB memory pages from each memory node in
a round-robin order. We use OpenJDK 8 for all our experiments. The ‘original’
JVM results use changeset 6698:77f55b2e43ae (jdk8u40-b06). All our modifica-
tions are based on this changeset.

4.2 Benchmarks

We use a variety of memory-intensive workloads to test our topology-aware copy-
ing collector:

Neo4j/LiveJournal: Neo4j is an embedded, disk-based, fully transactional
Java persistence engine that stores data structures in graphs instead of tables
[20]. The graph nodes and relationships are represented in the JVM heap.
We use the LiveJournal social network data set, which consists of around 5
million nodes and 68 million edges [16]. We have a Java app that embeds
Neo4j 2.2.1 as a library and queries the database to find all possible paths
between two randomly selected nodes. The program uses 64 threads to drive
the workload and uses a minimum 150GB heap size. The all-paths operation
is repeated twice and the total execution time is reported.
DaCapo 9.12: We run applications from the DaCapo 9.12 benchmark suite
[3] that are compatible with JDK8, namely: avrora, pmd, xalan, sunflow, h2,
lusearch, and jython. The heap size for each program is set close to minimum
and the input size is large.
SPECjbb2013: SPECjbb2013 [27] is a server business application that
models a world-wide supermarket company. In our experiments, SPECjbb2013
executes the full workload with a heap size of 3GB.

4.3 Evaluation Metrics

We use three different metrics to evaluate our GC implementation.
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NUMA Locality Trace: Since our approach relies on rooted sub-graphs,
we want to summarize quantitatively the NUMA locality of rooted sub-graphs.
Our metric represents the locality richness in each sub-graph. To calculate the
percentage of NUMA-local objects in a rooted sub-graph, we retrieve the NUMA
node of the root and also the NUMA node of each descending object in the
rooted sub-graph. For all rooted sub-graphs, the locality is recorded in an n-
by-n square matrix, where n represents the number of NUMA nodes. Matrix
element aij records the proportion of objects residing in node j that belong to
a rooted sub-graph with root in node i.

We use the Matrix Trace property from Linear Algebra to calculate the
NUMA locality of a program. The trace of an n-by-n square matrix A is de-
fined by the sum of the elements on the leading diagonal, i.e.

tr(A) = a11 + a22 + ... + ann =

n∑
i=1

aii 0 ≤ tr(A) ≤ n× 100 (1)

In our system with eight nodes, tr(A) = 800 represents perfect NUMA local-
ity, whereas tr(A) = 0 means that no objects are allocated in the same node as
the root. However, due to the memory allocation policy and program behavior,
some NUMA nodes might not be used at all. Thus we define the relative NUMA
Locality Trace metric such that:

loc(A) =
tr(A)

n× 100
, 0 ≤ loc(A) ≤ 1 (2)

where n is the number of nodes that contain roots.
E.g. a program p uses six nodes for object allocation and tr(p) = 450, thus,

loc(p) = 0.75 and we interpret the result as 75% of objects are allocated in the
same node as the root.

Application Pause Time and Total Execution Time We measure and
report the pause time caused by the (stop-the-world) GC and the end-to-end
execution time of the JVM. All timing measurements are taken five times. We
report arithmetic means, and plot 95% confidence intervals on graphs.

Scalability: We run as many GC threads as the number of cores available
to the system; however large heaps incur a scalability bottleneck. Roots avail-
able in the old generation are discovered by scanning the card table, which is a
data structure used to record old-to-young pointers. As the heap size increases,
the time consumed by scanning the card table grows; hence, we analyze the
responsiveness of our optimization schemes to the increased heap size.

5 Evaluation

5.1 NUMA Locality Trace

Figure 2a shows the relative NUMA locality trace, see Section 4.3. For Neo4j/
LiveJournal, we are unable to process all the data collected due to the huge
size; however, we use the data from the fifth GC cycle only as a sample of the
application’s GC phase (following Gidra et al. [11]). DaCapo/Sunflow obtains the
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Fig. 2: (a) Relative NUMA Locality Traces for evaluated benchmarks. On av-
erage, 50% of objects are local within rooted sub-graphs. (b) Relative NUMA
Locality Traces for various root types: old-to-young, thread stacks, and class
loader roots. An old-to-young rooted sub-graph exhibits relatively low locality.

best relative NUMA locality trace results. Approximately, 90% of objects are co-
located in the same node as the root. On the contrary, objects in DaCapo/h2 are
dispersed across NUMA nodes and rooted sub-graphs provide low locality traces:
42%. For all benchmarks, the relative NUMA locality trace is 53% on average.
These results differ from our earlier empirical study [1], which demonstrated
higher locality. The main difference is that we now include rooted sub-graphs
from the young generation in our samples. This may suggest that we cannot
rely on the locality features of rooted sub-graphs to optimize the copying GC.
However the following experiment gives more insight on rooted sub-graph locality
for different kinds of roots.

Recall that at the start of parallel GC, various root scanning tasks are in-
serted in shared queues. These tasks direct the GC threads to different JVM
data areas which contain potential root references. These areas include mutator
thread-local stacks, card table (for old-to-young references), class loader data,
JNI handlers, etc. We calculate the NUMA locality traces for prevalent root kinds
and plot the results in Figure 2b. For all evaluated benchmarks, the old-to-young
rooted sub-graphs consistently obtain low locality results, whereas other roots
show high locality.

These results suggest that aggressive locality optimization can be applied on
selected root types. In the next section, we show that GC performance increases
when applying locality optimization on all root types except old-to-young refer-
ences. For old-to-young root, we randomly assign root references to any queue.

5.2 Pause Time and VM Time Analysis

Figures 3 and 4 plot the GC pause time and VM execution time results for the
Java benchmarks. Proposed topology-aware parallel techniques for task distri-
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Fig. 3: GC time (i.e. pause time) for our three schemes. For small heaps (e.g.
DaCapo programs), hybrid scheme gives the best results, whereas aggressive
scheme is more effective for apps with larger heaps. (The default JVM is labelled
Org.)
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Fig. 4: VM time (i.e. end-to-end execution time) for our three schemes. At least
one scheme provides better VM execution time than default (labelled Org) in
most cases.

10



bution and work-stealing outperform the default Hotspot ParallelScavenge GC
(labelled org).

For programs with small heap sizes, represented here by DaCapo bench-
marks, we observe that programs take the best advantage from Hybrid scheme.
Hybrid optimization scheme speed up the GC performance by up to 2.52x and
never degrades it significantly. However, not all DaCapo programs follow the
same performance trend. For instance, DaCapo/avrora gains 2.5x GC speedup
but the VM performance degrades by 31%. Avrora simulates a number of appli-
cations running on a grid of micro-controllers. Previous studies [15] [24], report
that DaCapo/avrora incorporates extensive inter-thread communications and
the application threads benefit from increased cache capacity. Thus, efforts to
improve locality counteract this cache optimization.

We note that locality is vital to programs that have large heaps. Our ap-
proach improves Neo4j/LiveJournal GC performance by 37%, 22%, and 5% for
aggressive, hybrid, and relaxed optimization schemes respectively. With the ag-
gressive scheme, SPECjbb2013 records improvement in GC and VM performance
by 91% and 20% respectively.

5.3 Scalability

When the heap size gets large, the copying collector might spend much time
scanning roots for old-to-young references in the card table. Our experience is
that many live objects are discovered through the card table; thus, the card
table scanning accounts for the majority of GC pause time. On heap sizes above
100GB, we found that card table handling often takes hundreds of seconds.

In this section, we study the scalability of our optimization schemes as the
heap size increases. The experiments were run on Neo4j/LiveJournal with heap
sizes of 100, 150, and 200 GB. Figure 5 shows the GC time and VM time scal-
ability results. Ideally, as the heap size increases, the number of GC cycles de-
creases. However, the original GC implementation shows a slight increase in the
GC time. We argue that this increase is due to the time consumed by processing
rooted sub-graphs in the card table—in particular due to three factors. First,
old-to-young rooted sub-graphs tend to be deep and require time for processing.
Second, we have shown in Section 5.1 that such type of roots possess poor lo-
cality between objects; hence, incur significant remote access overhead. Third,
deep sub-graphs are susceptible to work-stealing, thus, object connectivity will
be broken and objects are scattered across NUMA nodes.

Our three optimization schemes improve the second and third aspects and
provide better scalability results. Preserving the rooted sub-graph integrity and
enforcing topology awareness on work-stealing scales the GC time substantially.
In fact, relaxed scheme which aims only at processing connected objects as a unit
outperforms the original GC at 200GB heap size. These results show that large
heap sizes necessitate knowledge of the NUMA architecture to improve memory
access behavior.

For VM scalability, the original JVM implementation provides a steady VM
time over the three heap sizes and is not affected by the GC pause time. Hybrid
and relaxed optimization schemes observe reduction in VM time but moderate
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scaling with increased heap size. Aggressive scheme follows the GC result’s trend
and obtains better scalability results.
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Fig. 5: GC (left) and VM (right) time scaling with heap size for
Neo4j/LiveJournal. GC time decreases with heap size for our optimized ver-
sions, whereas the original implementation does not show any scaling.

6 Related Work

Prior work proposes allocating related objects close to each other to provide
locality. Objects are co-allocated based on various criteria including temporal
access patterns [5] and types [25]. Graph traversal order can improve object
locality. Wilson et al. [30] suggest a hierarchical decomposition traversal order.
This involves two different queues: small queues for descendant objects of some
particular object in order to group them in a memory page, and a large queue to
link these small queues. In our algorithm, we use two queues: NUMA queues for
roots and local queues for rooted sub-graphs. Huang et al. [13] attempt to group
frequently accessed fields in hot methods by sampling the program execution.
At GC time, referents of hot fields are copied with their parents.

Thread-local heaps enforce local access to thread-specific objects [2,14,7,18,28].
New objects are initially allocated in thread-local heaps until they are referenced
by non-local objects. Such objects are promoted to a shared heap. Zhou and
Demsky [32] implement master/slave collector threads and thread-local heaps.
Each slave thread collects its own heap only. Any reference to a non-local object
is sent to the master thread, which communicates with the appropriate thread
to mark it live. In our algorithm, every GC thread is associated with a particular
NUMA node and processes objects in that node only.

NUMA-aware collectors take into account object location before and after
collection time. Tikir and Hollingsworth [29] sample memory accesses and move
objects to the memory node of the thread accessing the object most frequently.
Ogasawara [22] uses the dominant-thread information of each live object, e.g.
thread holding the object lock, to identify the target memory node.
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Connected objects in the object graph share various attributes. Hirzel et
al. [12] examine different connectivity patterns with relation to object lifetime.
They conclude that connected objects that are reachable only from the stack
are shortlived; whereas, objects that are reachable from globals live for long
time, perhaps immortally. In addition, objects that are connected by pointers
die at the same time. Alnowaiser [1] studies the locality of connected objects
and reports that the majority of connected objects, which form a sub-graph of
a root, reside in the same memory node as that root.

Parallel GC algorithms aim to keep all cores busy processing the live object
graph. The fundamental technique of task distribution is to create a per-thread
work list that contains a set of tasks accessible by the owner thread. For load
balancing, threads that complete processing their own queues steal tasks from
non-empty queues [9,8,26,31]. However, such processor-centric algorithms do not
consider object locality and may incur additional overhead for processing distant
objects.

Memory-centric parallel GC algorithms take the object location into consid-
eration. The heap is segregated into segments and each GC thread processes one
or more segments. References to local objects in each segment are processed,
whereas references to remote objects are pushed into a queue of the correspond-
ing segment [4]. Alternatively, Shuf et al. [25] push references to remote objects
into a shared queue enabling other threads to process them. For load balancing,
GC threads need to lock unprocessed queues to trace live objects [21]. However,
a memory segment boundary might not match the physical memory page size
nor it is assigned to local threads; therefore, further locality improvements are
required.

Work-stealing algorithms negatively affect object locality by separating child
objects from their parents. Gidra [10] remarks that disabling work-stealing im-
proves program performance for some applications. Ananya et. al. [19] suggest
a locality-aware work-stealing algorithm, which calculates the distance between
NUMA nodes in a system with multi-hop memory hierarchy. An idle thread on
a node attempts to steal work from the ‘nearest’ non-empty queues. Olivier et.
al. [23] propose a hierarchical work-stealing algorithm to improve locality. They
enable one third of running threads to steal work on behalf of other threads in
the same chip and push stolen work into a shared queue for local threads. Our
approach allows threads to steal from local threads only, to preserve NUMA
locality.

7 Conclusion

We have shown that a NUMA topology-aware copying GC scheme based on
per-core reference queues is able to preserve much of the rooted sub-graph lo-
cality that is inherent in mutator allocation patterns. Our improved copying
GC scheme has significant benefits—with improvements in GC performance up
to 2.5x speedup and up to 37% faster application runtime for non-trivial Java
benchmarks.

We argue that further improvements are possible based on not only preserv-
ing locality of reference sub-graphs in single NUMA nodes, but also using local
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GC threads to operate on these sub-graphs. At present, we rely on expensive
system calls to identify local work for GC threads—but cheaper techniques are
presented in recent literature [11].

In summary, GC implementations should attempt to preserve intra-node ref-
erence graph locality as much as possible, to enable subsequent low-latency ac-
cess times for both mutator and collector threads.
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Abstract. High performance programming using explicit communica-
tion calls needs considerable programming expertise to optimize. Tun-
ing for performance often involves using asynchronous calls, running the
risk of introducing bugs and making the program harder to debug. Tech-
niques to prove desirable program properties, such as deadlock freedom,
invariably incur significant performance overheads.

We have developed a domain-specific language, embedded in C++, called
Kanor that enables programmers to specify the communication declara-
tively in the Bulk Synchronous Parallel (BSP) style. Deadlock freedom is
guaranteed for well-formed Kanor programs. We start with operational
semantics for a subset of Kanor and prove deadlock freedom and de-
terminism properties based on those semantics. We then show how the
declarative nature of Kanor allows us to detect and optimize communi-
cation patterns.

1 Introduction

Writing efficient parallel programs continues to be a challenge for the program-
ming community. Large-scale parallel programs are usually coded using the par-
titioned address space model in which processes communicate by sending explicit
messages using a standardized Message Passing Interface (MPI) library, which
provides a highly portable interface.

Unfortunately, the most straightforward way to specify communication in
MPI is usually not the most efficient. Consequently, MPI has grown to include a
library of communication patterns that are carefully optimized for specific plat-
forms. To enable further optimization MPI also includes asynchronous commu-
nication primitives. Utilizing the asynchronous communication primitives often
involves a deep understanding of how a parallel program works and forces pro-
grammers to compromise readability by strewing communication primitives all
over the unrelated computational code [7]. Moreover, ironically, such optimiza-
tions are highly platform-specific affecting the performance portability of the
MPI code.

? Currently at Google Inc.



Kanor takes a different approach. It is a domain-specific language (DSL)
that allows programmers to specify communication patterns declaratively, at a
high level, in Bulk Synchronous Parallel (BSP) style [11]. The semantics of the
language are carefully defined to guarantee correctness properties, such as dead-
lock freedom and determinism, while allowing efficient execution. The language
is highly expressive, able to succinctly describe all the existing MPI collective
operations, and allowing users to create their own custom collectives that could
be detected and optimized. The BSP style of Kanor also makes it amenable
to source-level optimizations that are well understood [5], including those that
exploit shared memory for efficient intra-node communication [9].

In this paper we describe a version of Kanor that has been implemented as a
DSL embedded within C++. This allows Kanor to be compiled using standard
C++-11 compilers. Since Kanor uses MPI underneath, existing programs using
MPI can be converted to Kanor incrementally.

Topology topology;

rval[sndr]_at_ root << sval _at_ sndr |

_for_each(sndr, topology.world) &

_if (sndr % 2 == 0) _with toplogy;

Fig. 1. Example of a communication statement.

As an example of a com-
munication statement consider
the Kanor code in Fig. 1. The
statement updates the variable
rval at a Kanor process de-
noted by root. Only the pro-
cesses with even process IDs send
value stored in the variable sval.

The receiver process set consists of a single process (root) and the sender process
set consists of processes with even IDs, assuming that Topology defines integral
type process IDs. The sender process set is formed with the help of Kanor con-
structs _for_each and _if, and _with specifies the topology. Finally, only the
memory location rval[sndr] is updated with the value receiver from sndr.

As a slightly more realistic example, consider the MPI code in Fig. 2 where
separate reductions are performed by even and odd processes with the sender
processes sending different values. The functions MPI_Isend and MPI_Recv perform
non-blocking send and blocking receive, respectively. This pattern can be written
in other ways in MPI but the code will end up either using send and receive calls
or MPI derived types and subcommunicator manipulations. Even with the new
neighborhood collectives in MPI-3 standard, this pattern cannot be represented
as a single function call. The programmer must also make sure the sent and
received messages match and there is no deadlock. Various MPI implementations
manage the temporary buffers differently so the deadlock bug might show up in
some and not others. Finally, a better algorithm might be implemented with
better knowledge of the communication pattern.

In contrast, in order to express this communication in Kanor, process sets,
messages sizes, and memory locations can all be specified in a single communi-
cation statement. The operation can be viewed as a single parallel assignment
of receiver memory locations by the senders. Kanor constructs are similar to list
comprehensions seen in languages like Python and Haskell. The example com-
munication in Fig. 2 can be expressed in Kanor succinctly, as shown in Fig. 3.



int rval;

std::vector<int> sbuff;

...

std::vector<MPI_Request> reqs;

int rmdr = me % 2;

for (int i = 0; i < nprocs; i++) {

if (i % 2 == rmdr) {

MPI_Request req;

MPI_Isend(&sbuff[i], 1, MPI_INT, i, 0, MPI_COMM_WORLD, &req);

reqs.push_back(req);

}

}

MPI_Waitall(reqs.size(), reqs.data(), MPI_STATUSES_IGNORE);

for (int i = 0; i < nprocs; i++) {

if (i % 2 == rmdr) {

int r;

MPI_Recv(&r, 1, MPI_INT, i, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

rval += r;

}

}

Fig. 2. Reduction using MPI; even and odd processors perform different reductions.

int rval;

kanor::CommBuff<int> sbuff;

...

Topology t;

rval _at_ rcvr << std::plus<int>() << sbuff[rcvr] _at_ sndr |

_for_each(sndr, t.world) & _for_each(rcvr, t.world) &

_if ((sndr % 2) == (rcvr % 2)) _with t & GLOBAL;

Fig. 3. Reduction is expressed much more concisely and clearly in Kanor.

In the rest of the paper, we describe the language and its semantics and
show how those semantics lead to correctness guarantees. As an embedded DSL
(EDSL), Kanor performs certain just-in-time optimizations at run-time and
caches them to amortize the cost of the optimizations. We report experimen-
tal results that demonstrate that the overhead of Kanor is insignificant for the
benchmarks we studied. This paper makes the following contributions.

– Design of Kanor as a DSL embedded within C++.

– An operational semantics for a subset Kanor and discussion of deadlock free-
dom and determinism properties.

– An approach for detecting collective communication patterns within Kanor.

– Performance evaluation of our collective detection approach.



2 Kanor Syntax

Fig. 4 shows the BNF grammar for Kanor. A communication statement in Kanor
consists of four parts: destination specification, operation, source specification,
and condition. The operation is bracketed by the literal << and the condition is
preceded by the literal |, which makes the communication statement read like
set comprehension. The destination specification is any valid lvalue in C++ and
source specification is any valid rvalue. If the source type is not assignable to
the destination, compilation fails, as would be expected in standard C++. The
operation bracketed by << can be any binary functor, which is applied to the
source and the destination to update the destination. The operation may be
omitted, in which case the operation defaults to identity operation. If specified
the operation is assumed to be associative and commutative. Note that assigning
multiple values to a single destination violates the condition of associativity, in
which case the program’s behavior is undefined.

The condition consists of a clauses separated by the literal &. A _for_each

clause binds a process ID variable, PVar, to a set of process IDs (ProcSet). The
set can be generated with the range Beg to End. An _if clause is used to filter
out certain process IDs from a generated set; Cond is a boolean expression and
may involve the PVars bound with a _for_each. The _let clause assigns a value
Val to a PVar.

In destination and source specifications, Lval refers to an expression that eval-
uates to an lval, Rval to an expression that evaluates to an rval, and ProcIdExpr

to an expression that evaluates to a valid process ID. The _with clause is used to
specify a topology and provide certain hints to Kanor about the communication
(see Section 4).

Kanor is sufficiently expressive to encode all the MPI collectives. Commu-
nication characteristics, such as, process sets, message lengths, and destination
addresses can be specified as part of the statement itself. This means that a
communication pattern like the MPI collective MPI_Alltoallv can be encoded in

CommStmt ::= DstSpec [ << Operation] << SrcSpec | Conditions [WithStmt]
DstSpec ::= Lval at ProcIdExpr
SrcSpec ::= Rval at ProcIdExpr
Conditions ::= Clause [ & Clause]*
Clause ::= ForEach | If | Let | TopoSpec | Hints
ForEach ::= for each(PVar, ProcSet) | for each(PVar, Beg, End)
If ::= if ( Cond )

Let ::= let ( PVar, Val )

WithStmt ::= with Hints [ & TopologyObject] | with TopologyObject
Hints ::= Hint [ & Hint]*
Hint ::= GLOBAL | CORRESPONDING | SENDER | INVARIANT

Fig. 4. Formal syntax of Kanor. A communication statement expressed in Kanor is
represented by the non-terminal, CommStmt.



All-to-All:

All
Gather

rb[s] _at_ r << sb _at_ s |

_for_each(s, t.world) & _for_each(r, t.world) _with t;

All
Gatherv

rb[Slice(dspls[s],counts[s])] _at_ r <<

sb[Slice(0, counts[s])] _at_ s | ... ;

Reduce
scatter

rb[Slice(0, count[r])] _at_ r << std::plus<btype>()

<< sb[Slice(displ[r], count[r])] _at_ s | ... ;

All-to-One:

Gather rb[Slice(s*blk_sz, blk_sz)] _at_ root

<< sb[Slice(0, blk_sz)] _at_ s | ... ;

Gatherv rb[Slice(displ[s], counts[s])] _at_ root

<< sb[Slice(0, counts[s])] _at_ s | ... ;

Reduce rb _at_ root << kanor::sum<btype> << sb _at_ s | ... ;

One-to-All:

Bcast rb _at_ r << sb _at_ root | ... ;

Scatter rb _at_ r << sb[Slice(r*blk, blk)] _at_ root | ... ;

Scatterv rb _at_ r << sb[Slice(displ[r], counts[r])] _at_ root | ... ;

Other:

Scan rb _at_ r << std::plus<btype>() << sb _at_ s |

_for_each(s, t.world) & _for_each(r, s, t.world.size()) _with t;

Exscan rb _at_ r << std::plus<btype>() << sb _at_ s |

_for_each(s, t.world) & _for_each(r, s+1, t.world.size())_with t;

Fig. 5. MPI collectives encoded in Kanor. In “One-to-All”, blk refers to the size of rb.

many ways with a Kanor communication statement. Some of the encodings are
shown in Fig. 5.

Kanor makes extensive use of operator overloading for clean syntax and C++
expression templates [4] for performance. The users only need to include a single
header, kanor.h.

3 Kanor Semantics and Properties

In order to make the language behavior precise we give a big-step operational
semantics for a subset of Kanor. We have chosen to restrict ourselves to a subset
of the entire language for space considerations and also to keep the proofs of
determinism and deadlock freedom tractable. We call this restricted language
KT .



3.1 Semantics

The syntax for KT is shown in Fig. 6. A KT program consists of a sequence
of commands denoted by c in the table. Traditional control flow constructs are
represented by the if and while commands. Commands are sequenced with ;
(semi-colon): c1; c2 means that c1 is executed before c2. Variables, x, in the lan-
guage represent memory locations that can be updated during execution of the
program. Variables can be updated with the assignment command (:=) and with
the communication command denoted by comm. Expressions can be arithmetic
(aexp) or boolean (bexp).

aexp ::= n | x | a0 ⊕ a1 | me | np
⊕ ::= + | × | −
bexp ::= true | false

| a0 � a1 | b0 � b1 | ¬b
� ::= < | > | ≤ | ≥ | =
� ::= ∧ | ∨
cmd ::= skip | x := a | c0; c1

if b then c1 else c2 |
while b do c | comm

comm ::= x1 @ p1 ← op← x2 @ p2
where clause∗filter∗

clause ::= foreach(v, s exp)
s exp ::= list(a0, a1, ...) | rep(a0, a1)

range(a0, a1)
filter ::= BExp expression
op ::= reduction op

Fig. 6. Formal syntax of KT .

All KT processes execute the same
program similar to the single pro-
cess multiple data (SPMD) model.
Each process has its private memory,
called that process’s store. Each pro-
cess starts with its own store with
the variables me and np denoting the
process rank and the total number
of processes respectively. Communica-
tion can only be done with the comm
commands.

The operational semantics for KT

consist of local rules (Table 1) and
communication rules (Table 2). The
local semantics specify how processes
compute values locally. Local process
stores are modified with variable as-
signment denoted by the e-assign

rule. The semantics for communication are specified by the e-comm rule in
Table 2. The communication command can be thought of as parallel assign-
ment of receiver locations by sender values. The sender process s evaluates
the expressions (p1, x2, p2, foreach(i, ...), ..., pred1, ...) with the store σ produc-
ing an environment ρs (e-sendables). ρs maps the sent variable (x2) to a
value (vs) and also binds the generator-bound variables (i) to set of process
IDs. The set of process IDs is generated after the evaluation of conditions
foreach(i, ...), ..., pred1, .... Only the values of i that evaluate p2 to s are stored
in ρs. The operation ] represents communication of data(ρs) from senders to
receivers. The environment ρr is formed on receiver r, by combining mappings
from ρs with pr = r. All the sent variables are distinct from each other and their
mappings are preserved in ρr. Finally, receiver r evaluates and updates memory
location(s) x1 by applying op to received values in the combined environment
ρr ⊕ σ. Application of op is a local computation on the receiver (e-appop). The
environment ρr contains a set of values for x2 received from different senders.
Variable x1 in σ is updated by combining all these values with operator (op).
The updated store is denoted by σ1.



〈b0 | σ〉 ⇓b t0 〈b1 | σ〉 ⇓b t1
〈b0 � b1 | σ〉 ⇓b t

E-BOP

where t = t0 � t1

〈a0 | σ〉 ⇓a n0 〈a1 | σ〉 ⇓a n1

〈a0 ⊕ a1 | σ〉 ⇓a n
E-AOP

where n = n0 ⊕ n1

〈skip | σ〉 ⇓ σ
E-SKIP

〈a | σ〉 ⇓a n
〈x := a | σ〉 ⇓ σ [x 7→ n]

E-ASSIGN

〈c0 | σ〉 ⇓ σ1 〈c1 | σ1〉 ⇓ σ2

〈c0; c1 | σ〉 ⇓ σ2

E-SEQ

σ1 := σ

x1 7→ op

σ(x1),
∑

v∈ρ(x2)

v


〈(x1, op, x2) | ρ⊕ σ〉 ⇓ σ1

E-APPOP

〈b | σ〉 ⇓b true 〈c1 | σ〉 ⇓ σ1

〈if b then c1 else c2 | σ〉 ⇓ σ1

E-COND-T

〈b | σ〉 ⇓b false 〈c2 | σ〉 ⇓ σ1

〈if b then c1 else c2 | σ〉 ⇓ σ1

E-COND-F

∀s ∈ P, 〈foreach(i, ...), ..., pred1, ...) | σ〉 ⇓s R Rf ⊆ R
〈p2 | σ ⊕Rf 〉 ⇓s s 〈x2 | σ ⊕Rf 〉 ⇓s vs ρ′ := ρ [x2 7→ vs, i 7→ v2]

〈(p1, x2, p2, foreach(i, ...), ..., pred1, ...) | σ〉 ⇓s ρ′
E-SENDABLES

〈b | σ〉 ⇓b false
〈while b do c | σ〉 ⇓ σ

E-WHILE-F

〈b | σ〉 ⇓b true
〈c | σ〉 ⇓ σ1 〈while b do c | σ1〉 ⇓ σ2

〈while b do c | σ〉 ⇓ σ2

E-WHILE-T

Table 1. Local semantics in KT .

∀r, s ∈ P,∃p1s, x2s, p2s 〈(p1s, x2s, p2s, foreach(i, ...), ..., pred1, ...) | σ〉 ⇓s ρs
]ρs ⇓r ρr

E-UNION

∀r, s ∈ P, ]ρs ⇓r ρr 〈(x1, op, x2) | ρr ⊕ σ〉 ⇓r σ1

〈x1@p1 ← op← x2@p2 where . . . | σ〉 ⇓r σ1

E-COMM

Table 2. Communication semantics in KT .

3.2 Properties

We first define what well-formedness means for KT programs. We assume KT

programs are well-formed in the ensuing discussion.

Definition 1. Well-formedness KT programs are said to be well-formed iff

– All processes participating in communication, C, execute C.
– All processes participating in communications, C1 and C2, execute C1 and C2

in the same order.
– There are no local errors, including the application of the reduction operator

and ρs computation.

First two requirements for well-formedness are the same as that for an MPI
collective. The problem of checking well-formedness is undecidable in general.



Kanor does not provide syntactic support or semantic guarantees to ensure well-
formedness. Well-formedness could be checked in limited cases (global knowl-
edge) by the compiler, but not in general.

Determinism We would like KT programs to produce the same output on same
inputs. This means that each KT process starting with some initial configuration
always ends up with the same final configurations on each run of the program. We
say that KT is deterministic if all programs satisfy this property. More formally,
we say that KT programs are deterministic if and only if for a given process set
P , each process with an initial store σp, p ∈ P , all executions of the program
c satisfy the following property: For each process p ∈ P , if two executions of
c evaluate to final stores σ1 and σ2 then σ1 = σ2. Note that processes share
the same program c but they can have different initial and final configurations
(memory stores denoted by σ).

We divide the proof of determinism into two parts, proving that expression
evaluation is deterministic and that the execution of commands is deterministic.

Lemma 1. KT expression evaluation is deterministic.
– ∀e ∈ AExp,∀σ ∈ Σ,∀n, n′ ∈ Z, 〈e, σ〉 ⇓a n ∧ 〈e, σ〉 ⇓a n′ ⇒ n = n′

– ∀b ∈ BExp,∀σ ∈ Σ,∀t, t′ ∈ B, 〈b, σ〉 ⇓b t ∧ 〈b, σ〉 ⇓b t′ ⇒ t = t′

Proof. By induction on the structure of arithmetic expression e. The base cases
are numeric constants n,me and np. The conclusion follows from reflexivity of
integers. In case e is a variable x, x evaluates to a unique n in a given store σ.
The inductive case (a0 ⊕ a1) follows from the deterministic nature of arithmetic
operations. The proof for boolean expressions is similar.

A potential source of non-determinism is the communication command. The
reduction operator might be non-commutative, e.g. assignment. If such an oper-
ator operates with different values on the same memory location, then the result
might be non-deterministic. In this case, we make the operator application (⇓s
of rule e-appop in Table 2) deterministic by choosing a particular evaluation
order. Also, we assume the network is reliable so that the ] operator in e-union
always produces the same environment after a union over the sent environments.

In the presence of commands like while, we cannot use induction on the
structure of commands to prove determinism. Instead, we use induction on
derivation trees. A judgement D of the form c ⇓ σ says that the command
evaluates to final configuration σ without errors. The derivation of D starts by
selecting the operational semantics rule (Tables 1 and 2) for which D is the con-
sequent. The derivation then branches out, each branch representing a derivation
for each premise of the selected rule. Derivation along a branch of ends when
a rule with no premise is found. Thus the derivation for D forms a tree with
D at its root. We prove determinism of command evaluation by induction over
derivation trees.

Lemma 2. KT command evaluation is deterministic. 〈c | σ〉 ⇓ σ1 ∧ 〈c | σ〉 ⇓
σ2 ⇒ σ1 = σ2



Proof. The most interesting case here is the rule e-comm in Table 2. Let D be
the derivation when c evaluates to σ1 and D′ be the derivation when c evaluates
to σ2. Derivation tree for D must have two branches (subderivations) from the
root, one for rule e-union (D1) and other for rule e-appop (D2). At the end of
D1 we should get the store ρ1 and at the end of D2 we should get σ1.
By inversion, since D′ uses the rule e-comm again with two subderivations D′1
and D′2 with stores ρ2 and σ2 respectively. By induction hypothesis on D1 with
D′1, we have ρ1 = ρ2 and by induction hypothesis on D2 with D′2 and ρ1 = ρ2,
we have σ1 = σ2.

A KT program is a command with initial store. Hence, determinism of KT

programs follows from lemma 2.

Deadlock Freedom A message passing program might deadlock when a pro-
cess blocks waiting for a message that is never sent. KT programs are deadlock-
free by construction.

Lemma 3. KT programs are deadlock free.
∀c ∈WC,∀p ∈ P, 〈c | σp〉 ⇓ σ′p where WC is the set of well-formed KT programs.

Proof. In well-formed KT programs, application of the rule e-appop, is always
successful across all processes. All other commands act locally and do not block,
hence there is no deadlock. The proof follows similar pattern to the determinism
proof. The induction is on the structure of derivations.

4 Optimizing Communication

Having established precise semantics and basic correctness of Kanor, we next
identify opportunities to optimize it. Our core technique is based on inferring
the collective operation at run-time the first time a communication statement is
executed. Subsequent executions of the statement use the previously computed
(cached) inference, which eliminates the overhead of the run-time inference of
the pattern, which can take O(n2) time for n processes.

4.1 Communication Knowledge

In order to understand when and how collective patterns can be detected we need
to define communication knowledge cases, which describe the extent to which
the processes agree on the values of the expressions involved in a communication
statement.

The receiver lval (Lval in DstSpec in Fig. 4) is computed on the receiver.
Similarly, the sender rval is computed on the sender. This is necessary, because
the lval might not make sense on the sender and rval might be meaningless on
the receiver. However, the process sets—the sets of senders and receivers that
are computed using DstSpec, SrcSpec, and Conditions—need to be computed by



both the senders and the receivers in order for two-way communication to take
place. If the sender and receiver process sets evaluate to exactly the same values
on all the processes we call it the global knowledge case. This is the simplest of
all cases.

It is possible that the receiver sets evaluate to different values on different
processes. In such cases, Kanor assumes the communication to be sender-driven,
i.e., the receiver process sets computed by senders take precedence1. Thus, the
senders know which processes they are sending to, but the receivers may not
know their senders. We call this the sender knowledge case. To illustrate it,
suppose the sender process s computes the sender set Ss and receiver set Rs.
The receiver process r computes the sender set Sr and the receiver set Rr. If
r ∈ Rs but s /∈ Sr, the sender s still sends the message which must be received
by r.

Finally, it is possible that the sender and the receiver processes agree on their
corresponding receivers and senders, but other processes might not. Thus, if the
communication statement requires process A to send data to B then both A and
B agree on it, but a third process C might not, although, C knows that it is
not involved in this communication. Such a case, which might be relatively rare
compared to other cases, is called the corresponding knowledge case.

Note that there is no receiver knowledge case, since the communication in
Kanor is sender driven. If sender expression evaluates to different values on
different processes, it is still the senders’ versions that take precedence.

It is possible to detect these cases using compiler analysis, however, that is
beyond the scope of this paper. In this paper we assume that the users provide
appropriate annotations with a communication statement (Hint in Fig. 4) to
identify the knowledge case. For the rest of the discussion we assume global
knowledge case, which is by far the most common. Other cases can also be
handled similarly, but usually require additional communication. Assuming local
computations are error-free, the global case guarantees well-formedness 1. It is
left to the programmer to make sure that non-global Kanor programs are well-
formed.

4.2 Communication Invariance

A communication statement whose process set calculation depends on an enclos-
ing loop’s index may use different process sets in each iteration. Thus, certain
aspects of a communication statement might change with each invocation. This
is a property distinct from knowledge case.

We identify three core characteristics of a communication statement: length
of the messages, the contiguity of the data in memory, and the process sets in-
volved in sending and receiving data. We say that the communication is invariant
if none of the communication characteristics change. Invariance of communica-
tion allows us to cache the communication pattern and reuse it in later instances
of the same communication statement.
1 This is motivated by the fact that one-sided put operations are usually more efficient

than one-sided get operations.



If a communication statement is both global knowledge case and invariant
then each process can independently infer the communication pattern and cache
it, with the assurance that every other process will make an identical infer-
ence. The communication pattern is inferred using Algorithm 1 and cached for
subsequent use. Our evaluation (section 6) shows that the inference cost gets
amortized quickly as message size increases.

1 Input: Communication Statement S
2 Output: Set of Collective Calls C

// G is a directed graph, in which vertices are process IDs,

// an edge connects sender to a receiver

3 G = build from S;
4 n = number of vertices in vertex set V(G);
5 if each vertex v in V(G) has degree n then
6 if send and receiver buffers contiguous then
7 C = {Alltoall};
8 else
9 C = {AllGather};

10 return;

// build rooted collectives to be executed independently

11 foreach v in V(G) with no incoming edges do
12 if send and receiver buffers contiguous then
13 C = C ∪ {broadcast};
14 else
15 C = C ∪ {scatter};

Algorithm 1: Algorithm to detect MPI collectives.

5 Implementation Status

We have implemented Kanor as an embedded DSL in C++. We make use of
operator overloading, template meta-programming and certain C++11 features,
such as lambdas, to achieve this. The library will be released in open source.

Kanor process ranks are expressed as members of the kanor::ProcID class.
Arithmetic and comparison operators are overloaded for the ProcID class. Pro-
grammers can use list comprehensions provided by Kanor to bind ProcID vari-
ables to sets. Other entities, including communication buffers and slices, are also
provided as convenient Kanor classes. All communication is implemented using
MPI as the underlying communication mechanism. This allows existing MPI
programs to be converted to Kanor incrementally.

The implementation uses type traits to perform several compile-time checks,
for example, to make sure that the sender and receiver expressions will evaluate
to process IDs, and to make sure that the left hand side (receiver expression) is



a valid lval. In order to implement communication pattern detection, carefully
overloaded operators work together to construct an abstract syntax tree (AST)
out of the communication statement. Once the AST is complete, Algorithm 1 is
used to infer and cache the pattern as a lambda that can be invoked directly the
next time. With the programmer-supplied hint the library generates optimized
implementation for each knowledge case using expression templates.

6 Experiments

We evaluated the pattern identification and caching mechanism implemented in
the library with several benchmarks. First set of benchmarks consists of well-
known MPI collectives working with different process sets and buffer sizes. Each
collective is executed in a loop. First iteration of the loop incurs detection and
caching overhead. The runtime overhead for subsequent iterations is minimal
compared to actual communication. We also evaluated our system on three other
benchmarks, including one dense matrix kernel, Cholesky and two NAS paral-
lel benchmarks, IS (Integer Sort), and FT (Fourier Transform) [1]. We selected
Cholesky, where the matrix columns are cyclically distributed across processors,
for an example of dense matrix computation with complex communication pat-
terns. The NAS IS benchmarks models irregular communication seen in typical
N-Body codes. NAS FT represents regular communication on a subset of pro-
cesses.

The experiments were conducted on the Big Red II infrastructure at Indiana
University. Big Red II is a Cray XE6/XK7 supercomputer with a hybrid archi-
tecture providing a total of 1,020 compute nodes. It consists of 344 CPU-only
compute nodes, each containing two AMD Opteron 16-core Abu Dhabi x86 64
CPUs and 64 GB of RAM. It also has 676 CPU/GPU compute nodes, each con-
taining one AMD Opteron 16-core Interlagos x86 64 CPU, one NVIDIA Tesla
K20 GPU accelerator with a single Kepler GK110 GPU, and 32 GB of RAM.
Big Red II runs a proprietary variant of Linux called Cray Linux Environment
(CLE).

Micro Benchmarks Fig. 7 shows the results for the collective micro-benchmarks.
Timings for six communication statements representing MPI alltoall, allreduce,
broadcast, scatter, scatterv and gather are shown. The collectives were run for
different message sizes, processors and loop iteration counts. We only show the
results for 32 processors with variable sized messages of double precision values.
Each vertical bar represents total time (in milliseconds) it took for the commu-
nication statement to finish. The bars are shown in groups of three. First bar
shows the time taken by MPI collective. Next two bars show the time taken by an
equivalent Kanor communication statement with caching enabled and disabled
respectively. To enable caching, we provide the INVARIANT hint. With caching dis-
abled (third bar in a group), the runtime incurs pattern detection overheads on
each iteration. With caching enabled (second bar), the runtime incurs overheads
related to the caching mechanism only. The pattern detection overheads (third
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Fig. 7. Comparing Kanor implementations of MPI collectives to their counterparts for
32 processes.

bar) are considerable for small messages sizes and all-to-all patterns. Detection
starts to match MPI for larger sizes. Kanor collectives with caching enabled,
start to match MPI even for smaller message sizes.
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Application Benchmarks The com-
parison results for Cholesky are shown
in Fig. 8. In our implementation,
the matrix columns are cyclically dis-
tributed and the main computation
loop is strip-mined. A process oper-
ates on a block it owns and broadcasts
the calculated column to downstream
processes that require it. The mes-
sage lengths may vary hence this is
not an invariant communication state-
ment. The computation time domi-
nates the communication time so the
detection overheads do not cause sig-
nificant performance degradation.

Fig. 9 shows the results of the NAS Integer Sort (IS) and Fourier Transform
(FT) benchmarks. The benchmarks were run for classes S, W, A, B and C. IS
processes send variable number of keys to other processes and the number of keys
are not known a-priori. So an alltoall exchange happens to let the receivers of
the number of keys they are receiving. Next an alltoallv actually sends the keys.
The second alltoallv sends variable length messages, hence it is not an invari-
ant communication. The detection and caching overhead shows up for smaller
problem sizes (S, W). For larger sizes, the computation and communication time
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Fig. 9. Comparison of Kanor to MPI implementations of NAS Benchmarks Integer
Sort(IS) and Fourier Transform(FT). NAS Benchmark class (S, W, A, B, C) denotes
the size of the problem to be solved. Procs denote the number of processes used to
solve the problem.

hides this overhead. Finally, FT is regular alltoall communication on a subset
of processes and it is also invariant. Consequently, Kanor begins to match MPI
even for smaller problem sizes.

7 Related Work

Kanor’s operational semantics were described in a previous paper [3]. This paper
treats communication as parallel assignment, simplifying reasoning. Callahan
et.al [2] detail small-step operational semantics for the BSPLib library. Gava
et.al. [6] give big-step operational semantics for a subset of BSPLib. Kanor com-
munication statements are treated as parallel assignments in our approach. We
do not work or reason with message queues which simplifies the semantics a lot.

Using expression templates [4] helps us pattern match AST nodes at compile
time and inline code based on the match. This is in contrast to other embedding
technique, used for example in Halide [10], that identifies AST nodes by casting
pointers. New features provided in C++11 such as static_assert help us provide
useful error messages in case the communication statement is ill-formed.

Collective detection efforts in MPI have mostly focused on analyzing traces
of programs and detect patterns in them. Hoefler et.al. [8] present an online
algorithm to detect collective patterns in codes with point to point messages.
Kanor communication statements enable easier detection of collectives. Also, we
can detect reductions like allreduce.



8 Conclusion and Future Work

Declarative nature of Kanor allows programmers to write complex communica-
tion patterns including but not limited to MPI collectives. Well-formed Kanor
programs are deadlock-free and deterministic. Kanor can identify and optimize
communication patterns without expensive compiler analyses in the presence of
global knowledge. We are currently focusing on implementing compiler analyses
to automatically deduct hints as well as overlap computations with communica-
tion.
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Abstract. This paper proposes a novel optimization framework for the
Data-Flow Graph Language (DFGL), a dependence-based notation for
macro-dataflow model which can be used as an embedded domain-specific
language. Our optimization framework follows a “dependence-first” ap-
proach in capturing the semantics of DFGL programs in polyhedral rep-
resentations, as opposed to the standard polyhedral approach of deriv-
ing dependences from access functions and schedules. As a first step,
our proposed framework performs two important legality checks on an
input DFGL program — checking for potential violations of the single-
assignment rule, and checking for potential deadlocks. After these le-
gality checks are performed, the DFGL dependence information is used
in lieu of standard polyhedral dependences to enable polyhedral trans-
formations and code generation, which include automatic loop transfor-
mations, tiling, and code generation of parallel loops with coarse-grain
(fork-join) and fine-grain (doacross) synchronizations. Our performance
experiments with nine benchmarks on Intel Xeon and IBM Power7 mul-
ticore processors show that the DFGL versions optimized by our pro-
posed framework can deliver up to 6.9× performance improvement rela-
tive to standard OpenMP versions of these benchmarks. To the best of
our knowledge, this is the first system to encode explicit macro-dataflow
parallelism in polyhedral representations so as to provide programmers
with an easy-to-use DSL notation with legality checks, while taking full
advantage of the optimization functionality in state-of-the-art polyhedral
frameworks.

1 Introduction

Hardware design is evolving towards manycore processors that will be used in
large clusters to achieve exascale computing, and at the rack level to achieve
petascale computing [29], however, harnessing the full power of the architecture
is a challenge that software must tackle to fully realize extreme-scale computing.
This challenge is prompting the exploration of new approaches to programming
and execution systems, and specifically, re-visiting of the dataflow model — but
now at the software level.

In the early days of dataflow computing, it was believed that programming
languages such as VAL [5], Sisal [27], and Id [7] were necessary to obtain the
benefits of dataflow execution. However, there is now an increased realization
that “macro-dataflow” execution models [30] can be supported on standard
multi-core processors by using data-driven runtime systems [4,3,36]. There are



many benefits that follow from macro-dataflow approaches, including simpli-
fied programmability [12], increased asynchrony [15], support for heterogeneous
parallelism [32], and scalable approaches to resilience [39]. As a result, a wide
variety of programming systems are exploring the adoption of dataflow princi-
ples [21,28,31], and there is a growing need for compiler and runtime components
to support macro-dataflow execution in these new programming systems.

At the other end of the spectrum, polyhedral and other compiler frameworks
implicitly uncover dataflow relationships in sequential programs through depen-
dence analysis and related techniques. Though this approach can result in good
performance, it usually requires a sequential program as input, which often limits
portability when compared to higher-level dataflow program specifications.

We argue that a combination of declarative dataflow programming and im-
perative programming can provide a practical approach both for migrating exist-
ing codes and for writing new codes for extreme-scale platforms. We propose the
use of a Data-Flow Graph Language (DFGL) as an embedded domain-specific
language (eDSL) for expressing the dataflow components in an application. The
DFGL notation is based on the Data Flow Graph Representation (DFGR) in-
troduced in [31]. It enables individual computations to be implemented as ar-
bitrary sequential code that operates on a set of explicit inputs and outputs,
and defers the packaging and coordination of inter-step parallelism to the com-
piler and the runtime system. We propose a novel optimization framework for
DFGL which enables correctness analysis of the application as well as low level
transformations using a polyhedral compiler. Our performance experiments with
nine benchmarks on Intel Xeon and IBM Power7 multicore processors show that
the DFGL versions optimized by our proposed framework can deliver up to
6.9× performance improvement relative to standard OpenMP versions of these
benchmarks.

Section 2 provides the background for this work, Section 3 discusses the
motivation for the DFGL approach, Section 4 gives an overview of the compiler
flow for DFGL subprograms, Section 5 describes the key technical points in our
approach, Section 6 presents our experimental results, Section 7 discusses related
work and Section 8 contains our conclusions.

2 Background

This section briefly summarizes the underlying DFGL programming model and
the polyhedral compilation framework, which together form the foundation for
the approach introduced in this paper.

2.1 DFGL model

The Data-Flow Graph Language (DFGL) model is a dependence based notation
for dataflow parallelism, which is based on the Concurrent Collections (CnC)
model [21,12] and the Data Flow Graph Representation (DFGR) [31]. DFGL
describes computations using two main components: steps, that represent se-
quential subcomputations; and items, that represent data read and written by
steps. The user describes an application by writing a graph that captures the
relation among the items and steps.



As in the CnC model, steps are grouped into step collections, and represent
all dynamic invocations of the same computational kernel. A unique identifier
(tag) identifies a dynamic instance of a step S in a collection, (S: tag ). A
special env step handles communications with “outside”, e.g., initialization and
emitting final results. Items are grouped into item collections and model all
data used as inputs and outputs to steps. Analogous to tags for steps, elements
in item collection A are uniquely identified by a key : [A: key ]. In general,
keys are represented as functions of step tags, such as affine functions or pure
functions evaluated at run time [31]. The relations among steps and items are
described by the “->” and “::” operations. The operation -> describes data-
flow as follows: [A: key ] -> (S: tag ) denotes item(s) read by a step1, (S:
tag ) -> [A: key ] denotes item(s) written by a step, and (S: tag1 ) -> (S:
tag2 ) denotes a step-to-step ordering constraint. The operation :: describes
step creation; i.e., (S: tag1 ) :: (T: tag2 ) denotes instance(s) of T created
by an instance of S2. The detailed semantics are shown in past work [31].

DFGL guarantees determinism and data race freedom by enforcing a dynamic
single assignment rule. This rule states that any item in any collection can only
be written once during the whole execution of the program. The model can be
implemented to rely on different underlying runtimes. The compiler also has a
lot of freedom in packaging the parallelism through code transformations such
as loop tiling and generation of fine-grained (doacross) parallelism.

2.2 Polyhedral compilation framework

The polyhedral model is a flexible representation for arbitrarily nested loops.
Loop nests amenable to this algebraic representation are called Static Control
Parts (SCoPs) and represented in the SCoP format, where each statement con-
tains three elements, namely, iteration domain, access relations, and schedule.
SCoPs require their loop bounds, branch conditions, and array subscripts to be
affine functions of iterators and global parameters.

Iteration domain, DS : A statement S enclosed by m loops is represented
by an m-dimensional polytope, referred to as an iteration domain of the state-
ment [19]. Each element in the iteration domain of the statement is regarded as
a statement instance i ∈ DS .

Access relation, AS(i): Each array reference in a statement is expressed
through an access relation, which maps a statement instance i to one or more
array elements to be read/written [40]. This mapping is expressed in the affine
form of loop iterators and global parameters; a scalar variable is considered as
a degenerate case of an array.

Schedule, ΘS(i): The sequential execution order of a program is captured
by the schedule, which maps instance i to a logical time-stamp. In general, a
schedule is expressed as a multidimensional vector, and statement instances are
executed according to the increasing lexicographic order of their time-stamps.

Dependence Polyhedra, DS→T : The dependences between statements S
and T are captured by dependence polyhedra — i.e., the subset of pairs (i, i′) ∈
DS × DT which are in dependence. We note n the dimensionality of DS→T .

1 Step I/O may comprise a list of items, and item keys may include range expressions.
2 A typical case is env step to create set of step instances where tag is a range.



Given two statement instances i and i′, i′ is said to depend on i if 1) they
access the same array location, 2) at least one of them is a write and 3) i has
lexicographically smaller time-stamp than i′, that is ΘS(i) ≺ ΘT (i′).

Fig. 1. Computation and dependence for Smith-Waterman.

[ int A ] ;
( corner : i , j ) −> [A: i , j ] ;
( top : i , j ) −> [A: i , j ] ; ( l e f t : i , j ) −> [A: i , j ] ;
[A: i −1, j −1] , [A: i −1, j ] , [A: i , j −1] −> ( main center : i , j ) −> [A: i , j ] ;
env : : ( corner : 0 , 0 ) ;
env : : ( top : 0 ,{1 . . NW} ) ; env : : ( l e f t :{1 . . NH} , 0 ) ;
env : : ( main center :{1 . . NH} ,{1 . . NW} ) ;
[A:NH,NW] −> env ;

Fig. 2. Input: DFGL for Smith-Waterman.

corner (0 , 0 ) ;
for ( c3 = 1 ; c3 <= NW; c3++) top (0 , c3 ) ;
for ( c1 = 1 ; c1 <= NH; c1++) l e f t ( c1 , 0 ) ;
#pragma omp p a r a l l e l for private ( c3 , c5 , c7 ) ordered (2 )
for ( c1 = 0 ; c1 <= NH/32 ; c1++) {

for ( c3 = 0 ; c3 <= NW/32 ; c3++) {
#pragma omp ordered depend ( s ink : c1−1, c3 ) depend ( s ink : c1 , c3−1)

for ( c5 = max(1 , 32∗ c1 ) ; c5 <= min (NH, 32∗ c1 +31); c5++)
for ( c7 = max(1 , 32∗ c3 ) ; c7 <= min (NW, 32∗ c3 +31); c7++)

main center ( c5 , c7 ) ;
#pragma omp ordered depend ( source : c1 , c3 )
} }

Fig. 3. Output: optimized OpenMP for Smith-Waterman (using our system).

3 Motivating Example

The Smith-Waterman algorithm is used in evolutionary and molecular biology
applications to find the optimal sequence alignment between two nucleotide or
protein sequences, using dynamic programming to obtain the highest scoring so-
lution. We show how this algorithm is encoded in our graph-based representation
and then optimized by our polyhedral framework.



Figure 1 gives a visual representation of the Smith-Waterman algorithm,
which contains 4 kind of steps: a single corner step (C) computing the top-left
matrix corner and collections of steps computing the top row (T), left column
(L) and the main body (M) of the matrix. The three-way arrows mark the flow of
data between steps. As mentioned in Section 2.1, each instance of the same step
collection is identified by a unique tag. Using a (NH+1)×(NW+1) integer matrix
(which comprises item collection A), there are NH × NW main steps, each of which
is identified by a tuple-tag (i,j), with 1 ≤ i ≤ NH and 1 ≤ j ≤ NW.

The data dependences (represented by arrows in Figure 1) are modeled by
using the tag (i,j) to identify a step instance and keys (affine functions of tag)
to specify items; Note that all main steps read 3 items and write one item of
collection A: [A:i-1,j-1], [A:i-1,j], [A:i,j-1] -> (M:i,j) -> [A:i,j].

The DFGL specification for Smith-Waterman is shown in Figure 2. The first
line of code declares an item collection, where each item is of type int. The
next four lines of code specify, for each of the 4 steps, what items are read and
written, as a function of the step instance’s tag.

The final four lines specify what the environment needs to produce for the
graph to start, and what it needs to emit after completion of the graph as
output data. The environment starts all computation steps via :: operation,
(e.g., main steps of {1 .. NH} × {1 .. NW}). It also reads one item resulting
from the computation (the bottom right corner, which contains the optimal
sequence alignment cost).

Although the dependences in this DFGL program expose a wavefront paral-
lelism (e.g., step instances (M:1,10), (M:2,9), ... (M:10,1) can run in parallel),
the computation granularity of each instance is too small to be implemented as
a concurrent task on current computing systems. Furthermore, there are several
choices on how to implement this wavefront parallelism, e.g., as a regular forall
loop parallelism via loop restructuring (skewing) or using a special runtime that
supports software pipelining. Figure 3 shows the optimized code in OpenMP, as
generated by our framework. Loop tiling is applied to the kernel so as to improve
both data locality and computation granularity. To implement the pipeline par-
allelism, we rely on an OpenMP-based fine-grained synchronization library [34],
which will be supported in OpenMP 4.1 standard [28]. These transformations
brought significant improvements as reported in Section 6.

4 Converting DFGL to Polyhedral Representation

In this section, we first introduce the programming flow using DFGL as an em-
bedded domain-specific language (eDSL) for expressing the dataflow components
in an application. We also introduce the overview of our optimization framework,
as well as the restrictions placed upon DFGL programs for compatibility with
the polyhedral framework.

4.1 Embedded DFGL programming flow

As shown in Figure 4, we use pragma dfgl to specify a DFGL program embed-
ded in a regular C program. Each item collection in the DFGL program requires
a corresponding array that is declared and in scope at the dfgl pragma. Users
can initialize items and obtain computation results outside the DFGL program



void f oo ( ) {
//C reg ion
int A[NH+1] [NW+1] ;
. . .

#pragma d f g l
{

//DFGL reg ion
[ int A ] ;
. . .

}
pr in t (A[NH] [NW] ) ;

}

Fig. 4. DFGL as an embedded
DSL
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Fig. 5. Optimization and build flow for a DFGL par-
allel region.

via the corresponding arrays. To enable legality check in Section 5.2, users need
to describe which items are to be initialized/emitted as a form of write/read
on the environment, e.g., env -> [A: key ] or [A: key ] -> env. The flow for
compiling a DFGL parallel region is shown in Figure 5. The user creates the
DFGL description and provides the main program (DFGL environment) and
codes for the compute steps. Then, they use our toolchain, which couples an ex-
tended translator [37] that we created for conversion to SCoP, and an extension
to ROSE Compiler framework [2,33], to obtain an executable for running the
application.

The first component of the toolchain is the SCoP converter that transforms
the DFGL representation into a simplified SCoP format as described in Sec-
tion 5.1. Next, we use the Analyzer to report errors in the input DFGL program
and obtain the dependences. The dependences, along with the information from
the DFGL SCoP, are then fed into the Optimizer. The final stage is the generation
of the optimized OpenMP code, which is built together with the user-provided
main program, kernels and libraries to obtain the executable.

4.2 DFGL restrictions for enabling polyhedral optimizations

To facilitate the conversion to a polyhedral representation, we focus on a re-
stricted subset of DFGL that can be summarized as follows: (1) step tags are
of the form i = (i1, ..., ik) with k the dimensionality of the associated step col-
lection; (2) item keys are affine expressions of step tags; and (3) all steps are
started by the environment such that the set of steps started can be described
using only affine inequalities of the step tag. Note that a step-to-step dependence
is converted into step-to-item and item-to-step dependences using a new item
collection. Both rectangular regions (ranges [31]) and simple polyhedra shaped
by affine inequalities of step tags are supported in DFGL. In practice, ranges
and simple polyhedra are often enough to express the tag sets needed to model
regular applications. They also come with the benefit of easy compilation to a
loop-based language, which we will use to generate parallel OpenMP code.

The implementation we propose relies on generation of C code due to the
benefits of high performance given by a low level language and the ease of pro-



gramming provided by DFGL, which abstracts applications using a high-level
representation. This approach is also appropriate for using DFGL as an embed-
ded DSL, since the OpenMP code that our toolchain generates can be integrated
into larger code bases (in effect, an OpenMP parallel region is generated for each
DFGL parallel region), while the user steps, which the generated code calls, can
themselves be optimized routines or library calls (possibly with non-affine data
accesses, since only the DFGL program is processed by the polyhedral frame-
work, not the internal step code).

5 Polyhedral Optimizations for DFGL

In this section, we present the details of our analysis and optimizations for an
input DFGL program, in the context of a polyhedral compilation framework.

5.1 Polyhedral representation of DFGL program

This section introduces our approach for creating a polyhedral representation of
a DFGL program. Each step is viewed as a polyhedral statement, for which an
iteration domain is constructed by analyzing the creation of step instances by
the environment and access functions are constructed by analyzing the dataflow
expressions.

SCoP for DFGL model As shown in Section 2.2, the original SCoP format con-
sists of three components: iteration domain, access relation, and schedule. The
restricted DFGL model defined in Section 4.2 allows to seamlessly create the it-
eration domain to be represented as a polyhedron bounded by affine inequalities,
and the I/O relations of each step instance to be modeled as affine read/write
access relations. Examples of DFGL code fragments and their SCoP representa-
tions are shown below.

[A:i-1,j+1]->(S:i,j)->[B:i,j] ⇔ ASR1 (i, j) = (A, i−1, j+1), ASW1 (i, j) = (B, i, j)

env::(S:{1 .. N},{i .. M}) ⇔ DS = {(i, j) ∈ Z2 | 1 ≤ i ≤ N ∧ i ≤ j < M}
Instead of specifying the sequential execution order (total order) among all step

instances, the DFGL model enforces ordering constraints via dataflow: a step
instance is ready to execute only once all of its input items (data elements) are
available. Therefore, the SCoP format specialized for DFGL contains iteration
domains and access functions, but no explicit schedule.

Dependence computations To compute polyhedral dependences between any two
step instances, we need to determine their Happens-Before (HB) relation — i.e.,
which instance must happen before another [24]. By definition of the dynamic
single assignment form, only flow dependences can exist and any read to a mem-
ory location must necessarily happen after the write to that location. So we can
define the HB relation between instance i of step S and i′ of step T as:

HBS→T (i, i′) ≡ ASWl (i) = ATRm (i′) ∧ (S 6= T ∨ i 6= i′)

This simply captures the ordering constraints of the DFGL model: step instance
i′ reading an item cannot start before step instance i writing that item com-
pleted, even if step instance i′ of T appears lexically before instance i of step



S in the DFGL program. According to the definition in Section 2.2, dependence
polyhedra between steps S and T are simply expressed as:

DS→T ≡ {(i, i′) | i ∈ DS ∧ i′ ∈ DT ∧ HBS→T (i, i′)}

which captures that i/i′ is an instance of step S/T , i writes the item read
by i′ (access equation), and i happens before i′ (HB relation). Because of the
dynamic single assignment rule, the DFGL model disallows Write-After-Write
dependence and Write-After-Read dependences. The next section outlines how
polyhedral analysis can be used to check of these error cases.

5.2 Legality analysis

This section introduces the compile-time analyses to verify the legality of a
DFGL program. Enforcing the DFGL semantics, it detects the violation of the
dynamic-single-assignment rule, plus three types of deadlock scenarios.

Violation of the single-assignment rule is equivalent to the existence of Write-
After-Write dependences, and is represented by the following condition, which
indicates that instances i and i′ write an identical item (data element):

∃i ∈ DS , ∃i′ ∈ DT : ASWl (i) = ATWm (i′) ∧ (S 6= T ∨ i 6= i′ ∧ l 6= m)

Self deadlock cycle is the simplest case of deadlock. An instance i needs to read
an item which is written by i itself, thereby resulting in indefinite blocking.

∃i ∈ DS : ASWl (i) = ASRm (i)

General deadlock cycle is the second of deadlock scenarios, where the depen-
dence chain among multiple step instances creates a cycle. Any instance on the
cycle waits for its predecessor to complete and transitively depends on itself. As
discussed in Section 5.3, transformations in the polyhedral model are equivalent
to a multidimensional affine schedule such that, for each pair of instances in
dependence, the producer is scheduled before the consumer. The existence of
such legal schedule [18] guarantees the absence of general deadlock cycle, and
optimizers are built to produce only legal schedules.

Deadlock due to absence of producer instance is the third deadlock scenario.
Even without a cycle in the dependence chain, it can be possible that a step
instance i′ needs to read an item that any other step instance does not write.
Detecting this scenario is represented by the following condition, which means
there is no step instance i that writes an item to be read by i′. Note that the
items written/read by the environment env are also expressed as domains and
access relations (Section 4.1)3.

∃i′ ∈ DT : ¬ (∃i ∈ DS : ASWl (i) = ATRm (i′))

For instance, the following compile-time error message is shown if we remove the
second line “(corner:i,j) -> [A:i,j];” in Figure 2:
Legality check: Deadlock due to no producer of (main center:1,1)

3 In future work, we may consider the possibility of not treating this case as an error
condition by assuming that each data item that is not performed in the DFGL region
has a initializing write that is instead performed by the environment.



5.3 Transformations

Given a set of dependence polyhedra {D∗→∗} that captures all program depen-
dences, the constraints on valid schedules are:

ΘS(i) ≺ ΘT (i′), (i, i′) ∈ DS→T , DS→T ∈ {D∗→∗}

For any dependence source instance i of step S and target instance i′ of step T ,
i is given a lexicographically smaller time-stamp than i′. Because of the transla-
tion of the DFGL program into a complete polyhedral description, off-the-shelf
polyhedral optimizers can be used to generate imperative code (i.e., C code)
performing the same computation as described in the DFGL program. This op-
timization phase selects a valid schedule for each step based on performance
heuristics — maximizing objective functions. There have been a variety of poly-
hedral optimizers in past work with different strategies and objective functions
e.g., [11,33]. The schedule is then implemented to scan the iteration domains in
the specified order, and a syntactic loop-based code structure is produced using
polyhedral code generation [8].

We used the PolyAST [33] framework to perform loop optimizations, where
the dependence information provided by the proposed approach is passed as
input. PolyAST employs a hybrid approach of polyhedral and AST-based com-
pilations; it detects reduction and doacross parallelism [17] in addition to regular
doall parallelism. In the code generation stage, doacross parallelism can be effi-
ciently expressed using the proposed doacross pragmas in OpenMP 4.1 [28,34].
These pragmas allow for fine-grained synchronization in multidimensional loop
nests, using an efficient synchronization library [38].

6 Experimental Results

This section reports the performance results of the proposed DFGL optimization
framework obtained on two platforms: (1) an IBM POWER7: node with four
eight-core POWER7 chips running at 3.86GHz, and (2) an Intel Westmere: node
with 12 processor cores per node (Intel Xeon X5660) running at 2.83 GHz. For
benchmarks, we use Smith-Waterman, Cholesky Factorization, LULESH and six
stencil kernels from PolyBench [25].

Smith-Waterman is used as our motivating example (Section 3). We run the
alignment algorithm for 2 strings of size 100,000 each, with a tile size varying
between 16 and 1024 in each dimension. As the baseline OpenMP implementa-
tion, we manually provided a wavefront doall version via loop skewing. Figure 6
shows the speedup results on our two test platforms, relative to the sequential
implementation. We observe that the performance varies depending on the tile
size chosen: for Westmere the best tile size is 1024, while for POWER7 the
best tile size is 64. However our approach gives a big performance improvement
compared with the skewed wavefront OpenMP implementation: up to 6.9× on
Westmere and up to 2.3× on POWER7 for the maximum number of cores, due
to cache locality enhancement via tiling and efficient doacross synchronizations.

To evaluate the efficiency of doacross (point-to-point synchronizations) and
wavefront doall (barriers), we provided variants that removes all computations
in the kerenel and only contains synchronizations. Table 1 shows the synchro-
nization and overall execution times in second. When using 32 cores, the syn-
chronization overheads for doacross with tile size = 64 and wavefront doall is



OpenMP DFGL-16 DFGL-64 DFGL-256 DFGL-512 DFGL-1024

Overall 9.863sec 4.508sec 4.188sec 4.283sec 4.571sec 5.047sec
Synch. 1.720sec 0.482sec 0.163sec 0.128sec 0.129sec 0.143sec

Table 1. Overall and synchronization time (Smith-Waterman onPower7 with 32 cores)

0.163[sec] and 1.72[sec], respectively. In addition to this synchronization effi-
ciency, loop tiling by the optimization framework enhanced data locality; overall
improvement over the OpenMP variant is 2.36× when using 32 cores and tile
size = 64.

(a) Intel Westmere (b) IBM POWER7

Fig. 6. Smith-Waterman using 2 sequences of 100k elements each. Results are for DFGL
optimized code with loop tiling using tile sizes between 16 and 1024, and OpenMP
baseline with parallelism obtained via loop skewing.

Cholesky Factorization is a linear algebra benchmark that decomposes a sym-
metric positive definite matrix into a lower triangular matrix and its transpose.
The input matrix size is 2000 × 2000 and the generated code has 2D loop tiling
with tile size varying between 4 and 32. In figure 7 that even though this ap-
proach does not yield a large speedup, it still gives improvement compared to
the OpenMP implementation: 1.4× on Westmere and 3.0× on POWER7.

As reported in previous work [13], the combination of data tiling (layout
transformation) and iteration tiling is a key technique for Cholesky Factorization
while the current toolchain supports only iteration tiling. Alternatively, we man-
ually implemented 50×50 iteration and data tiling within the user-provided steps
and underlying data layout; the input DFGL is unchanged and our toolchain
generated the same inter-step parallel code via doacross. This version brought
significant improvements due to optimized cache locality, up to 15× on West-
mere and up to 10.8× on POWER7 over standard OpenMP implementation.
Furthermore, it gives on par performance with Parallel Intel MKL on 12 cores,
on Westmere4 and outperforms ATLAS on POWER75 on more than 4 cores.

4 MKL is the best tuned library for Intel platforms. We compare against Sequential
and Parallel MKL.

5 On POWER7 we use ATLAS — the sequential library — as MKL cannot run on
POWER7, and a parallel library was not available.



These results further motivate our work, since the application tuning can
be accomplished both by the polyhedral transformations and the user by re-
placing the steps with optimized versions. For example, in the case of cholesky,
it is possible to call optimized MKL/ATLAS kernels inside the user steps. In
our results, these steps are regular sequential steps and all parallelism comes
from the OpenMP code generated by the polyhedral tools. Further, since DFGL
can be used as an embedded DSL, the OpenMP code being generated can be
incorporated in larger applications and coupled with optimized user steps.

(a) Intel Westmere (b) IBM POWER7

Fig. 7. Cholesky Factorization using 2000x2000matrix. Results are for loop tiling using
tile sizes between 4 and 32, OpenMP parallelism, data tiling resulting of the inner steps
and reference MKL/Atlas implementations.

LULESH is a benchmark needed for modeling hydrodynamics [1]. It ap-
proximates the hydrodynamics equations discretely by partitioning the spatial
problem domain into a collection of volumetric elements defined by a mesh. In
this implementation each element is defined as a cube, while each node on the
mesh is a point where mesh lines intersect and a corner to 4 neighboring cubes.
The mesh is modeled as a 3D space with N3 elements and (N + 1)3 nodes.
The benchmark uses an iterative approach to converge to a stable state. We
pre-tested the application and saw a convergence after 47 iterations; thus in our
results we use a fixed number of 50 iterations for simplicity.

Figure 8 gives the results for a 1003 space domain and our toolchain tiled both
the time loop and the 3D loop nest corresponding to the space. We see that even
with a time tile size of 2, this leaves only 25 parallel iterations at the outermost
doacross loop, which for the POWER7 in particular leads to a smaller speedup.
The best results are obtained with no time tiling and a space tile of 83, on both
Westmere and POWER7. We also observe a significant increase in performance
compared with the reference C++ implementation which uses OpenMP [22].

Finally, we summarize results for the stencil benchmarks from the Polybench
suite [25]: Jacobi-2D, Jacobi-1D, Seidel-2D, FDTD (Finite Different Time Do-
main), FDTD-APML (FDTD using Anisotropic Perfectly Matched Layer) and
ADI (Alternating Direction Implicit solver) in figures 9 when using the maxi-
mum number of cores on each platform. We created the baseline OpenMP imple-
mentations in a standard manner: parallelism added at the outer most loop for
fully parallel loops and after skewing for loops with loop-carried dependences.
We did not add manual polyhedral optimizations.

The results show that the best tile sizes vary between platforms: on the
Westmere the best results are generally for the larger time tile (4) and the
largest space tile size (128), while for the POWER7 the best results are for the



(a) Intel Westmere (b) IBM POWER7

Fig. 8. LULESH for 50 time iterations and a 1003 space domain. Results are for time
loop tiling with tiles 1,2 and space loop tiles 2,4,8,16, and reference C++ OpenMP
implementation.

smaller time tile (2) and the smallest space tile (16). We also note that the results
obtained using the DFGL toolchain outperform the OpenMP implementations
for most cases, with up to 1.8× speedups.

(a) Intel Westmere, 12 cores (b) IBM POWER7, 32 cores

Fig. 9. Stencil benchmarks from the Polybench suite.Results compare DFGL tiling
with standard OpenMP parallel versions.

7 Related Work

DFGL has its roots in Intel’s Concurrent Collections (CnC) programming model
[12,21], a macro-dataflow model which provides a separation of concerns between
the high level problem specification and the low level implementation. The orig-
inal CnC implementation did not offer a means for definiting dependences at a
high level, and an extended CnC model proposed for mapping onto heteroge-
neous processors [32] became the foundation for DFGL.

Compared to past work related to CnC, DFGL pushes the use of a high-level
data-flow model as an embedded DSL for enabling robust compiler optimizations
using a state-of-the-art polyhedral compilation framework that is capable of
generating code for the new OpenMP 4.1 doacross construct. In addition, to
the best of our knowledge, this work is the first to use polyhedral analyses to
detect potential deadlocks and violations of the dynamic single assignment rule
in a dataflow graph program specification. Other data-flow models also use a
parallel underlying runtime to achieve performance, either a threading library,
such as pthreads used in TFlux [35], or a task library, such as TBB used in



Intel’s CnC, or a parallel language such as Cilk used in Nabbit [6]. Legion [9]
is another language which aims to increase programmability, however it requires
an initial sequential specification of a program, similar to the input assumed
by polyhedral compiler frameworks. DFGL eases programmability by separating
the application description from its concrete implementation, and ensures that
the optimized parallel code generated is not handled by the user. In addition,
DFGL regions can be integrated in large scale applications as an embedded DSL,
and can be coupled with optimized step code implementations or library calls.

Domain specific languages aim to give a high-level view of the applications
and to ease programmability but are generally restricted to particular sets of
problems, such as stencil computations [26] or graph processing problems [20]. In
contrast, DFGL aims to combine the programmability benefits of DSLs with the
optimizability of polyhedral regions, by using an approach that enables portable
specifications of parallel kernels. Alpha [42] is a language which can be viewed as
an eDSL for the polyhedral model. However the specification for Alpha is that
of a full language, whereas DFGL can be composed with optimized step code
defined in other languages, as long as these can be built together.

A number of papers addressed data-flow analysis of parallel programs using
the polyhedral model, including extensions of array data-flow analysis to data-
parallel and/or task-parallel programs [16,41]. These works concentrate on anal-
ysis whereas our main focus is on transformations of macro-dataflow programs.
Kong et al. [23] applied polyhedral analysis and transformations for the Open-
Stream language, a representative dataflow task-parallel language with explicit
intertask dependences and a lightweight runtime. PolyGlot [10] was the first
end-to-end polyhedral optimization framework for pure dataflow model such
as LabVIEW, which describes streaming parallelism via wires (edges) among
source, sink, and computation nodes. On the other hand, our framework aims
at optimizing macro-dataflow model, where asynchronous tasks are coordinated
via input/output variables in data-driven manner.

8 Conclusions

In this paper, we proposed an optimization framework that uses as input the
DFGL model, a dataflow graph representation that results in high performance
generated by polyhedral tools while still allowing the programmer to write gen-
eral (non-affine) code within computation steps. We outlined the language fea-
tures of DFGL and presented our implementation of the model, which provides
a tool that reads in the DFGL specification and generates the SCoP format for
polyhedral transformations. We then described the technical details for comput-
ing dependences based on the access functions and domain, as described in the
SCoP format, using the dynamic single assignment property of DFGL. Further
we described compile-time analyses to verify the legality of DFGL programs
by checking for potential dynamic single assignment violations and potential
deadlocks. We have shown experimental results for our implementation of the
DFGL model, which offers good scalability for complex graphs, and can out-
perform standard OpenMP alternatives by up to 6.9×. The current restrictions
on DFGL are inherited from the polyhedral model itself and should be also ad-
dressed in future work [14]. This work focuses on the C language; future work
could consider C++ notational variants.
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Abstract. Library and language support for scheduling non-blocking tasks
has greatly improved, as have lightweight (user) threading packages. How-
ever, there is a significant gap between the two developments. In previous
work—and in today’s software packages—lightweight thread creation incurs
much larger overheads than tasking libraries, even on tasks that end up
never blocking. This limitation can be removed. To that end, we describe an
extension to the Intel Cilk Plus runtime system, Concurrent Cilk, where tasks
are lazily promoted to threads. Concurrent Cilk removes the overhead of
thread creation on threads which end up calling no blocking operations, and
is the first system to do so for C/C++ with legacy support (standard calling
conventions and stack representations). We demonstrate that Concurrent
Cilk adds negligible overhead to existing Cilk programs, while its promoted
threads remain more efficient than OS threads in terms of context-switch
overhead and blocking communication. Further, it enables development of
blocking data structures that create non-fork-join dependence graphs—which
can expose more parallelism, and better supports data-driven computations
waiting on results from remote devices.

1 Introduction

Both task-parallelism [1, 11, 13, 15] and lightweight threading [20] libraries have
become popular for different kinds of applications. The key difference between a task
and a thread is that threads may block—for example when performing IO—and then
resume again. Lightweight threading libraries usually require cooperative multitasking
but can, in return, support over a million threads, which is naturally useful for
applications such as servers that involve concurrent IO-driven computations. Tasks, in
contrast, are of finite duration and do not block. Indeed the non-blocking assumption
is baked deeply into libraries such as TBB (Threading Building Blocks [15]) and
language extensions such as Cilk [4]. Tasks are executed on shared worker threads
where blocking such a thread is a violation of the contract between programmer
and library, which can cause subtle deadlocks, as well as a loss of parallel efficiency.

If the no-blocking-guarantee can be met, then task-parallelism libraries offer an
order of magnitude lower overhead for creating parallel tasks (“many tasking” rather
than “multi-threading”). Cilk [4], in particular, is well known for its low-overhead
spawn feature where the overhead of creating a parallel fiber with cilk_spawn f(x) is
as little as 2-5 times the overhead of a regular function call, f(x). The key to this low-
overhead is that Cilk fibers are essentially lazily parallel: fibers execute sequentially,
exposing the continuation of the parallel call with a minimum of overhead, and
lazily promoting the continuation to a parallel continuation only when work-stealing
occurs—and even then only using shared resources, not fiber-private stacks.
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Fig. 1. State transitions possible for a
fiber in each of several existing systems.
At level (1), the fiber executes entirely
within the stack of its caller. Work steal-
ing transitions to (2) where a pre-existing
system worker stack (allocated at startup)
is used to execute the continutation of f
in parallel. A blocked fiber requires ad-
ditional storage for its state (3). Finally,
blocking on underlying OS calls requires
an OS thread (4).

Because a traditional Cilk program
must run even with sequential semantics—
spawned fibers cannot serve the role of
threads in the sense that they cannot be
used for managing concurrent IO. That is,
even continuations lazily promoted to par-
allel status, are not truly concurrent—they
don’t have their own stacks. It is this extra
lazy promotion we add in Concurrent Cilk.

To the programmer, a cilk_spawn and a
thread spawn look very similar, but current
limitations require knowing at the point of
the call, which variant will be required: will
the spawned computation need to suspend,
and thus require its own stack? This decision
point remains even in high-level languages
designed with both parallelism and concur-
rency in mind, which support both tasks and
threads using separate language mechanisms.
For example, the Glasgow Haskell Compiler
supports “sparks” (tasks) and language-level “IO threads” with different APIs [13].

Concurrent Cilk, on the other hand, extends the Cilk runtime interface with new
primitives for pausing a fiber and returning a handle1 that will allow other fibers (or
Pthreads) to unpause the computation, and extends the states through which a fiber
is promoted with a third, fully concurrent, state:

1. Executing sequentially, continuation uninstantiated
2. Executing in parallel with continuation, shares stacks
3. Fully concurrent, private stack, able to pause/resume

That is, Concurrent Cilk initially executes fibers sequentially, lazily promoting
them to “parallel work” during stealing, and lazily promoting them to “threads” only
when necessary (Figure 1). It then becomes possible to use the cilk_spawn feature
for all parallelism and concurrency, even if it is not known (or even knowable) at
the point of its creation whether the fiber will need to block—for example, for a
computation on a server to wait on further communications with the client, or for a
ray tracer to fetch remote data to compute a particular pixel.

Previous attempts to provide blocking, lightweight fibers in C have either required
changing calling conventions and breaking legacy binary support [19], or create a full
[linear] call-stack for each fiber [20]. Concurrent Cilk is the first system to enable
lightweight threads in C, with legacy support, and memory-use (number of stacks)
proportional to blocked fibers, not total spawned fibers.

On the other hand, for parallel languages with specialized compiler support,
and no backwards compatibility concerns (linear stacks), lazy thread spawning has
been explored, namely in the context of Id90 [7]. (Although Id90 used only states

1 This handle is similar to a [parallel] one-shot continuation. Continuations are well studied
control constructs [9, 17] and known to be sufficient to build cooperative threading
(coroutines) [9] as well as blocking data structures that enable, for example, stream-
processing with back-pressure.



(1) and (3) above, not the full three-state algorithm.) And yet today, Concurrent
Cilk is, to our knowledge, the only threading system that uses this algorithm, even
including languages like Go, Haskell, and Erlang with good lightweight threading
support. Nevertheless, with the prevalence of asynchronous workflows, especially
in the web-services domain, we argue that this is an idea whose time has come.
It provides a better abstraction to the programmer—with a single logical spawn
construct replacing careful reasoning about non-blocking tasks, shared threads, and
user threads—and it is implementable even in mature systems like Intel Cilk.

In this paper, we make the following contributions:

– We present the first system for unified lightweight tasking and threading that
supports C/C++ code and existing binaries. We describe the changes that are
necessary to add concurrency constructs (pause/resume a parallel fiber) to a
mature, commercial parallelism framework, and we argue that other many-tasking
frameworks could likewise adopt lazy-promotion of tasks to threads.

– We show how to build blocking data structures (e.g. IVars, channels) on top of the
core Concurrent Cilk pause/resume primitives.

– We use Linux’s epoll mechanism to build a Cilk IO library that provides variants
of POSIX routines like read, write, and accept which block only the current Cilk
fiber, and not the OS thread.

– We evaluate Concurrent Cilk in terms of (1) additional runtime-system overhead
across a set of applications (Section 6.1); (2) opportunities for improved performance
by sync elision (Section 6.3); (3) a study of injecting blocking IO in parallel
applications, or, conversely, injecting parallel computation inside IO-driven server
applications (Section 6.4).

2 Background and Motivation

Cilk itself dates from 1996 [4]; it is a simple language extension that adds parallel
subroutine calls to C/C++. Only two constructs make up the core of Cilk: cilk_spawn
for launching parallel subroutine calls, and cilk_sync for waiting on outstanding calls
(with an implicit cilk_sync at the end of each function body). For example, here is a
common scheduler microbenchmark, parallel fibonacci:

long parfib(int n) {
if (n<2) return 1;
long x = cilk_spawn parfib(n-1);
long y = parfib(n-2);
cilk_sync;
return x+y;

}

Logically, each cilk_spawn creates a
virtual thread, i.e. a fiber. Cilk then mul-
tiplexes these fibers on any number of
OS worker threads, determined at run-
time. Cilk only instantiates fibers in par-
allel when randomwork-stealing occurs.2

Thus running parfib(42) does not cre-
ate stack space for half a billion fibers, rather it typically uses one worker thread for
each processor or core.

Cilk is surprisingly successful as a language extension. This appears to be largely
due to (1) Cilk’s extreme simplicity, and (2) the legacy support in Intel Cilk Plus.
That is, Cilk programs can be linked with previously compiled libraries and legacy
code may even call Cilk functions through function pointers.

The work-stealing model supported by Cilk has been adopted by many other

2 Cilk is a work first system, which means that the thread that executes spawn f will begin
executing f immediately; it is the continuation of spawn that is exposed for stealing.



C/C++ libraries (Intel TBB, Microsoft TPL, and others). Unfortunately, so has its lack
of support for blocking operations within parallel tasks. None of these C/C++ runtime
systems can react to a task blocking—whether on a system call or an in-memory
data structure. For example, TBB blocking data structures (e.g. queues) are not
integrated with TBB task scheduling.

2.1 Blocking deep in a parallel application

To illustrate the problem Concurrent Cilk solves, we begin by considering adding
network IO to a plain Cilk application. Take, for example, software that renders
movie frames via ray tracing.3 A rendering process runs on each machine in a render
farm, and may use all the processors/cores within that machine. Let us suppose the
software evolved from a sequential application, but has been parallelized using Cilk
constructs.

Somewhere in our rendering application we might expect to see a parallel loop that
launches a ray for each pixel we are interested in. Contemporary Cilk implementations
provide a cilk_for drop-in replacement for for, which is implemented in terms of
cilk_spawn and cilk_sync.

sort(pix_groups);

cilk_for (i < start; i<end; i++){
. . . cast_ray(pix_groups[i]) . . .

}

Suppose now that in this context—
deeply nested inside a series of parallel and
sequential function calls—we encounter a
situation where the ray has left the local
virtual space, whose textures and geometry
are loaded on the current machine, and
entered an adjacent area stored elsewhere in networked storage. In this hypothetical
rendering application, if every ray rendered had its own Pthread (which is impractical),
then it would be fine to block that thread by directly making a network request as a
system call.

// Deep in the stack,
// in the midst of rendering:
void handle_escaped(ray r, id rsrc){

blob f = webapi.request(rsrc);
// Block a while here,
// waiting on the network . . .

load_into_cache(f);
resume_ray(r);

}

But if Cilk has been used to paral-
lelize the application, the above is very
dangerous indeed. First, because there
is generally one Cilk worker thread per
core, blocking a worker thread often
leaves a core idle. Second, any attempts
to hold locks or block on external events
invalidates the traditional space and
time bounds on Cilk executions [4]. Fi-
nally, blocking calls can deadlock the system if there are enough such calls to stall
all Cilk worker threads, starving other computations that might proceed—including,
potentially, the one that would unblock the others!
Attempted fix 1: avoid blocking To avoid blocking within a parallel task, how can
the application be refactored? If the need for IO operations is discovered dynamically
(as in ray tracing), there are two options: (1) fork a Pthread at the point where IO
needs to occur, passing an object bundling up the rest of the computation that needs
to occur, after the IO completes;4 or (2) return failure for the parallel task, wait

3 Ray tracing follows an imaginary line from each pixel in the image into the scene to
see what objects are encountered, rather than starting with the objects and drawing
(rasterizing) them onto the screen.

4 In other words, manually converting the application to continuation passing style (CPS).



until the parallel region is finished, then perform IO and try again (a trampoline).
Because Cilk allows (strictly) nested parallelism, deferring actions until the end
of a parallel region potentially requires restructuring the control-flow of the entire
application—pulling all potential-IO in deeply nested contexts to the application’s
“outer loop”.
Attempted fix 2: overprovision to tolerate blocked workers Of course, it
is possible to provision additional Cilk workers, say, 2P or 4P (where P is the
number of processors or cores). This would indeed hide some number of blocking
operations, keeping processors from going idle, at the cost of additional memory
usage and some inefficiency from over-subscription. Unfortunately, this puts the
requirements on the user to understand the global pattern of blocking operations
at a given point in program execution, which is especially difficult within a parallel
region. Moreover, if blocked threads are interdependent on one another—for example
using in-memory blocking data-structures for inter-fiber communication—then the
maximum possible simultaneously blocked computations is key to deadlock avoidance.
In general, violating the Cilk scheduler’s contract (by blocking its workers) is a
dangerous action that cannot be used composably or abstracted inside libraries.

Thus we argue that, if Cilk fibers must block their host threads, then it is better to
create replacement worker threads on demand (as Cilk instantiates fibers on demand,
upon stealing) as an integral part of the runtime system. Hence Concurrent Cilk.

3 Programming Model
Concurrent Cilk follows the Cilk tradition of using a small set of powerful, composable
primitives, which can then form the basis for higher-level abstractions or syntactic
sugar. The core primitives for Concurrent Cilk are pause and resume on fibers, and
while library implementers directly use these primitives, most end users will prefer to
use higher-level data structures. Thus we begin our exposition of the programming
model using one such high-level structure—the IVar—as an example, and then we
return to the lower level API later on in this section.

An IVar is a single-assignment data structure that exists in either an empty or
full state. The basic interface is:

void ivar_clear(ivar*);
ivar_payload_t ivar_get(ivar*);
void ivar_put(ivar*, ivar_payload_t);

New IVars are stack- or heap-allocated and then set to the empty state with
ivar_clear. 5 Get operations on an empty IVar are blocking—they pause the current
fiber until the IVar becomes full. Once an IVar has transitioned to a full state,
readers are woken so they can read and return the IVar’s contents. IVars do not allow
emptying an already full IVar.

Further, IVars are only one representative example of a synchronization structure
built with pausable fibers—MVars would allow synchronized emptying and refilling
of the location, or a bounded queue with blocking enqueues and dequeues.

Pausing the fiber In fact, all these data structures make use of the underlying
Concurrent Cilk API in the same way. Here we show a simplified API, which will be
optimized shortly, but which demonstrates two phase pausing, as follows.

5 Here, and in the rest of this paper, we omit the prefix __cilkrts_ which is found in
most of the symbols in CilkPlus, and our fork, Concurrent Cilk https://github.com/
iu-parfunc/concurrent_cilk



1. pause_fiber() – capture the current context (setjmp), and begin the process of
shelving the current fiber.

2. commit_pause() – jump to the scheduler to find other work
In between these two operations, the fiber that is about to go to sleep has time

to store a reference to itself inside a data structure. Without this step, it would not
be possible for other computations to know that the fiber is asleep, and wake it. In
the case of IVars, each empty IVar with blocked readers stores a pointer to a waitlist,
which will be discussed in the next section. Further, as an implementation note,
the pause_fiber routine must be implemented as an inline function or preprocessor
macro—so that it calls setjmp from within the correct stack frame.

Waking the fiber The job for the ivar_put operation is simpler: attempt a compare
and swap to fill the IVar, and retrieve the waitlist at the same time. If it finds
the IVar already full, it errors. When put processes the waitlist, it uses a third
Concurrent Cilk API call, which we introduce here, that has the effect of enqueuing
the paused fiber in a ready-queue local to the core on which it was paused.
3. wakeup_fiber(w) – take the worker structure, and enqueue it in the readylist.

Naturally, thread wakeup and migration policies are a trade-off: depending on
the size and reuse distance of the working set for the blocked computation, relative
to the amount data communicated to it through the IVar. It could be best to wake
the fiber either where it paused or where it was woken, respectively. We chose the
former as our default.

4 Another high-level interface: I/O Library

Before delving deeper into the low-level Concurrent Cilk API and scheduler implemen-
tation, we first describe another abstraction layered on top of Concurrent Cilk, one
which provides a programmer-facing abstraction that is key to the goal of Concurrent
Cilk: blocking I/O calls intermingled with parallel tasks.

The Cilk I/O library we implemented provides a way for fibers to block—not just
on application-internal events like another fiber writing an IVar—but on external
events such as network communication. The programmer-visible API matches the
normal POSIX API with functions prefixed with cilk_. Except, of course, block-
ing semantics are achieved, not by blocking the entire OS thread, but rather the
Concurrent Cilk fiber. Our current implementation uses the Libevent library, which
provides an abstraction over OS mechanisms like Linux’s epoll. Libevent provides
a programming interface for registering events with associated callbacks. It raises
the abstraction level from raw epoll by, for example, handling the event loop(s)
internally.

An initialization routine, cilk_io_init, needs to be called before calling any IO
methods. This launches a new daemon thread to run the event loop. The cilk_accept,
cilk_read, cilk_write, and cilk_sleep procedures register corresponding events to
the event loop before yielding the control to a different fiber by blocking on an IVar
read. In this, their implementations are all similar to the ivar_get implementation.
Accordingly, ivar_put is performed by the event callback, running on the daemon
thread containing the event loop. Note, however, that we do not need to worry about
running computation on the event loop thread (which would delay it from processing
events)—ivar_puts are cheap and constant time, only calling wakeup_fiber() to
resume computation. As we saw before wakeup_fiber() always resumes the fiber on
the worker thread where it went to sleep, which can never be the event loop thread.



In Section 6, we will return to the topic of the IO library as a foundation for server
applications. Finally, note that it would be possible to use LD_PRELOAD or related
methods to patch in Cilk IO calls instead of standard system calls, but this is beyond
the scope of this paper; it could be built separately and on top of what we provide.

5 Low-level implementation and scheduler

Cilk workers live in a global array which is accessed during the work-stealing process.
When a worker becomes starved for work, another worker is then chosen, at random,
from the global array and if there is any work available, the thief steals from the
currently busy worker (victim) and computes on its behalf. There have been several
implementations of Cilk, and other papers describe their implementation and interfaces
in detail, from the early MIT versions of Cilk [6], to the binary ABI specification of
Intel Cilk Plus [2]. Thus we do not go into detail here.

5.1 Adding the Concurrent Cilk Extensions
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Fig. 2. The architecture of the modified Con-
current Cilk runtime system. Also pictured
is the included, but optional, Cilk IO library.
The bold red entries in the worker structure
represent Concurrent Cilk extensions.

The idea of Concurrent Cilk is simple;
however, the Cilk Plus runtime system is
a complex and comparatively difficult to
modify artifact, so implementation must
proceed with care. Our basic approach
is that if a Cilk worker becomes blocked,
detach the worker from its OS thread6

and substitute a replacement worker that
then steals computation from any of the
workers in the global worker array. When
the blocking operation has finished, the
worker is restored to an OS thread at the
next opportunity and the replacement
worker is cached for future use. In this
way, all OS threads managed by the Cilk
runtime are kept active. This strategy is similar to other lightweight threading systems
[8, 13, 20], except in that Concurrent Cilk “threads” (fibers) start out without stacks
of their own.

As pictured in Figure 2, most Cilk worker state is thread-local—including a
stack of stealable Cilk stack frames, a linear C stack, and many book-keeping and
synchronization related fields. A cache of stacks is kept both at the global and
thread-local levels, with local caches “filling” and spilling over into the shared pool.
Concurrent Cilk adds three main additional fields:

1. Paused list – workers that cannot currently run
2. Ready list – workers that have unblocked and are ready for execution
3. Free list – an additional cache of workers that previously were paused and now

can be used as replacements for newly paused fibers

Each of the lists above is currently implemented as a lock-free Michael and Scott
queue [14]. This gives a standard round-robin execution order to ready-threads. When
the current fiber pauses, work-stealing only occurs if there are not already local fibers
on the ready list.
6 A Cilk worker represents a thread local state which sits on top of an OS level thread.



5.2 Scheduler modifications

The additional Concurrent Cilk data structures described above are primarily touched
by the pause, commit pause, and wakeup routines, and so they do not interfere with
traditional Cilk programs that never block. However, there must be some modification
of the core scheduler loop so as to be able to run work in the ready list.

The core scheduler algorithm picks random victims and attempts to steal in a
loop, eventually going to sleep temporarily if there is no work available. We inject
checks for the extra workers in two places:

– In the stealing routine – if a first steal attempt fails, rather than moving on from
a victim, we attempt to steal work from any blocked workers on the same core
(which may also have exposed stealable continuations before being blocked).

– At the top of the scheduler loop – we do not engage in work stealing if there are
already threads in the ready list prepared to run. In this way, cooperative multi-
tasking is possible in which no work-stealing is performed, and control transfers
directly from thread to thread as in other lightweight threading systems. To make
this maximally efficient, however, in the next Section we will have to extend the
pause/wakeup API from the simplified form we have seen. Preferentially handling
ready (local) threads over stealable work has precedent in existing (multi-paradigm)
parallel language runtimes [13] that prioritize user-created, explicit concurrency
over exploiting latent parallelism.

The above modifications change how we find victims, while at the same time
we retain the global (static) array of workers as it is in Intel Cilk Plus—as the
starting point for all work-stealing. In Concurrent Cilk the global array represents the
active workers, of which there are the same number in Concurrent Cilk and Cilk. To
maintain this invariant, we must necessarily rotate out which workers reside in the
global array. Whenever one worker pauses and activates another, that replacement
becomes “on top”.

In Concurrent Cilk, paused or ready fibers may also have exposed stealable
continuations, that can be executed in parallel by a thief.7 In terms of prioritizing
different work sources, we conjecture that it remains best to steal from active
workers first. Their working sets are more likely to be in a shared level of cache.
For that reason we only check paused fibers when the active one yields no work.

From a software engineering perspective, leaving the global array of workers in
place and fixed size enables us to avoid breaking a system wide invariant in the Cilk
Plus runtime system, which would require substantial re-engineering. At the same
time, by modifying work-stealing to look deeper inside the list of paused and ready
workers, we retain a liveness guarantee for parallel continuations: If a physical worker
thread is idle, all logically parallel work items are reachable by stealing. Any violation
of this guarantee could greatly reduce the parallel efficiency of an application in
worst-case scenarios.

5.3 Optimized pause/resume interface

7 The original proof of Cilk’s space and time bounds relies on the critical path of the
computation remaining always accessible in this way. Non-uniform probabilities in work-
stealing are a concern to some authors of Cilk.
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Fig. 3. Transitions in the state of a worker.
Disconnected is a temporary invalid state,
which requires either rollback or switching to
a replacement to restore to a good state.

Before proceeding to evaluation, there
is one more implementation issue to
address that can significantly improve
performance. The two-phase pausing
process described above (pause_fiber(),
commit_pause(w)) does not specify where
the current thread yields control to upon
commit_pause for the simple reason that
it always jumps to the scheduler. When
we round-robin threads through a given
core, it is more efficient if one thread can
long-jump directly to the next one.

Like other library interfaces (e.g., Boost smart/intrusive pointers) we provide
both a convenient interface, and a more “intrusive” but performant interface, which
requires that the API client assume more of the responsibility. This takes two forms.

First, as promised, we enable direct longjmp between threads, but at the expense
of replacing commit_pause with a multiple calls in a finer grained interface.

A get_replacement function returns a pointer to the replacement rather than
jumping to the scheduler. This replacement may enter the scheduler but it could also
go directly to another thread. It becomes the client’s responsibility to dispatch to the
replacement with switchto_fiber:

1. raw_pause_fiber(jmp_buf*)

2. get_replacement(worker*, jmp_buf*)

3. switchto_fiber(worker*, worker*) OR
rollback_pause(worker*, worker*)

The protocol is that calling (1) by
itself is fine, but after calling (2), one
of the options in (3) must be called to
restore the worker to a good state (Fig-
ure 3). If the latter (rollback_pause) is
chosen, that simply rolls back the state of the current thread and current worker to
before the call sequence began at (1).

In this API we can also see the second way in which we place additional obligations
on the client: raw_pause_fiber also takes a jmp_buf* argument. The principle here is
the same as with the IVar’s waitlist—each blocked worker has a full stack, so it is
possible to avoid dynamic memory allocation by making good use of this stack space,
including, in this case, stack-allocating the jmp_buf that will enable the fiber to later
resume. Thus all paused stacks store their own register context for later reenabling
them after wakeup_fiber is called. This optimized, fine-grained version of the pausing
API is what we use to implement our current IVar and Cilk IO libraries which we
evaluate in the next section.

6 Evaluation

Because Concurrent Cilk proposes a new API, it is not sufficient to run an existing
suite of Cilk benchmarks. Thus to evaluate Concurrent Cilk we examine each of its
(potential) pros and cons, and design an experiment to test that feature.
– Possible Con: overhead on applications that don’t use Concurrent Cilk.
– Possible Pro: lower fork overhead than eager lightweight threading packages.
– Possible Pro: sync elision – express non-fork-join dependence structures
– Possible Pro: better utilization of cores; no idleness on blocking
– Possible Pro: simpler programming model with uniform construct for spawning

tasks and threads.
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Fig. 4. The overhead of adding Concurrent Cilk to
the Cilk scheduler. The Y axis is the speedup/slow-
down factor (higher better), and the X axis is the
count of benchmarks. Each color represents one of
the benchmarks from the set of regression tests,
and for each benchmark there is a different bubble
for each thread setting, where larger bubbles imply
more threads.
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Fig. 5. The effect of perturbing existing
computational kernels with simulated
network dependencies. We sleep on a
timer (either the OS thread or using
epoll through the Cilk IO library) to sim-
ulate these network dependencies. Per-
turbations are random, and calibrated
to happen for 50% of total CPU time.

In this section, we characterize the overhead of Concurrent Cilk’s extensions to the
Cilk runtime through several scheduling microbenchmarks. We further compare the
performance and scalability of Concurrent Cilk’s blocking, context-switching and
unblocking mechanisms through a performance shootout with other task runtime
systems. The plots include min/max error bars with three trials.

The overhead tests in Section 6.1 and the scheduling microbenchmarks in Sec-
tion 6.2 were run on a Dell PowerEdge R720 node equipped with two 8-core 2.6GHz
Intel Xeon E5-2670 processors (16 cores in total, and hyperthreading enabled) and
32GB memory was used. The operating system used was Ubuntu Linux 12.04.5 with
kernel version 3.2.0. The tests in Section 6.3 were run on a quad socket system with
Westmere Intel Xeon (E7-4830, 24M Cache) processors, each with 8 cores running
at 2.13GHz, hyperthreading disabled. The compiler used was ICC version 13.0.0 on
optimize level 3, on Redhat 4.4.7-3 with kernel version 2.6.32-358.0.1.

6.1 Overhead of Concurrent Cilk modifications

In modifying the Cilk runtime, the first principle is “do no harm”—have we incurred
overhead for existing Cilk programs that do not pause fibers? In order to measure
this overhead, we ran a series of existing Cilk benchmarks both with and without the
Concurrent Cilk code in the runtime, scheduler loop, and work-stealing code path.

– LU Decomp: LU decomposition of a 2048× 2048 matrix.
– Strassen: Strassen’s algorithm for matrix multiplication on 2048× 2048 matrices.
– Black-Scholes: Computes the financial, option-pricing algorithm.
– Knapsack: Solve the 0-1 knapsack problem on 30 items using branch and bound.

The results of these benchmarks, as summarized in Figure 4, show that the slowdown
to regular Cilk programs due to the added functionality of Concurrent Cilk is a
geometric mean of 1.1%, with all but two benchmark configurations of knapsack
showing no overhead throughout – and even then the overhead only happening while



using hyperthreading. Note that in this plot, each different thread setting is considered
a different benchmark instance.

Further, as a variation on these traditional benchmarks, in Figure 5, we inject
simulated network IO into the middle of parallel regions in each program. This models
the situation described at the outset of this paper (e.g., a ray-tracer that has to
fetch network data or do RPCs). The version using the Cilk IO library can hide the
latency of “network” operations, keeping cores busy. Here, cilk_sleep is provided by
the Cilk IO library to block only the fiber, while keeping the core busy, just as with
cilk_read.

What is surprising is that, in the Strassen benchmark, the version that perturbs
Cilk by knocking out a Pthread (true sleep rather than cilk_sleep), slows down
the total runtime by more than would be predicted based on the total volume of
blocked time and compute time. The problem is that with random injection of these
“network” dependencies, sometimes the blocked region increases the critical path of
the program in a way parallelism does not compensate for.

6.2 Scheduling Microbenchmarks

The parallel Fibonacci algorithm (Section 1) is a widely used microbenchmark for
testing scheduler overhead, because it does very little work per spawned function.
Cilk is known for its low-overhead spawns, with good constant factors and speedups
on parallel Fibonacci in spite of the spawn density. Here we use this microbenchmark
in two ways, to perform a shootout with or without using first class synchronization
variables.
Shootout with first-class sync variablesMore general than Cilk’s strictly-nested,
fork-join model is the class of parallel programming models with arbitrary task depen-
dence DAGs and first-class synchronization variables (e.g., IVars, MVars, channels).
After adding IVars, Concurrent Cilk joins that more general family. In this subsection—
before comparing against restricted many-tasking libraries—we first examine this
more expressive class of schedulers by itself. That is, we compare implementations of
parfib in which data is returned only via first-class synchronization variables, and
which every spawned computation is at least potentially a blockable thread. Figure 6
shows this comparison.
Shootout with task runtimes Again, the best-in-class performance for low-
overhead parallel function calls goes to languages and runtimes like traditional Cilk.
Figure 7 shows common task-parallel libraries compared against two different imple-
mentations running on the Concurrent Cilk runtime: the first is a traditional fork-join
parfib running on Concurrent Cilk using cilk_spawn and return results simply with
return/cilk_sync rather than through IVars. The second is the same implementation
of parfib but using IVars—instead of syncs–to enforce data-dependencies.

Note that this graph runs a much larger input size (40 rather than 30), which is due
to the fact that the multi-threading rather than multi-tasking runtimes cannot scale
to nearly the same size of inputs. (In fact, they can exceed maximum-thread limits
and crash!) In this plot we see that while the Concurrent Cilk/IVar implementation
cannot keep up with TBB or traditional Cilk, the gap is much smaller than it would
be with Qthreads, Go, or Haskell threads.

6.3 “Sync elision” and exposing parallelism

In this set of benchmarks we examine the potential effects on performance of en-
abling unrestricted program schedules not normally possible in a strictly fork-join
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model. The most clear-cut example of a place where scheduling is over-constrained
by Cilk is when we have a producer and a consumer separated by a sync. The
producer and consumer may or may not contain enough parallelism to fill the
machine, but because of the cilk_sync, there is no possibility of pipeline paral-
lelism between producer and consumer.8 We examine a simple case of this pipeline
parallelism opportunity: a sequential producer that fills and then reads an array
of 10,000 IVars for 1000 iterations. It takes Cilk 0.6356s, whereas Concurrent
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Fig. 8. A wavefront algorithm ran in two
modes: first, in a divide-and-conquer recursive
structure that divides the matrix into quad-
rants, executing the NW sequentially, and the
NE and SW in parallel. The second mode is to
simply fork a computation for each tile, and let
IVars track the inter-tile data dependencies.

Cilk in this case—which allows simply
deleting the cilk_sync statement—takes
0.3981s making the program 37% faster
by introducing a benevolent producer/-
consumer race condition; if the consumer
gets ahead, it blocks on an unavailable
IVar, allowing the producer to catch up.

It is in this way that the Concurrent
Cilk version of the producer-consumer al-
lows overlapping producing and consum-
ing phases thus improving performance.
This sort of example could be general-
ized to more traditional stream process-
ing by replacing the array of IVars with
a bounded queue.
Exposing more parallelism: Wave-
front The topic of removing syncs to

8 However, the specific, narrow case of linear, synchronous dataflow graphs is addressed by
recent work on extending Cilk with pipeline parallelism via a new looping construct [10].



increase performance has received some previous attention, and in particular the
Nabbit project [3] built an explicit task-DAG scheduler on top of Cilk, demonstrating
its benefits on a wavefront benchmark. Concurrent Cilk is a different tool than
Nabbit in that it allows true continuation capture rather than explicit registration
of callbacks (i.e., a manual form of continuation passing style which is a frequent
source of complaints in, e.g., JavaScript web programming). In Figure 8, we can see
the speedup enabled on a relatively coarse grained wavefront computation (16x16
matrix of inner data structures of size 512x512). Because the granularity is fairly
coarse, there is a shortage of parallelism in this example (which causes us to not speed
up at 16 cores). The fork-join model “wastes” parallelism by adding unnecessary
scheduling dependencies via syncs, whereas the IVar-based version retains all the
application-level parallelism.

6.4 Servers with per-client parallel compute

A server that performs computations on behalf of a client can be an instance of nested
parallelism: (1) Parallelism between clients (“outer loop”), and (2) Parallelism within
the requested work for one client (“inner loop”).

To be robust against both extremes—a single client with a large work item, and
many small client requests—the Cilk approach to nested data parallelism would
seem ideal. However, there’s a drawback. In the server case, the outer loop includes
blocking communication: to accept client connections, and then to send data to and
receive data from each client.

Table 1. Throughput for different numbers of
clients for alternate server implementation strate-
gies at differing server workloads.

variant # conc work-per throughput
clients request (requests/s)

pthread/seq 1 fib(40) 2.53
4 fib(40) 9
8 fib(40) 18

cilk/cilk 1 fib(40) 33
4 fib(40) 33
8 fib(40) 35

conc cilk/cilk 1 fib(40) 35
4 fib(40) 35
8 fib(40) 35

pthread/seq 8 fib(30) 1891
cilk/cilk 8 fib(30) 1690

conc cilk/cilk 8 fib(30) 1656
pthread/pthread 1 fib(30) 0.48

4 fib(30) 0.12
8 fib(30) died

The simplest way to program
such a server is to use the
same mechanism for parallelism at
both levels: either pthread_create

or cilk_spawn. Yet both of these
implementations expose a problem.
Forking too many pthreads can
slow down or crash the application,
whereas traditional Cilk spawns do
not prevent underutilization when
blocking calls are made (and block-
ing calls underneath a cilk_spawn

can even be seen as a semantically
incorrect contract violation).

In this experiment, we use an
arbitrary parallel workload as the
per-client request: compute parallel
fibonacci of 40 or 30, bottoming out
to a sequential implementation be-
low fib(10), and taking about 600ms and 4ms, respectively, when executed on one
core. The important thing is that there is enough work to keep all cores busy, even
with a single concurrent client.

We consider different strategies corresponding to how the outer/inner loop is
handled. Thus “Conc cilk/cilk” uses Concurrent Cilk spawns at both levels, with
cilk_accept, cilk_recv, and cilk_send in place of the regular system calls. In con-
trast, “cilk/cilk” uses spawn at both levels, but regular system calls (i.e. it makes



no use of Concurrent Cilk). Likewise “pthread/seq” spawns one pthread per client,
but runs the inner computation sequentially. As we see in Table 1, pthread/seq is a
perfectly reasonable strategy when there are enough clients. But when there is only a
single client at a time, Cilk variants perform much better because they can utilize all
cores even for one client. Likewise, Concurrent Cilk narrowly beats Cilk (35 vs. 32
requests per second), based on keeping all cores utilized. Of course, “pthread/pthread”
cannot scale far due to limitations in OS thread scaling.

7 Related Work
In this section we consider Concurrent Cilk in the context of recent languages designed
with concurrency/parallelism in mind: e.g. Go [8], Manticore [5], Concurrent ML [16],
and Haskell. Haskell IO threads, for example, share one or more OS threads unless a
blocking foreign function call is encountered [12], in which case more OS threads are
recruited on demand. Likewise,“goroutines” in Go will share a fixed number of OS
threads unless a thread makes a blocking call. Like the classic Stein and Shaw 1992
system, these systems eagerly create thread contexts upon spawning.

They specialize the stack representation, however. For example Go uses a seg-
mented stack representation, heap-allocating a small stack to start and growing as
needed [8]. Thus, Go and Haskell (and Manticore, CML, etc) can spawn hundreds of
thousands or millions of threads. Specifically, Go or Haskell can execute parfib(30)—
using a forked thread in place of cilk_spawn, and a channel to communicate results
back—in 4.7s and 3.1s respectively on a typical desktop.9 This represents 1.3 million
forked threads. But the programs also take 2.6Gb and 1.43Gb of memory, respectively!
Also, as seen in Figure 6, Concurrent Cilk supports the same program with the same
semantics (first class sync vars and suspendable threads) at much higher performance.

MultiMLton—a whole program compiler for a parallel dialect of SML—is a recent
system which employs a lazy thread creation technique called parasitic threads [18].
These leverage relocatable stack frames to execute forked threads immediately inside
the callers stack, moving them lazily only if necessary. This technique is effective, but
not applicable to C/C++ where stack frames are non-relocatable.

8 Conclusions and Future Work
We have shown how, even with the constraint of legacy language support (C/C++
with linear stacks) and the complications of a mature parallel runtime system (Cilk
Plus), lazy thread creation can still be an appealing prospect. Implementing it for
Cilk Plus required only a couple points of contact with the existing scheduler code.
Most of the complexity falls in higher level libraries, such as our IVar and Cilk IO
libraries.

In future work, we plan to continue building high-level concurrent data structures
and control constructs on top of the simple pause/resume fiber interface. As we saw
in Section 6, IVars are already sufficient to speed up some programs with data-driven
control-flow in a non-fork-join topology, and the Cilk IO library is sufficient to build
server applications that mix concurrency and implicit parallelism.

9 Using all four cores of an Intel Westmere processor (i5-2400 at 3.10GHz), 4Gb memory,
Linux 2.6.32, GHC 7.4.2 and Go 1.0.3.
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Interactive Composition Of Compiler
Optimizations ?

Brandon Nesterenko Wenwen Wang Qing Yi

University of Colorado, Colorado Springs

Abstract. Conventional compilers provide limited external control over
the optimizations they automatically apply to attain high performance.
Consequently, these optimizations have become increasingly ineffective
due to the difficulty of understanding the higher-level semantics of the
user applications. This paper presents a framework that provides inter-
active fine-grained control of compiler optimizations to external users
as part of an integrated program development environment. Through
a source-level optimization specification language and a Graphical User
Interface (GUI), users can interactively select regions within their source
code as targets of optimization and then explicitly compose and config-
ure how each optimization should be applied to maximize performance.
The optimization specifications can then be downloaded and fed into a
backend transformation engine, which empirically tunes the optimiza-
tion configurations on varying architectures. When used to optimize a
collection of matrix and stencil kernels, our framework was able to attain
1.84X/3.83X speedup on average compared with using icc/gcc alone.

1 Introduction

As software applications continue to become more complex and difficult to an-
alyze, compilers have to be increasingly conservative and refrain from many
optimization opportunities, due to the lack of sufficient understanding of their
input code. While developers are allowed some control over various strategies
adopted by compilers through command line options, these controls are limited
to very high level instructions, e.g., whether to attempt -O1, -O2, or -O3 opti-
mizations. The internal decisions within the compiler are kept entirely away from
developers. Although developers can insert pragmas into their code to guide op-
timizations of specific code regions, these pragmas are not always respected, as
the compiler makes the correctness guarantee of the compiled code a top priority.

It is well known that compiler optimizations are generally over-conservative,
not only because of the difficulty of understanding the higher-level semantics
of an input code via static program analysis, but also because of the unpre-
dictable interactions among the optimizations as the compiler tries to manage
the increasingly large collection of machine resources, e.g., registers, caches, and

? This research is funded by NSF through award CCF1261811, CCF1421443, and
CCF1261778, and DOE through award DE-SC0001770



shared memories, of the evolving modern architectures. In short, compilers need
to allow developers to help more, especially when they are experts of high per-
formance computing. By allowing developers to exert more deliberate and fine-
grained control over compiler optimizations, their code may be more intelligently
optimized without compromising program correctness.

This paper presents an integrated program development environment that
provides compiler optimizations as an interactive toolset for developers to con-
veniently improve the efficiency of their applications. Our environment supports
extensive parameterization for a set of available optimizations, fine-grained co-
ordination among the optimizations once selected to optimize a piece of source
code, and the empirical tuning of optimization configurations based on runtime
feedback of differently optimized code. The objective is to provide a convenient
interface for developers to control the optimization decisions without compro-
mising the correctness or readability of their code.
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Fig. 1: The optimization workflow

Figure 1 shows the overall workflow
of our interactive environment, which in-
cludes three main components. The first
component is a web-based Graphical User
Interface (GUI), which a developer can
use to select regions of their source code
to optimize, potentially profitable opti-
mizations for each selected region, and
the configuration of each optimization.
Annotations are then inserted into the
source code to tag the selected regions as
optimization targets, and the optimiza-
tion decisions are encoded in a very high
level (VHL) specification language and
passed to an Optimization Synthesis com-
ponent, which converts the VHL specifi-
cation into a lower-level implementation
encoded using the POET program trans-
formation language [18]; The POET Transformation Engine component then
interprets the lower-level POET script to generate an optimized variant of the
annotated input source code. The developer may then test the performance gain
of the optimizations and repeat the process until satisfactory performance is
attained. The POET optimization script can be ported to different machines
together with an annotated input program generated by the GUI. The POET
transformation engine, easily installed on each machine, can then provide empiri-
cal tuning support by automatically interpreting the POET scripts with different
optimization configurations until satisfactory performance is achieved.

Our environment currently supports a number of source-level loop and data
layout optimizations, including OpenMP parallelization, loop distribution, fu-
sion, interchange, skewing, blocking, unroll&jam, unrolling, array copying, and
scalar replacement, which are known to be machine sensitive and to interact



with one another in unpredictable ways. The key technical challenges addressed
by our environment while interactively integrating these optimizations include:

– Extensive parameterization of optimizations: each optimization can be in-
dependently toggled on/off for each code region and associated with an ar-
bitrarily large configuration space, e.g., cache/parallelization/register block-
ing factors. Fine-grained coordination among the optimizations is inherently
supported through careful ordering of the selected optimizations and tracing
of the code regions being modified.

– Programmable composition of extensively parameterized optimizations: the
automatically generated POET output serves as an optimization script that
intelligently composes the user-selected optimizations one after another while
eliminating potential risks of unpredictable interactions among them.

Auto-tuning of the optimized code is supported using the extension of a previ-
ously developed transformation-aware search algorithm [19]. On two machines,
we have used the environment to optimize six scientific kernels and have attained
1.84X/3.83X speedup compared to using a vendor compiler alone.

The rest of the paper is organized as follows. Section 2 introduces our GUI
for supporting interactive optimization selection and configuration. Section 3 in-
troduces the POET transformation engine and how it can be used support the
programmable control and flexible composition of the optimizations. Section 4
presents our optimization synthesis component, which automatically converts
VHL specifications into a POET optimization script tailored for the user ap-
plication. Experimental evaluation is presented in Section 5. Section 6 discusses
related work. Finally, conclusions are drawn in Section 7

2 The Graphical User Interface

Developed to allow interactive selection and customization of compiler opti-
mizations, our web-based GUI is implemented in JavaScript and HTML, with
an Apache and PHP backend. The interface allows a user to upload an arbi-
trary number of files either as the source code of an application, optionally with
previously selected regions of code annotated as optimization targets, or as an
existing VHL specification saved from previous runs of the GUI to optimize some
selected regions of the source code. For each uploaded source code, a user can se-
lect desired regions of code as targets of optimization, and customize the desired
optimizations for each selected target. Then, the GUI automatically inserts code
annotations that tag the selected optimization targets into the source and then
generates a VHL specification from the user’s customization. Both the annotated
source code and VHL specifications can be downloaded and saved by the user for
future use. At any time, the user can instruct the GUI to pass the active source
code and its VHL specification to the optimization synthesis and POET trans-
formation components in the background, to generate optimized source code on
the fly to be examined and experimented with by the user. Both the optimized
source code and the auto-generated POET scripts can also be downloaded at
any time as desired by the user.



Fig. 2: Interacting with the user

Figure 3(a) shows the VHL spec-
ification that the GUI automatically
generated for the matrix-multiplication
kernel shown in Figure 4(a). The se-
quence of interactions between the user
and the GUI to generate the VHL
specifications is shown in Figure 2.
The process starts with the user up-
loading a source code file (e.g. Fig-
ure 4(a)) to optimize. The uploaded file
is then automatically parsed and ana-
lyzed by the GUI, which displays the
code back to the user on the main panel
of the web-page with potential opti-
mization targets, e.g., nested loops and
array references, highlighted. If an ex-
isting VHL specification is uploaded,
each pre-specified optimization is vali-
dated, and the valid optimizations are
added into the optimization configura-
tion panel. The user can select high-
lighted code regions by clicking on the highlighted text and then providing a
name to tag the selected optimization target. Once the targets have been identi-
fied, optimizations may be constructed. The user can interact with two HTML
pick-lists to create each optimization: the first pick-list is comprised of all user-
defined optimization targets, and the second holds all supported optimizations.
Once the target and optimization have been selected, a new optimization auto-
matically appears in the optimization configuration panel, with a set of addi-
tional parameters to be further customized when the user clicks the optimiza-
tion’s “Edit” button. A majority of parameters are initially set to default values
and can be automatically tuned later to suit the needs of user applications. If a
user specifies out-of-range values for any parameters, the GUI will immediately
display an error message on the screen.

Our framework allows developers to experiment with an assortment of opti-
mizations as a toolbox without requiring detailed knowledge of the optimizations.
When a set of optimizations is ready for testing, an “Apply Optimizations” but-
ton is clicked to start the automated process. The GUI first encodes the selected
optimizations into the VHL specification language. It then passes the specifi-
cation and source code to the Optimization Synthesis and POET Translation
Engine components, with a logging panel displaying their working status. If the
optimizations are successfully applied, the optimized source code is displayed
on the main panel of the GUI. At this point the optimized source code and its
VHL specifications are immediately available for download, allowing the users
to save, examine, and test them for correctness or profitability. In the event that
the optimized source code is unsatisfactory, the user can move back to the origi-



Nests: N1, N2, N3, N4
PermuteLoops:inner_loop=N3 target=N2

order="3,1,2"
FuseLoops: loop_to_fuse=N1 target=N2
FuseLoops: loop_to_fuse=N1 target=N4
ParallelizeLoop: target=N2

private=j,k,i
BlockLoops: inner_loop=N3 target=N2

factor=32,32,32

1: include opt.pi
2: <parameter N2_blk_sz default=(32 32 32) />
3: <parameter N2_par_blk_sz default=(256) />
4: <trace inputCode,N1,N2,N4,N3 />
5: <input from="mm.c" syntax="Cfront.code" to=inputCode/>
6: <trace N2_cleanup=(N2) /> <trace N2p=(N2_cleanup) />
7: <trace N2_private = (("j" "k" "i")) />
8:......
9:<eval EraseTraceHandle[repl=N2p](N2,inputCode);
10: PermuteLoops[order=(3 1 2)](N3[N.body],N2);
11: FuseLoops(N1,N2);
12: FuseLoops(N1,N4);
13: BlockLoops[factor=N2_par_blk_sz](N2p[Nest.body],N2p);
14: ParallelizeLoop[private=N2_private](N2p);
15: TraceNestedLoops(N2_cleanup,N2p[Nest.body]);
16: BlockLoops[factor=N2_blk_sz;

trace_ivars=N2_private](N3,N2);
17: CleanupBlockedNests(N2_cleanup); />
18: <output syntax="Cfront.code" from=inputCode />

(a) VHL specification (b) auto-generated POET script

Fig. 3: Applying loop optimizations to a matrix-multiplication kernel

nal source code and VHL specification to start over. Multiple files are supported
by the GUI, with an HTML pick-list holding the names of all uploaded source
files. As each file is selected in this pick-list, its content is displayed on the main
panel, along with its previously configured optimizations in the optimization
configuration panel.

3 The POET Transformation Engine

POET is a scripting language [20, 18] designed to support programmable con-
trol and flexible composition of heavily parameterized compiler optimizations.
As shown in Figure 1, the transformation engine includes two components: the
POET language interpreter, and an empirical search engine. The POET inter-
preter takes three inputs: the POET script describing what optimizations to
apply, an annotated source code of the input program to optimize, and config-
urations of the optimization parameters. It then applies the desired optimiza-
tions and generates an optimized code. The empirical search engine [19], on
the other hand, automatically explores the configuration space of the optimiz-
ing transformations and iteratively experiments with differently optimized code
until satisfactory performance is attained. This empirical tuning support allows
the optimized code to be automatically ported to different platforms without re-
quiring the user to set the best optimization configurations. Both the language
interpreter (together with its optimization libraries in POET) and the search
engine are lightweight and can be easily ported to different machines, thereby
supporting the performance portability of applications optimized through our
interactive GUI.

Figure 3(b) illustrates the auto-generated POET optimization script from
the VHL specification in (a). The inclusion of file opt.pi at line 1 in the script



ensures that the POET opt library, which supports a large number of compiler
optimizations, can be invoked by the given script. Lines 2-3 declare configuration
parameters (blocking factors) of the optimizations to be empirically tuned by
the search engine. Line 4 declares 5 special global variables (inputCode, N1 -
N4) called coordination handles [21], which have been used to tag various frag-
ments of the input code, as these code fragments are used either as the targets or
additional configuration parameters of the selected optimizations. These coordi-
nation handles are embedded inside the input code, illustrated in Figure 4(a)-
(e), to automatically keep track of modifications to their content as the input
code goes through each of the optimizations in the VHL specification. Line 5
parses the matrix multiplication code using C syntax descriptions specified in
file Cfront.code and then stores the resulting AST to the coordination handle
inputCode. Lines 6-7 declare two additional coordination handles, similarly em-
bedded in the input code illustrated in Figure 4(a)-(e). Lines 9-17 serve to apply
the 5 optimizations specified in the VHL specification one after another, by using
the 7 coordination handles (declared at lines 4, 6, and 7) and the tuning param-
eters (declared at lines 2-3) as parameters to invoke the underlying optimization
implementations from the POET opt library. Each optimization modifies these
handles to coordinate their transformations of the input code. Finally, the output
command at line 18 unparses the optimized AST to standard output.

4 Optimization Synthesis

The optimization synthesis component automatically translates a VHL specifi-
cation obtained from the GUI, e.g., Figure 3(a), into a POET script that the
POET Transformation Engine can use to systematically optimize the selected
targets embedded inside the user application by the GUI. Our algorithm in Fig-
ure 5 shows the steps taken for this process. As illustrated in Figure 3(b), the
resulting POET script needs to correctly perform the following tasks.

1. Parameterization of the optimizations: due to the difficulty of predicting the
potential interactions among the optimizations and the characteristics of the
machines that the input application may be ported to, all machine-sensitive
optimizations need to be parameterized, so that their configurations can be
empirically tuned later by the POET transformation engine.

2. Collective customization of the optimizations: since the user can select many
optimizations for each region of code, the individually configured optimiza-
tions must be collectively customized to maximize their overall effectiveness.

3. Fine-grained coordination among optimizations: since the optimizations in
the VHL specification must be applied one after another in the POET script,
an earlier optimization may modify the input to such a point that a later
one can no longer be applied correctly, unless all optimizations carefully
coordinate with one another at every step.

To address the above challenges in a fully extensible fashion so that it can be
easily made to include more optimizations in the future, our algorithm uses five



inputCode:{
void gemm(double *a,double
1: *b,double *c,double t,int n)
2: {
3: int i,j,k;
4: {N1:{for (j=0; j<n; j ++)
5: for (i = 0; i < n; i ++)
6: c[j*n+i] = t*c[j*n+i];}
7: N2p:{N2 cleanup:{N2:{

for (k=0; k<n; k++)
8: N4:{for (j=0; j<n; j++)
9: N3:{for (i=0; i<n; i++)
10: c[j*n+i] +=

a[k*n+i] * b[j*n+k]; }}}
11: }}

(a) original code

inputCode:{
void gemm(double *a,double
1: *b,double *c,double t,int n)
2: {
3: int i,j,k;
4: N1:{for (j = 0; j < n; j ++)
5: for (i = 0; i < n; i ++)
6: c[j*n+i] = t*c[j*n+i];}
7: N2p:{N2 cleanup:N2:{

for (j=0;j<n;j++)
8: N4:{for (i = 0; i < n; i ++)
9: N3:{for (k=0; k<n; k++)
10: c[j*n+i] +=

a[k*n+i] * b[j*n+k]; }}}}
11: }}

(b) after loop permutation

inputCode:{
void gemm(double *a,double
1: *b,double *c,double t,int n)
2: {
3: int i,j,k;
4: N2p:{N2 cleanup:N2:{

for (j=0;j<n;j++)
5: N4:{for (i=0; i<n; i++) {
6: N1:{c[j*n+i]=t*c[j*n+i];}
7: N3:{for (k=0; k<n; k++)
8: c[j*n+i] +=

a[k*n+i] * b[j*n+k]; }
9: }}}}
10: }}

(c) after loop fusion

inputCode:{
void gemm(double *a,double
1: *b,double *c,double t,int n)
2: {
3: int i,j,k,i1,j1,k1;
4: N2p:{#pragma omp for private(j1,j,i,k)
5: for (j1 = 0; j < n; j +=256)
6: N2 cleanup:{
7: N2:{for (j=0; j<min(256,n-j1); j++)
8: N4:{ for (i = 0; i<n; i ++) {
9: N1:{c[j*n+i]=t*c[j*n+i];}
10: N3:{for (k=0; k<n; k++)
11: c[j*n+i] +=

a[k*n+i] * b[j*n+k]; }
12: }}}}
13: }}

(d) after loop parallelization

inputCode:{
void gemm(double *a,double
1: *b,double *c,double t,int n)
2: {
3: int i,j,k,j1,k1,j2,i1;
4: N2p:{#pragma omp for private(j1,j,i,k,j2,i1,k1)
5: for (j1 = 0; j < n; j +=256)
7: N2 cleanup:{
8: N2:{for (j2=0; j2<min(256,n-j1); j2+=32)
9: N4:{for (i1 = 0; i1<n; i1+=32)
10: N3:{for (k1=0; k1<n; k1+=32)
11: for (j=0; j<min(32,n-j1-j2); j++)
12: for (i=0; i<min(32,n-i1); i++) {
13: if (k1 == 0)
14: N1:{ c[(j1+j2+j)*n+(i1+i)] =

t*c[(j1+j2+j)*n+(i1+i)]; }
15: for (k = k1; k<min(k1+32,n); k ++)
16: c[(j1+j2+j)*n+(i1+i)] +=

a[(k1+k)*n+(i1+i)] * b[(j1+j2+j)*n+(k1+k)];
17: } }}}}}
18: }}

(e) after loop blocking

Fig. 4: Optimized code from Optimization specifications

configuration tables, summarized in the following, to save all information about
the optimizations currently supported.

4.1 Configuration Tables

As shown at the beginning of Figure 5, our GenOptScript algorithm requires six
input parameters, including the VHL specification (spec), alongside the following
five extensible configuration tables, which save all the relevant information about
the optimizations currently supported by our environment.

The optimization table (named opt table in Figure 5): indexed by the opti-
mization names, this table stores the interface of each optimization and cate-
gorizes its parameters into three groups: the required input parameters, whose
values must be supplied by the VHL specification; the optional parameters, each
of which has a default value if not part of the VHL specification; and tuning pa-
rameters, which represent machine-sensitive configurations of the optimization
and need to be empirically tuned.



GenOptScript(spec, opt table, param table, cleanup table, group table, interfere table)
1: if not verify correctness(spec,opt table,param table) then report error endif
2: /* coordination handles */handles=lookup optimization targets(spec);

/*tuning parameters*/ tuning=∅; /* opt invocations*/ xforms = ∅; cleanup = ∅;
3: for each f = (opt name, opt target, opt config) ∈ spec do
3.0: opt table spec = lookup opt params(opt table, opt name);
3.1: /* collect tuning parameters of the opt */

for each (p name, p type) ∈ opt table spec where p type is a tuning parameter do
tune name=concat(p name, opt target); tune info = lookup param info(param table,p name);
tuning = tuning ∪ { gen tuning decl(tune name, tune info)};
opt config = opt config ∪ { gen opt config(p name, tune name)};

3.2: /* collect any cleanup invocation required */
for each clnup opt ∈ lookup cleanup spec(cleanup table, opt name) do

append opt(cleanup, instantiate(clnup opt, opt config), group table);
3.3: /* categorize loop handles into groups */

grp idx = lookup group index(group table, opt name);
for each (p name, p type) ∈ opt table spec where p type requires a coordination handle do

p val = lookup value(opt config, p name)
if p val != null then

new val = gen group handle(p val, grp idx); modify value(opt config, p name, new val);
handles = append handles(handles, new val, grp idx);

3.4: /* generate fix-up invocations to accommodate interferences*/
insert before = insert after = ∅;
for each unprocessed opt g = (opt name 2, opt target, opt config 2) ∈ spec ∪ cleanup do

(new params, opt before, opt after) = lookup fixup(interfere table, opt name, opt name2);
opt config = opt config ∪ { instantiate(new params, opt config, opt config 2) } ;
append opt(insert before, instantiate(opt before, opt config, opt config 2), group table);
append opt(insert after, instantiate(opt after,opt config,opt config 2), group table);

cur opt = concat(insert before, gen opt invoke(opt name,opt target, opt config), insert after);
3.5: append opt(xforms, cur opt, group table);
4: return gen POET script(tuning, handles, xforms, cleanup);

Fig. 5: Optimization synthesis algorithm

The parameter table (named param table in Figure 5): indexed by the name
of each parameter that may be used to configure an optimization, this table
saves the semantics of the parameter irrespective of where it is used, including
the range of acceptable values, its default value if unspecified in the VHL, and
whether grouping is required if the parameter needs to be coordinated when
multiple optimizations are applied to a single code region.

The cleanup table (named cleanup table in Figure 5): indexed by the opti-
mization names, this table defines any additional followup operations that are
required at the end of the POET script for each optimization, if the optimization
is in the VHL specification. For example, if either loop blocking or unroll&jam
are to be applied, the cleanup table specifies additional loop splitting operations
to clean up expensive conditionals inside of the optimized loops.

The grouping table (named group table in Figure 5): indexed by the optimiza-
tion names, this table assigns each optimization to a group uniquely identified by
an integer (group idx), which when combined with the values of an optimization
configuration parameter, uniquely identifies a coordination handle to be created
and used by the optimization. To elaborate, each configuration parameter of an
optimization requires a coordination handle to keep track of interferences from
other optimizations. Optimizations of the same group can have their parameters
share the same handle, if the parameters have the same value in the VHL. The



group indices are further used as ordering constraints of the optimizations when
they are appended to the final POET output at Steps 3.2 and 3.4 of Figure 5. In
particular, optimizations targeting the same handle are ordered by the contain-
ment relationship of their optimized code: OpenMP parallelization is done first,
whose optimized code contains those of additional cache reuse optimizations,
which generate code that in turn is used as input to CPU-level optimizations.

The interference table (named interfere table in Figure 5): indexed by pairs
of optimization names, this table specifies how to resolve interferences between
each pair of optimizations through two remedies: by directly modifying the con-
figuration of the interfering optimization (e.g., by modifying the private variables
of OpenMP parallelization after new local variables are created), and by insert-
ing additional POET instructions to adjust the coordination handles, before or
after the interfering optimization.

4.2 The Algorithm

Using the five configuration tables described above, our optimization synthesis
algorithm translates a VHL specification into a lower-level implementation using
the inherit support of optimization parameterization and fine-grained coordina-
tion supported by the POET language [17] through the following steps.

Input validation (Steps 1 and 2 of Figure 5) The algorithm starts by
verifying the consistency of the input VHL specification against information
obtained from the opt table and the param table (Step 1). Specifically, the algo-
rithm verifies that all the required parameters for each optimization have been
given a valid value, and all constraints between values of different parameters
are satisfied. Then (Step 2), it initializes the four components of the final POET
output: the declarations of all tuning parameters (tuning), the declarations of all
coordination handles (handles), the list of POET invocations to be translated
from the VHL specification (xforms), and the list of follow-up POET operations
required to clean up the optimizations (cleanup). The validation provided by
our GUI is purposefully limited to allow the developer to circumvent any over
conservativeness by a conventional compiler as long as the manually specified
optimizations can be carried out in a meaningful fashion, as enforced by the
checking of optimization parameters.

Parameterization of the optimizations (Steps 3.0 and 3.1) For each op-
timization in the VHL specification, Step 3.0 obtains its parameter specifications
from the opt table. Step 3.1 then identifies all the parameters that need to be
empirically tuned, adds a new global variable declaration for each found tun-
ing parameter, and then uses these tuning variables to customize (through the
opt config variable) the optimization from the VHL specification. These tuning
variables are declared at line 2-3 of the example POET output in Figure 3(b)
and are used to customize the later optimizations at lines 10-17. If a value is
given to the tuning parameter in the VHL specification, the specified value is
used; otherwise, a default value obtained from the param table is used.



Collective customization of the optimizations (Steps 3.2 and 3.5) The
customization of the optimizations includes two aspects: the addition of any
followup operations to be included in the final POET output, obtained from
the cleanup table for each optimization specified in the VHL at Step 3.2; and
the adoption of predefined ordering of the optimizations, obtained from the
group table and enforced by the append opt invocation at steps 3.2 and 3.5.
Optimizations that belong to the same group are ordered as they appear in the
original VHL specification. For example, the final POET output in Figure 3(b)
contains the additional optimization CleanupBlockedNests to cleanup after the
BlockLoops optimization in the VHL specification, and all the optimizations
are ordered so that loop parallelization is applied first, followed by cache-level
optimizations (e.g., loop permutation and blocking), which are in turn followed
by CPU-level optimizations (e.g., loop unroll&jam and unrolling).

Fine-grained coordination (Steps 3.3 and 3.4) As the optimizations must
be applied one after another in the POET script, each optimization must care-
fully coordinate with the others in the POET output. Our algorithm automati-
cally supports such coordinations through two steps. First, in Step 3.3, it creates
a coordination handle for each configuration parameter that may be affected by
other optimizations. Then, in Step 3.4, it inserts POET operations to adjust the
values of all the affected coordination handles as each optimization is applied.

Since multiple optimization parameters may refer to the same piece of input
code, their coordination handles need to be carefully managed so that their
nesting relationships will not change irrespective of how many optimizations
have been applied. In particular, our group table organizes all the optimizations
into distinct groups, with each group identified by a unique integer index, based
on two constraints: (1) the parameters of all optimizations in the same group
can share a single coordination handle if the parameters refer to the same piece
of input code in the VHL specification, because their values will always remain
the same; and (2), if two optimizations belong to distinct groups (e.g., loop
blocking and loop unroll&jam), and some of their parameters refer to the same
piece of input code in the VHL specification (e.g., both operating on the same
target), then the optimization with the larger group index will always have a
coordination handle that contains that of the smaller group index. This handle
composition process is enforced by the append handles operation in Step 3.3.

Figure 3(b) shows the handle grouping and composition results for the VHL
specification in Figure 3(a). Here two additional coordination handles, N2 cleanup
and N2p, are created at lines 6 to be nested outside of the original optimiza-
tion target N2 from the VHL. ParallelizeLoop has the highest group index and
therefore is configured with the outermost coordination handle, N2p. Next, the
cleanup optimization required for loop blocking causes yet another coordination
handle, N2 cleanup, to be created and nested inside N2p, but outside of N2.
PermuteLoops, FuseLoops, and BlockLoops belong to a single group that has
the lowest group index, therefore sharing the handle created to trace the original
optimization target. Figures 4 (b)-(e) illustrate how these coordination handles
adjust as the input code is modified by each optimization specified.



The actual adjustment of the coordination handles are implemented by POET
operations inserted by Step 3.4 of the algorithm, which looks in the interference
table to identify what coordination is required for each pair of optimizations
from the VHL specification or the cleanup operations to be inserted. Then, the
coordination is applied either through direct modification of the optimization
configurations or through POET operations inserted before or after the interfer-
ing optimization to adjust affected coordination handles.

Two interferences exist in the VHL specification from Figure 3(a). The first
occurs between ParallelizeLoop and BlockLoops and is accommodated by insert-
ing the trace ivars configuration for BlockLoops at line 16 of Figure 3(b), so that
new local variables created by BlockLoops are included as private variables of the
OpenMP pragma. The second interference occurs between the ParallelizeLoop
and the auto-generated CleanupBlockedNests and entails line 13 to be inserted
before ParallelizeLoop to stripmine the loop being parallelized into two nested
ones, so that the inner one can be used as target for additional single-thread
optimizations, by moving the N2 cleanup handle to the inner loop at line 15.

Outputting the result (Step 4) After obtaining all the necessary compo-
nents, the final POET script is generated by simply putting everything together.

5 Experimental Evaluation

While our environment currently supports only a limited number of loop and ar-
ray optimizations, shown in Table 1, our hypothesis is that when explicitly spec-
ified, the impact of these optimizations can be enhanced significantly through
collective customization, fine-grained coordination, and empirical performance
tuning, especially when a compiler fails to automatically recognize opportunities
of applying some of them due to insufficient understanding of the input code.

To validate our hypotheses, we used our environment to interactively specify
optimizations for six matrix and stencil computation kernels, shown in Table
1. All kernels are implemented in C/C++ in a form that is easy to analyze, as
illustrated in Figure 4(a). For each kernel, we selected the optimizations that can
be safely applied to potentially improve its performance and relied on the empir-
ical tuning support by the backend POET transformation engine to determine
the best configurations. Three implementations are generated for each kernel:
an ICC/GCC version, generated by using the vendor compiler (icc or gcc) to
optimize the original code (with the -O3 flag); a GUI-Default version, generated
by additionally applying optimizations interactively specified through our envi-
ronment, using a default configuration for each optimization; and a GUI-Tune
version, which further employs empirical tuning to find the best GUI-specified
optimization configurations.

All kernels are evaluated on two platforms shown in Table 2, with the ma-
chines kept otherwise idle while running the experiment. Each evaluation is re-
peated 10 times, and the average elapsed time of running each kernel imple-
mentation is used to compute its GFLOPS (billion floating point operations per
second). The variation among different runs is less than 10%.



Kernel Description Data Size Interactive Optimizations

dger Rank one update 102402 ParallelizeLoop, BlockLoops,
UnrollJam, ScalarRepl, UnrollLoop

dgemm dense matrix-matrix multiplication 12802
PermuteLoops, FuseLoops,
ParallelizeLoop, BlockLoops,
UnrollJam, ScalarRepl

dgemvN dense matrix-vector multiplication 102402 ParallelizeLoop, BlockLoops,
UnrollJam, UnrollLoop

dgemvT
dense matrix-vector multiplication with
transpose

102402 ParallelizeLoop, BlockLoops,
UnrollJam, UnrollLoop

jacobi7 3D 7-point Stencil 1283 ParallelizeLoop, BlockLoops,
SkewLoops

vmult Sparse matrix-vector multiplication 51202 ParallelizeLoop

Table 1: Kernels used for experiments

CPU
Intel(R) Xeon(R) CPU E5-2420
1.90 GHz, 12 Cores

AMD Opteron(tm) Processor 6128
2.00 GHz, 24 Cores

Cache

L1-Data 32 KBytes 64 KBytes
L1-Instruction 32 KBytes 64 KBytes
L2-Private 256 KBytes 512 KBytes
L3-Shared 15360 KBytes 5118 KBytes

Main Memory 16 GiB 64 GiB
Operating System CentOS 6.6, Linux 2.6.32 Ubuntu 14.04.2, Linux 3.13.0

Compiler icc 15.0.0 with -O3 flag gcc 4.8.2 with -O3 flag

Table 2: Machine configuration

Figure 6(a) compares the performance of the differently optimized versions
on the Intel platform. Even without empirical tuning, the additional optimiza-
tions applied by our environment were able attain 1.43X speedup on average for
the kernels, and empirical tuning is able to further boost the average speedup
to a factor of 1.84. An interesting observation is that without empirical tuning,
the performance of the GUI-Default-ICC version for the kernel jacobi7 did not
improve the performance of the original version, while with tuning we were able
to attain 2.48X better performance. Since many of the optimizations we cur-
rently support are heavily machine sensitive, it is important to use the proper
configurations to attain the desired performance improvement. The best speedup
of 3.5X for the GUI-Tune-ICC version is attained for the dgemm kernel, which
performs an order of N3 computations on N2 data. Here BlockLoops can signif-
icantly improve the performance by reusing the data already brought in cache,
thereby changing the kernel’s behavior from memory-bound to CPU-bound. For
the other kernels, e.g., dger and vmult, which are fundamentally memory bound
due to the lack of data reuse, our optimizations are not very effective and are
able to attain only 1.05X speedup for dger and 1.17X speedup for vmult.

Figure 6(b) shows our evaluation results on the AMD platform. Here, every
kernel, when optimized using our interactive environment, was able to attain
significantly better performance when compared to using the gcc compiler alone.
On average, our environment was able to attain 3.14X performance improvement
over the original version with the default configurations of the optimizations,
and empirical tuning was able to attain 3.83X additional speedup. Specifically,
it attained an extra performance improvement of up to 8.67X and 5.28X for the
dense matrix computation kernels dgemvN and dgemm respectively and a 1.9X
improvement for the vmult kernel with the GUI-Tune-GCC version.



(a) ICC -O3 on Intel platform (b) GCC -O3 on AMD platform

Fig. 6: Evaluation results of GUI

6 Related Work

Existing research has developed a large collection of compiler optimizations to
automatically improve the performance of scientific applications [6, 7, 16, 1, 3].
Many of these optimizations can be naturally parameterized, e.g, loop block-
ing [10], fusion [11], unrolling [12], and software pipelining [8]. Cohen, et al. [3]
used the polyhedral model to parameterize the composition of loop optimiza-
tions. Our framework supports many of these optimizations, with parameterized
configurations, and aims to make them available as a toolset for interactive use
by developers to attain portable high performance.

The importance of facilitating effective communication between optimizing
compilers and developers has been well-recognized. Hall et al.[5] allows develop-
ers to provide a sequence of loop transformation recipes to guide optimizations
by their compiler. The X language [4] uses C/C++ pragmas to guide the ap-
plication of a collection of loop- and statement-level optimizations. Our work
similarly provides direct access of compiler optimizations to the developers. Our
framework provides additional support for interactive selection, extensive pa-
rameterization, and automated coordination of the optimizations.

Our work uses the POET language [20, 18] to provide the underlying support
for the interactive composition of parameterized compiler optimizations. Existing
work has demonstrated that through fine-grained coordination and collective
customization, POET can be used to specialize compiler optimizations to attain
a highest level of portable performance for dense linear algebra kernels [22, 15,
21]. Yi [17] has used a source-to-source optimizing compiler to automatically
produce parameterized POET scripts so that the optimization composition can
be revised by developers if desired, and the optimization configurations can be
empirically tuned. As a complimentary framework for this work, our GUI can
be used to provide an interactive interface for developers to conveniently revise
optimization decisions by their compilers. Our auto-generated POET scripts
can be easily integrated with existing empirical tuning research [9, 13, 14, 23, 2]
to automatically find desirable optimization configurations.



7 Conclusions And Future Work

We have presented a framework to enable compiler optimizations being used as
an interactive toolset by developers. Our framework addresses the key technical
challenge of interactive selection and composition of extensively parameterized
compiler optimizations, while using the POET transformation engine [20, 18]
to support the programmable customization and empirical tuning of differently
optimized code. We have demonstrated the practicality of this framework by
using it to optimize six commonly used scientific computing kernels and have
shown that significantly better performance can be achieved by the interactive
optimization framework than using the conventional optimizing compilers alone.

Our approach exposes compiler optimizations to be interactively controlled
and customized by developers by providing each optimization an explicit well-
defined parameter space, far beyond the optimization flags supported by conven-
tional compilers. We currently support only a subset of the optimizations applied
manually by high performance computing specialists, consequently our attained
performance still lag far behind those of hand optimized kernels. We expect to
significantly increase the collection of optimizations in the future while efficiently
exploring their configuration spaces to enhance application performance.
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Abstract. Nested parallelism is of increasing interest for both expres-
sivity and performance. Many problems are naturally expressed with this
divide-and-conquer software design approach. In addition, programmers
with target architecture knowledge employ nested parallelism for perfor-
mance, imposing a hierarchy in the application to increase locality and
resource utilization, often at the cost of implementation complexity.
While dynamic applications are a natural fit for the approach, sup-
port for nested parallelism in distributed systems is generally limited
to well-structured applications engineered with distinct phases of intra-
node computation and inter-node communication. This model makes ex-
pressing irregular applications difficult and also hurts performance by
introducing unnecessary latency and synchronizations. In this paper we
describe an approach to asynchronous nested parallelism which provides
uniform treatment of nested computation across distributed memory.
This approach allows efficient execution while supporting dynamic ap-
plications which cannot be mapped onto the machine in the rigid manner
of regular applications. We use several graph algorithms as examples to
demonstrate our library’s expressivity, flexibility, and performance.

Keywords: nested parallelism, asynchronous, isolation, graph, dynamic
applications

1 Introduction

Writing parallel applications is difficult, and many programming idioms taken
for granted in sequential computing are often unavailable. One of these tools,
program composition via nested function invocation, is not present in many par-
allel programming models, at least not in a general form that is abstracted from
the target architecture. Indeed, while nested parallelism is a natural way to ex-
press many applications, employing it is often constrained by the deep memory
hierarchies and multiple communication models of modern HPC platforms.

While the efficient mapping of the application’s hierarchy of algorithms onto
the machine’s hierarchy is important for performance, we believe requiring de-
velopers to explicitly coordinate this effort is overly burdensome. Furthermore,
direct management leads to ad-hoc solutions that significantly decrease software
reuse, which is key to addressing the difficulties of parallel programming.



This work describes the support for nested parallelism in the runtime system
of stapl [8], a generic library of components for parallel program composition.
The stapl-rts [29] serves the higher levels of the library, providing a uniform
interface for computation and communication across distributed systems, while
internally using shared memory optimizations where possible.

In this paper, we show how this uniform interface extends to the creation
of nested parallel sections that execute stapl algorithms. These nested SPMD
(Single Program Multiple Data) sections provide an isolated environment from
which algorithms, represented as task dependence graphs, execute and poten-
tially spawn further nested computation. Each of these sections can be instan-
tiated on an arbitrary subgroup of processing elements (i.e., locations) across
distributed memory.

While the stapl-rts supports collective creation of nested parallel sections,
in this work we focus on the one-sided interface. The one-sided interface allows
a local activity (e.g., visiting a vertex in a distributed graph) on a given location
to spawn a nested activity (e.g., following all edges in parallel to visit neigh-
bors). As we will show, both the creation and execution of this nested activity
are asynchronous: calls to the stapl-rts are non-blocking and allow local ac-
tivities to proceed immediately. Hence, the one-sided, asynchronous mechanism
is particularly suitable for dynamic applications.

Nested sections are also used to implement composed data structures with
data distributed on arbitrary portions of the machine. Together, this support for
nested algorithms and composed, distributed containers provides an increased
level of support for irregular applications over previous work. In the experimen-
tal results, we demonstrate how the algorithms and data interact in a stapl

program. We use a distributed graph container with vertex adjacency lists being
stored in various distributed configurations. Without any changes to the graph
algorithm, we are able to test a variety of configurations and gain substantial
performance improvements (2.25x at 4K cores) over the common baseline con-
figuration (i.e., sequential storage of edge lists).

Our contributions include:

Uniform nested parallelism with controlled isolation. Support for arbi-
trary subgroups of processing elements (i.e., locations) across distributed mem-
ory. The sections are logically isolated, maintaining the hierarchical structure
of algorithms defined by the user. For instance, message ordering and traffic
quiescence is maintained separately for each nested section.

Asynchronous, one-sided creation of parallel sections. The ability to
asynchronously create nested parallel sections provides latency hiding which is
important for scalability. We combine one-sided and asynchronous parallel sec-
tion creation, presenting a simple and scalable nested parallel paradigm.

Use of stapl-rts to implement dynamic, nested algorithms. We use the
primitives to implement several fundamental graph algorithms, and demonstrate
how various distribution strategies from previous work can be generalized under
a common infrastructure using our approach to nested parallelism.



2 Related Work

When introduced, nested parallelism was used primarily for expressiveness, as in
NESL [4]. The NESL compiler applies flattening, transforming all nested algo-
rithms to a flat data parallel version, a technique with performance limitations.

OpenMP [27] has had nested parallelism capabilities since its inception.
There is some work on nested parallelism for performance [15]. However, the
collapse keyword in OpenMP 3.0 that flattens nested parallel sections attests
to the difficulty of gaining performance from nested parallelism in OpenMP.

Other parallel programming systems employ nested parallelism for perfor-
mance. Users express algorithms using nested sections for the sole purpose of
exploiting locality. Restrictions are often imposed to achieve performance, lim-
iting expressiveness. MPI [25] allows creating new MPI communicators by par-
titioning existing ones or by spawning additional processes. This functionality
can be used to map nested parallel algorithms to the machine, however it mostly
suits static applications, as each process must know through which MPI com-
municator it should communicate at any given point in the program.

Several systems enhance the MPI approach, while simplifying the program-
ming model. Neststep [23] is a language that extends the BSP (bulk synchronous
parallel) model and allows the partitioning of the processing elements of a su-
perstep to smaller subsets or subgroups that can call any parallel algorithm.
These subgroups need to finish prior to the parent group continuing with the
next superstep. UPC [14] and Co-Array Fortran [24] have similar restrictions.

Another common approach is to use MPI for the first level parallelism (dis-
tributed memory) and OpenMP for the shared memory parallelism [10, 33], lead-
ing to ad-hoc solutions with manual data and computation placement.

Titanium [22] and UPC++ [38] introduce the Recursive SPMD (RSPMD)
model and provide subgrouping capabilities, allowing programmers to call paral-
lel algorithms from within nested parallel sections that are subsets of the parent
section. Similarly to Neststep, they also require that the nested sections finish
before resuming work in the parent section.

The Sequoia [16] parallel programming language provides a hierarchical view
of the machine, enforcing locality through the nested parallelism and thread-
safety with total task isolation: tasks cannot communicate with other tasks and
can only access the memory address space passed to them. This strong isolation,
in conjunction with execution restrictions to allow compile-time scheduling of
task scheduling and task movement, limits its usefulness in dynamic applications.

Several systems support task-based parallelism, allowing the user to spawn
tasks from other tasks. The programmer can thus express nested parallelism
with the system responsible for placement. These include Intel Thread Building
Blocks [32] and Cilk [5]. Since task placement is done in absence of knowledge
about locality, one of the benefits of nested parallelism is lost.

X10 [12], Habanero-Java [11], HPX [20], and Fortress [21] all offer task-based
parallelism, going a step further and allowing control over task placement. How-
ever, they suffer from loss of structure of the execution of the algorithms, as
tasks are independent of each other. Building on top of Habanero, Otello [37]



addresses the issue of isolation in nested parallelism. While maintaining a task
parallel system, Otello protects shared data structures through analysis of which
object each task operates on and the spawning hierarchy of tasks.

Chapel [9] is a multi-paradigm parallel programming language and supports
nested parallelism. While it supports data and task placement, users are given
only two parallel algorithms (parallel for, reduce). Other parallel algorithms have
to be implemented explicitly using task parallelism.

Legion [3] retains Sequoia’s strong machine mapping capabilities while re-
laxing many of the assumptions of Sequoia, making it a good fit for dynamic
applications. It follows a task parallel model in which tasks can spawn subtasks
with controlled affinity. However, this process leads to loss of information about
the structure of the parallel sections, as with other task parallel systems.

From Trilinos [2], Kokkos supports nested parallelism by allowing the division
of threads in a team. Teams can be further divided and threads that belong to
a team are concurrent. However, teams cannot execute concurrently, and only
three algorithms (parallel for, reduce and scan) are available to be invoked from
within a nested parallel section.

Phalanx [19] can asynchronously spawn SPMD tasks that execute on multiple
threads. Programmers allocate memory explicitly on supported devices (CPU,
GPU, etc.) and invoke tasks on them, creating parallel sections. Phalanx has a
versatile programming model and is the most similar related work to the stapl-
rts. Its main difference from the stapl-rts is that Phalanx requires explicit
control of resources. Data and task placement needs to be statically specialized
with the target (e.g., GPU, thread, process), transferring the responsibility of
resource management to the user and creating the need for multi-versioned code.

3 stapl Overview

The Standard Template Adaptive Parallel Library (stapl) [8] is a framework
developed in C++ for parallel programming. It follows the generic design of
the Standard Template Library (stl) [26], with extensions and modifications
for parallelism. stapl is a library, requiring only a C++ compiler (e.g., gcc)
and established communication libraries such as MPI. An overview of its major
components are presented in Figure 1.

stapl provides parallel algorithms and distributed data structures [34, 18]
with interfaces similar to the stl. Instead of iterators, algorithms are written
with views [7] that decouple the container interfaces from the underlying storage.
The skeletons framework [36] allows the user to express an application as a
composition of simpler parallel patterns (e.g., map, reduce, scan and others).

Algorithmic skeletons are instantiated at runtime as task dependence graphs
by the PARAGRAPH, stapl’s data flow engine. It enforces task dependencies and
is responsible for the transmission of intermediate values between tasks.

The runtime system (stapl-rts) [35, 29] provides portable performance by
abstracting the underlying platform with the concept of locations. A location is
a component of a parallel machine that has a contiguous memory address space
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and has associated execution capabilities (e.g., threads). Locations only have
access to their own address space and communicate with other locations using
Remote Method Invocations (RMIs) on shared objects.

Containers and PARAGRAPHs are both distributed objects (i.e., p objects).
RMIs are used in the containers to read and write elements. RMIs are used in
the PARAGRAPH to place tasks, resolve dependencies, and flow values between
tasks that are not on the same location.

Each distributed object has an associated set of locations on which it is
distributed. The stapl-rts abstracts the platform and its resources, providing
a uniform interface for all communication in the library and applications built
with it. This abstraction of a virtual distributed, parallel machine helps stapl

support general nested parallelism.

4 Asynchronous Nested Parallelism in stapl

As with STL programs, a typical stapl application begins with the instantia-
tion of the necessary data structures. Each container has its own distribution
and thus defines the affinity of its elements. Container composition is supported,
as well complete control over the distribution of each container (e.g., balanced,
block cyclic, arbitrary). For example, the case study presented in Section 5 uses
composed instances of the stapl array for vertex and edge storage, with various
distribution strategies considered for each nested edge list. Users write applica-
tions with the help of skeletons [36] and views, that abstract the computation
and data access, respectively. The views provide element locality information,
projecting it from the underlying container.

An algorithm’s execution is performed by a PARAGRAPH, a distributed task
dependence graph responsible for managing task dependencies and declaring
which tasks are runnable. Each PARAGRAPH executes in an isolated environment,
with data access provided by the views. Each task may itself be a parallel al-
gorithm, for which a new nested parallel section is created. A default policy



Fig. 2. Execution Model

places a PARAGRAPH for execution based on the locality of the data it accesses,
and custom policies can passed to the PARAGRAPH at creation. Figure 2 shows an
example execution instance of an application that has a number of PARAGRAPH
invocations in isolated parallel sections over the same set of hardware resources.

4.1 stapl Design Considerations

In order to take advantage of nested parallelism and realize its full potential, we
have made several design decisions that influence our implementation including:

Expressiveness. stapl users express algorithms as a composition of simpler
parallel algorithms using algorithmic skeletons [36]. This specification is inde-
pendent of any target architecture. The responsibility for mapping it onto the
machine is left to the library, though it can be customized by more experienced
users at an appropriate level of abstraction.

Preserving Algorithm Structure.We maintain the hierarchy of tasks defined
by the application when mapping it to the machine. Hence, each nested section’s
tasks remain associated with it and are subject to its scheduling policy. Each
algorithm invocation is run within an SPMD section, from which both point-to-
point and collective operations are accounted for independent of other sections.
The SPMD programming model has been chosen since scaling on distributed
machines has favored this programming model (e.g., MPI [25]) more than fork-
join or task parallel models.

Parallel Section Isolation. stapl parallel sections exhibit controlled isolation
for safety and correctness. The uncontrolled exchange of data between parallel
sections is potentially unsafe due to data races. Performance can be impacted, as
isolation means that collective operations and data exchanges are in a controlled
environment. We discuss techniques to mitigate these overheads in [29]. Users
provide views to define the data available for access in each section.

Asynchronous, One-sided Parallel Section Creation. We support both
partitioning (collective creation) of existing environments and spawning (one-
sided creation) of new environments. Partitioning existing parallel sections is



Name SPMD NP
sections

Asynchronous Locality Aware Any algorithm
allowed in NP

section

MPI Yes No Manual Yes

UPC++, Co-Array
Fortran, Titanium

Yes No Manual Yes

Sequoia Yes No Compile-time Yes

Habanero, X10 No Yes Yes Yes

Chapel No Yes Yes No

Charm++ No Yes Yes Yes

Legion No Yes Yes Yes

Phalanx Yes Yes Manual Yes

STAPL Yes Yes Yes Yes

Table 1. Nested Parallelism (NP) capabilities comparison

beneficial for static applications but is difficult to use in dynamic applications.
On the other hand, one-sided creation may not give optimal performance for
static applications where the structure of parallelism is more readily known.

In this paper, we only present the one-sided world creation, as the collective
implementation is similar to other systems for subgrouping (e.g., Titanium, MPI
and others). One-sided creation is fully asynchronous. This allows us to effec-
tively hide latency and supports our always distributed memory model. Table 1
summarizes the main differences between our model and similar approaches.

4.2 Execution Model

The stapl-rts presents a unified interface for both intra-node and inter-node
communication to support performance portability. Internally the mixed-mode

implementation uses both standard shared and distributed memory communi-
cation protocols when appropriate. For scalability and correctness, we employ a
distributed Remote Method Invocation (RMI) model.

Each processing element together with a logical address space forms an iso-
lated computational unit called a location. Each location has an isolated, virtual
address space which is not directly accessible by other locations. When a loca-
tion wishes to modify or read a remote location’s memory, this action must be
expressed via RMIs on distributed objects, called p objects.

Gangs represent stapl-rts subgroup support. Each gang is a set of N loca-
tions with identifiers in the range [0, . . . , N − 1] in which an SPMD task executes.
It has the necessary information for mapping its locations to processing elements
and describing a topology for performing collective operations. While the loca-
tions of a gang execute a single SPMD task, they communicate asynchronously
independently of each other, making them a more loosely knit group than for
example MPI groups of Titanium/UPC teams. To create a new gang, one either:

– Partitions an existing gang with collective gang creation over the locations
that participate in the new gang.



– Spawns a gang, whereby one location creates a new gang in an asynchronous
and one-sided manner, using a subset of locations in an existing gang.

p objects can be created within a gang, and as such, each p object is asso-
ciated with exactly one gang and is distributed across its locations. A gang can
have any number of p objects. Each p object can be referenced either with a
regular C++ reference inside the gang it was created or through handles.

4.3 One sided Gang creation

The stapl-rts provides primitives for the one-sided creation of gangs via al-
locating p objects on a set of pre-existing locations. An example is shown in
Figure 3. The first construct() call creates a new parallel section over the loca-
tions {0, 2, 4, 5, 6} of the current section and creates an instance of T. The second
construct() call creates an object of type U in a new gang that is co-located
with the gang of the previous object.

Multiple variations are supported, such as creating gangs on arbitrary ranges
of locations (or all) of either the current parallel section or that of another
p object. The stapl-rts is responsible for translating location IDs to processing
element (PE) IDs and for building a suitable multicast tree on the PEs which it
uses to construct the gang and the associated p object. We plan on extending
this support to define gangs over specific parts of an hierarchical or heterogeneous
machine, such as over a specific socket or accelerator.

1 using namespace s t a p l ;
2

3 // Create a p ob je c t o f type T by passing args to the constructor , in a
new gang over the given loca t ions and return a fu tu re to i t s handle

4 fu ture<rmi hand le : : r e f e r en c e> f 1 =
5 construc t<T>( l o c a t i on range , {0 , 2 , 4 , 5 , 6} , a rgs . . . ) ;
6

7 // Get ob je c t handle
8 auto h = f1 . ge t ( ) ;
9

10 // Create a new p ob je c t o f type U on a new gang co−l o ca t ed with the
gang of the f i r s t ob je c t

11 fu ture<rmi hand le : : r e f e r en c e> f 2 =
12 construc t<U>(h , a l l l o c a t i o n s , args . . . ) ;

Fig. 3. construct() example usage.

A gang’s lifetime is tied to that of the p objects present in it. Figure 4 is
the state transition diagram of the life of a gang.

– Upon construction, the gang is created. The necessary metadata is generated
and everything is set up to execute the SPMD task.

– When the task executes, the gang is declared running. While the task exe-
cutes, p objects can be created and they are automatically associated with



Fig. 4. Gang State Transition Diagram

the gang. The scope of the automatic p objects (stack allocated) is the
scope of the SPMD task, however heap-allocated p objects can outlive it.

– If the task finishes and there are no associated p objects, the gang is ter-

minated and its metadata is deleted.
– If there are still p objects associated with the gang, then it is declared alive

and its metadata preserved. The gang remains alive until the last p object

is deleted. RMIs can still be invoked on the p objects.
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Figure 5 presents a micro benchmark of the construct primitive on a Cray
XK7m-200 (described in Section 5.1). It compares our range-based construct()

against MPI Comm create() over the same number of processes, when the global
parallel section is 512 processes. The combined effect of asynchronous creation



and deletion, as well as the fact that the MPI primitive is collective over the set
of locations, while our primitive is one-sided, result in competitive performance
against MPI and shows that it is a scalable approach.

5 Case Study - Graph Algorithms

Processing large-scale graphs has become a critical component in a variety of
fields, from scientific computing to social analytics. An important class of graphs
are scale-free networks, where the vertex degree distribution follows a power-law.
These graphs are known for the presence of hub vertices that have extremely high
degrees and present challenges for parallel computations.

In the presence of hub vertices, simple 1D partitioning (i.e., vertices dis-
tributed, edges colocated with corresponding vertex) of scale-free networks presents
challenges to balancing per processor resource utilization, as the placement of
a hub could overload a processor. More sophisticated types of partitioning have
been proposed, including checkerboard 2D adjacency matrix partitioning [6],
edge list partitioning [30] and specialized techniques for distributing hub vertices
[31, 17]. However, these strategies often change both the data representation as
well as the algorithm, making it difficult to unify them in a common framework.

We represent the graph as a distributed array of vertices, with each ver-
tex having a (possibly) distributed array of edges. Using construct we define
several strategies for distributing the edges of hub vertices, that can be inter-
changed without changing the graph algorithm itself. The first distribution strat-
egy (EVERYWHERE) places a hub’s adjacency list on all locations of the graph’s
gang. The second (NEIGHBORS) places the edges only on locations where the hub
has neighbors. This strategy is especially dynamic as the distribution of each
hub edge list is dependent on the input data. Thus, we rely heavily on the ar-
bitrary subgroup support of stapl-rts. The last strategy (STRIPED) distributes
the adjacency list on one location per shared-memory node in a strided fashion
to ensure that no two hubs have edges on the same location.

Even though the distribution strategy of the edges changes, the edge visit
algorithm remains unchanged; the PARAGRAPH executing the algorithm queries
the edge view about the locality of the underlying container and transparently
spawns the nested section onto the processing elements where locations in the
container’s gang are present. This one-sided, locality driven computational map-
ping is a natural fit for the application and allows easily experimentation with
novel and arbitrary mappings of the edges to locations, without the overhead of
rewriting and hand-tuning the algorithm to support these changes.

5.1 Experimental Setup

We performed our experiments on two different systems. The code was compiled
with maximum optimization levels (-DNDEBUG -O3).

Cray is a Cray XK7m-200 with twenty-four compute nodes of 2.1GHz AMD
Opteron Interlagos 16-core processors. Twelve nodes are single socket with 32GB
RAM, and twelve are dual socket with 64GB RAM. The compiler was gcc 4.9.2.
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Fig. 6. Graph 500 breadth-first search on Cray varying (a) the number of hubs on 512
processors and (b) the number of processors for a weak scaling experiment.

BG/Q is an IBM BG/Q system at Lawrence Livermore National Laboratory.
It has 24, 576 nodes, each with a 16-core IBM PowerPC A2 processor at 1.6GHz
and 16GB of RAM. The compiler used was gcc 4.7.2.

5.2 Experimental Evaluation

To validate our approach, we implemented the Graph 500 benchmark [1], which
performs a parallel breadth-first search on a scale-free network. Figure 6(a) shows
the breadth-first search algorithm over the Graph 500 input graph. As shown, all
three edge distribution strategies fare well over the baseline of non-distributed
adjacency lists for modest number of hubs, and then degrade in performance as
more vertices are distributed. The EVERYWHERE and NEIGHBORS strategies behave
similarly, as the set of locations that contain any neighbor is likely to be all lo-
cations for high-degree hub vertices. The EVERYWHERE and NEIGHBORS strategies
are 49% and 51% faster than the baseline, respectively. The STRIPED strategy
performs up to 75% faster than the baseline, which is a further improvement over
the other strategies. On Cray, cores exhibit high performance relative to the in-
terconnect, and thus even modest amounts of communication can bring about
large performance degradation. The STRIPED strategy reduces the amount of
off-node communication to create the parallel section from the source vertex
location, bringing the performance of the algorithm above the other two strate-
gies. We are investigating this phenomenon to derive a more rigorous model for
distributing edge lists.

Figure 6(b) shows a weak scaling study of the neighbor distribution strategy
on Cray. As shown, the flat breadth-first search scales poorly from 1 to 2 pro-
cessors due to an increase in the amount of communication. By distributing the
edges for hubs, we reduce this communication and provide better performance
than the flat algorithm. The number of distributed hubs must be carefully chosen:
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Fig. 7. Graph 500 (a) breadth-first search with various adjacency distributions on
BG/Q and (b) various graph analytics algorithms on Cray.

too few hubs will not provide sufficient benefit in disseminating edge traversals,
whereas too many hubs could overload the communication subsystem.

In order to evaluate our technique at a larger scale, we evaluated breadth-
first search on the Graph 500 graph on BG/Q in Figure 7(a). We found that
although faster than the flat version, all three distribution strategies performed
comparably with each other. At 4,096 processors, the distributed adjacency list
versions of breadth-first search are 2.25x faster than the flat baseline. Hence, the
distribution strategy is machine-dependent, further reinforcing the need for a
modular and algorithm-agnostic mechanism to explore the possible configuration
space for nested parallelism in parallel graph algorithms.

Finally, to show the generality of the nested algorithm support in the context
of dynamic computations, we implement two other popular graph analytics al-
gorithms: Hash-Min connected components (CC) [13] and PageRank [28] (PR).
In Figure 7(b) we present the oracle speedup of the nested parallel versions over
the flat version, where speedup is measured by computing the ratio between
the best configuration and hub count for the nested parallel version and the
flat version. All three algorithms show substantial improvement for all processor
counts except for 1, where the overhead of creating a nested parallel section is
measured. In some cases, the nested parallel version is able to achieve upwards
of 3x speedup, such as on connected components at 32 cores.

6 Conclusion

In this paper we presented support for one-sided, asynchronous nested paral-
lelism in stapl-rts. It is utilized in stapl for the implementation of composed
containers and the PARAGRAPH which manages algorithm execution. These com-
ponents provide flexible support for nested parallelism, with intelligent place-
ment of parallel sections based on the abstract locality information provided by



our runtime. We demonstrated the benefit of the approach via a case study of
graph algorithms, where significant gains were attained by tuning the locality of
the data structure independent of the algorithm specification.

For future work, we want to to implement other dynamic programs using the
one-sided nested parallel constructs. We also plan to use our graph framework
to explore other possible computation and data distribution strategies with the
aim of performance portability. We think these nested parallelism constructs are
applicable to a broad range applications, allowing stapl to provide a high level
of expressiveness, while still mapping efficiently onto large, distributed systems.
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Abstract. Model-based design is a very popular software development
method for developing a wide variety of embedded applications such as
automotive systems, aircraft systems, and medical systems. Model-based
design tools like MATLAB/Simulink typically allow engineers to graph-
ically build models consisting of connected blocks for the purpose of
reducing development time. These tools also support automatic C code
generation from models with a special tool such as Embedded Coder to
map models onto various kinds of embedded CPUs. Since embedded sys-
tems require real-time processing, the use of multi-core CPUs poses more
opportunities for accelerating program execution to satisfy the real-time
constraints. While prior approaches exploit parallelism among blocks by
inspecting MATLAB/Simulink models, this may lose an opportunity for
fully exploiting parallelism of the whole program because models po-
tentially have parallelism within a block. To unlock this limitation, this
paper presents an automatic parallelization technique for auto-generated
C code developed by MATLAB/Simulink with Embedded Coder. Specif-
ically, this work 1) exploits multi-level parallelism including inter-block
and intra-block parallelism by analyzing the auto-generated C code, and
2) performs static scheduling to reduce dynamic overheads as much as
possible. Also, this paper proposes an automatic profiling framework
for the auto-generated code for enhancing static scheduling, which leads
to improving the performance of MATLAB/Simulink applications. Per-
formance evaluation shows 4.21 times speedup with six processor cores
on Intel Xeon X5670 and 3.38 times speedup with four processor cores
on ARM Cortex-A15 compared with uniprocessor execution for a road
tracking application.

Key words: automatic parallelization, multi-core, model-based design,
MATLAB/Simulink, automatic code generation

1 Introduction

The Model-based design like MATLAB/Simulink [1] has been widely used since
it enables high software productivity in reduced turn-around times for embedded
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systems [2]. Commercial model-based design tools support auto-code generation
from a model that is represented by a block diagram [3, 4]. MATLAB/Simulink
is one of the most popular tools for the model-based design of automotive sys-
tems, aircraft systems, and medical systems. This tool can generate C/C++
code for embedded systems with Embedded Coder [5] (formerly known as Real-
Time Workshop). The automatic code generation feature saves programmers
from developing embedded applications in error-prone programming languages,
however, this code generator does not optimize the application for target sys-
tems. Of course, it does not parallelize the application, even though a target
system has a multi-core processor.

Several approaches have been proposed to utilize multi-cores for the appli-
cation developed in MATLAB/Simulink. Some products have supported semi-
automatic parallelization techniques for a multi-core processor using task parti-
tioning by an application developer [6, 7]. These technique can achieve a func-
tional distribution of MATLAB/Simulink application, but cannot reduce load
balancing which is most important for embedded real-time application. In ad-
dition, these tools support parallel processing in limited environments for sim-
ulation using Simulink. For an automatic parallelization of MATLAB/Simulink
applications, Arquimedes et al. proposed an automatic equation-level paralleliza-
tion technique of a Simulink model [8]. Their approach exploited parallelism
among Mealy blocks such as integrators, derivatives, unit delays and so on.
However, their method is only applicable to applications for simulation includ-
ing mealy blocks. This approach does not focus on embedded systems. As an
automatic parallelization technique for embedded applications, Kumura et al.
proposed a model based parallelization by analyzing of dependencies from block
connections among Simulink blocks [9]. This technique makes it possible to per-
form a parallel processing by exploiting block level parallelism from a model.
However, exploiting this parallelism does not always allow us to exploit the
full capability of multi-cores since a granularity of task depends on how the
MATLAB/Simulink users define a block. A model information is too abstract
to represent multi-grain parallelism including parallelism intra-blocks such as
library Simulink blocks and users customized blocks. Therefore, this may lose
an opportunity for optimizations, for example, by causing unequal workload on
each core.

Unlike these prior approaches, this paper proposes an automatic paralleliza-
tion method using an automatic multigrain parallelizing compiler, or the OSCAR
compiler [10] from auto-generated C code developed by MATLAB/Simulink.
While this approach successfully analyzes the C code because it is easy for the
compiler to exploit parallelism using pattern matching and the code does not
require a sophisticated pointer analysis for readability and MISRA-C, it is pos-
sible that future versions of Embedded Coder could limit the analysis of par-
allelism. The compiler exploits both of coarse grain parallelism inter-block and
loop level parallelism intra-block from the auto-generated C code. Then, the
compiler adjusts a task granularity with the minimum overhead by perform-
ing inline expansion and task fusion for conditional branches to improve the
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utilization of each core. After optimization, the compiler assigns parallel task
onto processor cores using a static task scheduling considering profiling informa-
tion on MATLAB/Simulink. Then, the compiler finally generates parallelized C
code regardless of target processors. Although this paper focuses on the appli-
cation developed by MATLAB/Simulink, the proposed method has a potential
to apply to other model-based design tools since it exploits parallelism from the
auto-generated C code regardless of a grammar of the tools. The features of the
proposed method include:

– Fully automatic parallelization technique of the C code generated by a
model-based design tool for embedded systems without dependence on a
grammar of this tool.

– Construction of automatic profiling framework for a MATLAB/Simulink
model to improve performance of the statically scheduled parallel code.

– Multigrain parallelization technique of model-based design applications that
enables to overcome the limitation of the block level parallelization technique
that is common in the field of model-based design.

The rest of this paper is organized as follows: Section 2 provides a framework
for parallelization of model-based design applications. Section 3 introduces how
to exploit parallelism from MATLAB/Simulink application using the OSCAR
compiler. Section 4 describes multi-grain parallel processing method for the ap-
plications. Section 5 shows performance evaluation for the applications using the
proposed method. Finally, section 6 represents some conclusions.

Fig. 1. Overview of the proposed framework for parallelization of model-based design
applications
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2 Framework for Parallelization of Model-based Design
Applications

This section describes a framework for parallelization of model-based design ap-
plications. The model-based design tools with an automatic code generator like
MATLAB/Simulink are widely used since it enables high software productivity
for embedded systems. However, the code generator like Embedded Coder does
not optimize the application for target multi-cores. Therefore, several researchers
have proposed the parallelization technique for the application on multi-cores.
The previous works [8] and [9] analyzed a model file model.mdl to exploit par-
allelism among blocks in the model. This may lose an opportunity to exploit
the whole parallelism in the model. For example, their approaches lose to ex-
ploit hierarchical multigrain parallelism, even though a model has parallelism
inner Simulink blocks. It may cause unequal workload on each core. Addition-
ally, they depend on a grammar of the model-based design tool. Indeed, the
model file model.mdl have changed to a new model file model.slx from MATLAB
R2012a.

In contrast, our proposed method analyzes auto-generated C code developed
by MATLAB/Simulink with Embedded Coder to exploit hierarchical multigrain
parallelism which is not represented in the model file. This approach does not
depend on the grammar of model-based design tools since it analyzes the code
to extract parallelism. Additionally, the proposed framework uses profiling in-
formation including execution counts and time to handle dynamic features of
programs such as conditional branches and fluctuations in the number of itera-
tions of loops.

Fig.1 shows an overview of the proposed framework. At the step1, the OS-
CAR compiler analyzes C code that is generated by Embedded Coder from a
model. Then, the compiler instruments a sequence of C code inserting profile
functions and the MATLAB/Simulink interface (MEX function [11]). This code
is used to gather profiling information about a program execution on MAT-
LAB/Simulink. Thereby, this framework can gather the profiling information
in software-in-the-loop simulation (SILS) or processor-in-the-loop simulation
(PILS) on the model-based design tool. Then, the profiler generates the pro-
filing information during executing a model including the profile C code. At the
step2, the compiler analyzes the auto-generated C code and exploits hierarchi-
cal multigrain parallelism in the whole program. After exploiting parallelism,
the compiler schedules parallel tasks onto processor cores and finally generates
parallelized C code using the profiling information.

3 Exploiting Parallelism Using the OSCAR Compiler

This section explains a method to exploit multigrain parallelism from auto-
generated C code developed by MATLAB/Simulink using the OSCAR compiler.



Multigrain Parallelization for Model-based Design Applications 5

Fig. 2. Sample Simulink model and auto-generated C code from the model using the
Embedded Coder

3.1 Example of MATLAB/Simulink Application

This paper takes an example of MATLAB/Simulink application to describe the
parallelism in it. The example is simple to explain parallelism of the model,
however, real applications are too sophisticated to extract all parallelism be-
cause there are many of block connections and feedback loops. Therefore, it is
difficult to achieve efficient performance on multi-cores using manual paralleliza-
tion. Fig.2-(a) shows a model of Sobel filter that performs edge detection of a
binary image. It consists of a Const block, a Divide block, MATLAB Function

blocks (user’s library functions) named as CalcGx and CalcGy, and a Subsystem
block named as Norm. Evidently, the model has parallelism among CalcGx and
CalcGy because there is no connection among them.

Fig.2-(b) shows auto-generated C code from the model in Fig.2-(a) by Em-
bedded Coder. A loop as shown in line 4-6 corresponds to the Divide block
in Fig.2-(a). Each of functions of Sobel CalcGx and Sobel CalcGy corresponds
each of the MATLAB Function blocks named as CalcGx and CalcGy in Fig.2-(a).
A function of Sobel Norm corresponds to the Subsystem block named as Norm
in Fig.2-(a).

3.2 Coarse Grain Task Parallel Processing

Coarse grain task parallel processing uses parallelism among three kinds of coarse
grain tasks, namely macro-tasks (MTs). Parallelism is expressed graphically as a
macro-task graph (MTG) including data dependencies and control dependencies
among MTs. The MTs on the MTG are assigned to processor cores by a static or
a dynamic task scheduling method. As a result of the assignment, the OSCAR
compiler generates parallelized C code while preserving the original semantics
of the program.

Generation of Macro-tasks In the coarse grain task parallelization of the OS-
CAR compiler, auto-generated C code from a MATLAB/Simulink model is de-
composed into the MTs. The MTs include basic blocks (BBs), repetition blocks
or loops (RBs), and subroutine blocks (SBs). The MTs can be hierarchically
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defined inside each sequential loop or a function [10]. Moreover, the RB is trans-
formed LOOP, which means the compiler analyzes this loop as a sequential loop,
or DOALL which means the compiler analyzes this loop as a parallelizable loop.

Exploiting of Coarse Grain Task Parallelism After generation of MTs,
data dependencies, and control flow among MTs are analyzed. The compiler
generates a hierarchical macro-flow graph (MFG) which represents control flow
and data dependencies among MTs [10].

Then, the Earliest Executable Condition Analysis [10] is applied to the MFG
to exploit coarse grain task parallelism among MTs by taking into account both
the control dependencies and the data dependencies. This analysis generates a
hierarchical macro-task graph (MTG). The MTG represents coarse grain task
parallelism among MTs. If SB or RB has nested inner layer, MTGs are generated
hierarchically. Fig.3 shows a hierarchical MTG of the C code in Fig.2-(b). Nodes
represent MTs. Small circles inside a node represents conditional branches, for
example, bb1 and bb4 in MTG2-1. Solid edges represent data dependencies.
Dotted edges in MTG2-1, MTG3-1, and MTG4-1 represent extended control
dependencies. The extended control dependency means ordinary control depen-
dency and the condition on which a data dependence predecessor of an MT is
not executed. Solid and dotted arcs, connecting solid and dotted edges have two
different meanings. The solid arc represents that edges connected by the arc are
in AND relationship. The dotted arc represents that edges connected by the
arc are in OR relationship. In an MTG, edges having arrows represents original
control flow edges or branch direction.

sb2 and sb3 in MTG0 are in parallel. Therefore, block level parallelism among
CalcGx and CalcGy in Fig.2-(a) are exploited from the auto-generated C code.
Additionally, loop level parallelism which is not represented in Fig.2-(a) is ex-
ploited from the auto-generated C code since the compiler analyzes doall in
Fig.3 as parallelizable loops. Therefore, coarse grain task parallel processing
using the compiler allows us to exploit hierarchical multigrain parallelism of
MATLAB/Simulink applications from the auto-generated C code.

Scheduling of Coarse Grain Task onto Multi-cores After exploit of hierar-
chical multigrain parallelism, a static task scheduling or a dynamic task schedul-
ing is chosen for each MTG to assign MTs onto multi-cores. If an MTG has only
data dependencies and is deterministic, a static task scheduling at compilation
time is applied to it by the OSCAR compiler. In the static task scheduling, the
compiler uses four heuristic scheduling algorithms including CP/ETF/MISF,
ETF/CP/MISF, DT/CP/MISF and CP/DT/MISF [12]. The compiler chooses
the best schedule from those scheduling. If an MTG is non-deterministic by con-
ditional branches or runtime fluctuations among MTs, the dynamic task schedul-
ing at runtime is applied to it to handle the runtime uncertainties. The compiler
generates dynamic task scheduling routines for non-deterministic MTGs and in-
serts it into a parallelized code. The static task scheduling is generally more
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Fig. 3. Hierarchical MTG

effective than the dynamic task scheduling since it can minimize data transfer
and synchronization an overhead without a runtime scheduling overhead.

Parallelized C Code Generation Using the OSCAR API The OSCAR
compiler generates parallelized C code with the OSCAR API [13] that is de-
signed on a subset of OpenMP for preserving portability over a wide range
of multi-core architectures. If data is shared on threads, the compiler inserts
synchronizing instructions using spin locks. Additionally, MEX functions are
inserted as necessary to execute parallelized C code in the SILS or PILS on
MATLAB/Simulink.

4 Multigrain Parallel Processing Method for
MATLAB/Simulink Applications

This section describes a proposed multigrain parallel processing method for
MATLAB/Simulink applications. Embedded applications are generally executed
repeatedly within a short period. Therefore, reducing overhead as much as pos-
sible is important for efficient parallel processing on multi-cores. The proposed
method enables us to parallelize the application using hierarchical multigrain
parallelism with a minimum overhead for embedded systems. The kernel tech-
nique is to generate the statically scheduled parallel code using multigrain par-
allelism. The proposal method consists of the following steps.

step1 Automatic profiling in SILS or PILS on MATLAB/Simulink to handle
dynamic features of programs.
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step2 Inline expansion to exploit more parallelism over hierarchies or program
structure.

step3 Macro task fusion for conditional branches to generate statically sched-
uled parallel code.

step4 Converting loop level parallelism into task level parallelism to perform
efficient parallel processing among loops and other MTs without an overhead
of loop level parallelization.

The following provides details of the proposed method.

4.1 Automatic Profiling in model-based development

Profiling is an important technique for improving the preciseness of static task
scheduling by a parallelizing compiler. Moreover, it is particularly effective for
handling dynamic features of programs such as conditional branches and the
fluctuations in the number of loop iterations. For this purpose, the compiler
generates a sequence of code to collect profiling information. Additionally, MEX
functions as the interface between C code and MATLAB/Simulink are inserted
into this code to obtain the profiling information in the SILS or the PILS on
the model-based tool. Two types of profile functions are inserted immediately
before and after each MT. The one is a function to measure execution counts of
each MT. This information is utilized for estimating branch probability and the
number of loop iterations. The other is a function to measure the execution time
of each MT. This information is utilized for optimization and the static task
scheduling in the compiler. In the other words, execution counts and time in the
level of MT are attained with executing the code. The profiler finally generates
the profiling information including longest path, shortest path, and average path
in repeated executions during executing a model including the profile C code.

4.2 Inline Expansion

The OSCAR compiler generates a hierarchical MTG to perform hierarchical
parallelization [10]. It is effective to perform parallel processing for applications
having large execution time, for example, simulation of scientific computation.
However, real embedded applications are generally executed repeatedly within a
short period. Therefore, it is not enough parallelism to parallelize efficiently in
each hierarchy. Thus, the proposed method uses an inline expansion technique
[14] to exploit multigrain parallelism from programs over hierarchies or nested
levels. This technique analyzes parallelism after each SB is inline expanded. After
the analysis, the compiler selects SBs to improve parallelism and expands them.
Fig.4 shows an overview of the inline expansion technique. In Fig.4-(a), it is not
enough parallelism to parallelize hierarchically in MTG0, MTG1, and MTG3.
The inline expansion applies sb2 in MTG0 including parallelism inner the block
to improve parallelism. As a result, the compiler generates an MTG in Fig.4-(b).
As shown in Fig.4-(b), more coarse grain parallelism is exploited than that of
the MTG in Fig.4-(a).
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Fig. 4. Overview of the inline expansion technique

4.3 Macro Task Fusion

The OSCAR compiler has two types of task scheduling as mentioned in sec-
tion 3.2. The one is the dynamic task scheduling that is applied to an MTG
including conditional branches. The other is the static task scheduling that is
applied to an MTG including no conditional branches. The static task schedul-
ing is preferable for parallelization of the embedded applications because of its
few runtime overhead. However, most of MATLAB/Simulink applications have
Switch, Saturation and Trigger blocks that are converted into if-statements
by Embedded Coder. It introduces to choose the dynamic task scheduling includ-
ing the runtime overhead. Since these conditional branches cannot be handled
by the static task scheduling, the proposed scheme applies macro task fusion
to MFG to hide conditional branches inside MTs. The method is described as
follows.

step 1 Search MFG nodes having a conditional branch.
step 2 For each conditional branch node found in step 1, apply step 3-6.
step 3 Search a set of MFG nodes that is post-dominated by the conditional

branch node.
step 4 Define a post-dominator node having a minimum number of the MT

with the exception of the conditional branch node as an exit node.
step 5 Merge a group from the conditional branch node and the exit node into

a single MT.
step 6 Generate a fused MT including conditional branches inner the MT.

This process eliminates all conditional branches from an MFG. After the tech-
nique, if the fused MT has enough parallelism inner the MT, duplications of
if-statements [15] is applied to it for an improvement of parallelism.
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Fig.5 shows an overview of the macro task fusion technique. At the step 1,
the compiler searches MFG nodes having a conditional branch from an MFG. At
the step 2, the compiler applies step 3-6 to each conditional branch node found
step 1. At the step 3, the compiler searches a post-dominator of the conditional
branch node. At the step 4, the compiler chooses a node having a minimum
number in the post-dominators with the exception of the conditional branch
node. Then, the node is defined as an exit node of the conditional branch node.
At the step 5, the compiler merges a group from the conditional branch node
and the exit node into a single MT. As a result, the compiler generates a fused
MT including conditional branches inner the MT at the step 6.

In this example, the compiler chooses bb1 and bb7 having a small circle
inside a node that represents a conditional branch in Fig.5-(a). In Fig.5-(a), bb1
dominates bb1, bb5, sb6, bb7, bb10 and emt11. Additionally, bb7 dominates
bb7, bb10 and emt11. Therefore, the compiler chooses bb5 and bb10 as the
exit node for each of the conditional branch nodes. Merging bb1-5 and bb7-10,
the compiler generates an MFG as shown in Fig.5-(b). In this figure, block
shows the merged MT by the technique. Exploiting parallelism using the Earliest
Executable Condition Analysis, the compiler generates an MTG as shown in
Fig.5-(c). Then, the duplication of if-statements applies to inner block3 not to
eliminate parallelism. bb1 including if-statements is duplicated, and block3 is
divided into two nodes. As a result, the compiler generates an MTG having
duplicated MTs such as block3 and block4 as shown in Fig.5-(d). Thus, a
compiler coarsens MTs without losing parallelism and can apply static task
scheduling without runtime overhead to an MTG having conditional branches.

Fig. 5. Overview of the macro task fusion technique
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4.4 Converting Loop Level Parallelism into Task Level Parallelism

Kumura et al. [9] has proposed the block level parallelization technique from the
data flow graph of the block diagram of a model. This method enables us to
exploit parallelism among blocks in the model. However, it is difficult to exploit
parallelism in a block using only information of the block diagram. In contrast,
this paper proposes the multigrain parallelization technique from auto-generated
C code. The code level analysis in this method enables us to exploit loop level
parallelism in addition to task level parallelism. In this paper, parallelizable
loops shown as Doall are decomposed into n small Doalls (or MTs) statically to
perform parallel processing efficiently without a runtime overhead of loop level
parallelization. In this method, the n is a number decided by less than a number
of processor cores and Tmin. Tmin is defined as a minimum task cost for loop
level parallelization considering overheads of parallel thread fork/join and task
scheduling on each target multi-core [10].

These decomposed small Doalls can be executed in parallel among other MTs.
After parallelizable loop decomposition, the static task scheduler in section 3.2
assigns all MTs including decomposed Doalls onto processor cores.

5 Performance Evaluation of MATLAB/Simulink
Applications on Multi-cores

This section describes performance evaluation of the proposed multigrain par-
allelization technique for MATLAB/Simulink applications on several multi-core
platforms.

5.1 Target MATLAB/Simulink Applications

This section evaluates the performance on Intel and ARMmulti-cores using three
important applications such as road tracking for self-driving cars, vessel detection
for medical image recognition, and anomaly detection for pattern recognition re-
ally used an industry. These applications have both parallelism among Simulink
blocks and inner a block. Therefore, they are suitable to be parallelized by the
automatic multigrain parallelization technique. Each application is described in
the following.

Road Tracking. Road tracking in a model of [16] is an image processing to
detect and track edges set in primarily residential settings where lane markings
may not be present. The model has over one hundred Simulink blocks and block
level parallelism among Simulink blocks in the left road and right road. The size
of an input image is 320 x 240 pixels. In this evaluation, For Iterator blocks
are expanded and S-Function blocks of parallel Hough transformation [17] are
used instead of library Hough Transformation block to be close real embedded
applications.
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Vessel Detection. Vessel detection model implemented from [18] is an image
processing to detect vessels from retinal images for a diagnosis of various eye
diseases. The model is simplest in the three applications and includes one Data
Type Conversion, one MinMax, one Switch and eight MATLAB Function blocks
using the Kirsch’s edge operator blocks. The operator blocks are in parallel. The
size of an input image is 200 x 170 pixels.

Anomaly Detection. Anomaly detection model is a real product application
in A&D CO., LTD. and an image processing to detect anomaly from an input
image. The model is most complex and has longest execution time in the three
applications. It includes morphological opening, morphological dilation,
blob analysis blocks and so on. There is parallelism among some image pro-
cessing block. The size of the input image is 600 x 600 pixels.

5.2 Evaluation Environment.

This evaluation uses the Intel Xeon X5670 and the ARM Cortex-A15. The Xeon
X5670 processor has six processor cores with each processor core running at 2.93
GHz. Each processor core has 32 KB L1-cache and 256 KB L2-cache. 12 MB
L3 cache is shared on six processor cores. The Cortex-A15 processor has four
1.60 GHz processor cores. Each processor core has 32 KB L1-cache, and four
processor cores has a shared 2 MB L2-cache.

5.3 Performance Evaluation on multi-cores

Fig. 6. Speedup ratio for MATLAB/Simulink applications on Intel and ARM multi-
cores

Fig.6-(a) and (b) shows average speedup obtained by using only the task
level parallelization technique that is similar to the single level parallelization
technique in [9] and the multigrain parallelization technique corresponds to pro-
posed method on Intel Xeon X5670 and ARM Cortex-A15. The speedups in
Fig.6-(a) and (b) are relative to sequential execution using only one core of each
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application. 1.92 times speedup for the road tracking application, 2.65 times
speedup for vessel detection application and 2.50 times speedup for the anomaly
detection application can be achieved using the task level parallelization tech-
nique on Intel Xeon X5670 with six processor cores. On ARM cortex-A15 with
four processor cores, 1.94 times speedup for the road tracking application, 2.74
times speedup for the vessel detection application and 2.29 times speedup for the
anomaly detection application can be achieved using the task level parallelization
technique.

In speedup of the proposed method, 4.21 times speedup for the road track-
ing application, 5.80 times speedup for the vessel detection application and
4.10 times speedup for the anomaly detection application can be achieved using
the multigrain parallelization technique on Intel Xeon X5670 with six proces-
sor cores. On ARM cortex-A15 with four processor cores, 3.38 times speedup
for the road tracking application, 3.56 times speedup for the vessel detection
application and 3.24 times speedup for the anomaly detection application can
be achieved using the multigrain parallelization technique. Therefore, the pro-
posed method attains 2.19 times speedup for the road tracking application, 2.19
times speedup for the vessel detection application and 1.64 times speedup for
the anomaly detection application compared with the execution using the task
level parallelization technique on Intel Xeon X5670 using six processor cores.
On ARM Cortex-A15 with four processor cores, 1.75 times speedup for the road
tracking application, 1.30 times speedup for the vessel detection application and
1.41 times speedup for the anomaly detection application compared with the
execution using the task level parallelization technique.

Fig. 7. Execution time per a frame for the road tracking application on Intel and ARM
multi-cores

Further, this paper describes execution time per a frame for the road tracking
application with a scatter per an input image. Fig.7-(a) and (b) shows execution
time per a frame on Intel Xeon X5670 and ARMCortex-A15 for the road tracking
application. The upper lines in Fig.7-(a) and (b) show execution time of ordinary
execution. Each of the execution fluctuates from 1.705 ms to 4.728 ms on Intel
Xeon X5670 and from 10.58 ms to 32.36 ms on ARM Cortex-A15. The middle
lines in Fig.7-(a) and (b) show execution time using the task level parallelization
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technique. Each of the execution fluctuates from 0.815 ms to 2.510 ms on Intel
Xeon X5670 with six processor cores and from 4.88 ms to 17.02 ms on ARM
Cortex-A15 with four processor cores. The lower lines in Fig.7-(a) and (b) show
the execution time using the multigrain parallelization technique. Each of the
execution fluctuates from 0.459 ms to 0.983 ms on Intel Xeon X5670 with six
processor cores and from 3.38 ms to 9.04 ms on ARM Cortex-A15 with four
processor cores. Clearly, each variance of the execution time of the multigrain
parallelized program is much lower than that of each sequential program on each
processor. Therefore, the proposed method allows us to perform stable execution
regardless of on input image. In worst case of sequential execution time on each
processor, proposed method gives us 4.81 times speedup on Intel Xeon X5670
with six processor cores, and 3.72 times speedup on ARM Cortex-A15 with four
processor cores using the multigrain parallelization technique compared with the
sequential execution on each processor.

6 Conclusions

This paper has proposed the automatic multigrain parallelization scheme us-
ing the OSCAR compiler for embedded applications developed by MATLAB/
Simulink. This scheme exploits multigrain parallelism from auto-generated C
code by Embedded Coder and optimizes this code. The proposed method in-
cludes three techniques of the inline expansion, the macro task fusion of con-
ditional branches and the converting loop level parallelism into task level par-
allelism. The inline expansion is used to exploit more parallelism over hierar-
chies or nested levels. The macro task fusion is used to generate the statically
scheduled parallel code without the runtime overhead. The converting loop level
parallelism into task level parallelism is used to improve parallelism without
the overhead of loop level parallelization. Additionally, the proposed method
also includes the automatic profiling framework to improve performance of the
statically scheduled parallel code.

Using the proposed method, this paper parallelized three important applica-
tions such as road tracking for self-driving cars, vessel detection for medical image
recognition, and anomaly detection for pattern recognition really used an indus-
try. In the performance evaluation, the OSCAR compiler with proposed method
gave us 4.21 times speedup for the road tracking application, 5.80 times speedup
for the vessel detection application and 4.10 times speedup for the anomaly
detection application on Intel Xeon X5670 with six processor cores. Moreover,
3.38 times speedup for road tracking, 3.56 times speedup for the vessel detection
application and 3.24 times speedup for the anomaly detection application on
ARM Cortex-A15 with four processor cores. Comparing with the execution us-
ing the task level parallelization technique that is similar to the previous method
for MATLAB/Simulink applications, the proposed method attained from 1.30
to 2.19 times speedup on different multi-cores such as Intel or ARM. The pro-
posed method has successfully improved performance applications developed by
MATLAB/Simulink on multi-core processors.
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HYDRA : Extending Shared Address
Programming For Accelerator Clusters
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Abstract. This work extends shared address programming to accelera-
tor clusters by pursuing a simple form of shared-address programming,
named HYDRA, where the programmer only specifies the parallel re-
gions in the program. We present a fully automatic translation system
that generates an MPI + accelerator program from a HYDRA program.
Our mechanism ensures scalability of the generated program by opti-
mizing data placement and transfer to and from the limited, discrete
memories of accelerator devices. We also present a compiler design built
on a high-level IR to support multiple accelerator architectures. Eval-
uation results demonstrate the scalability of the translated programs
on five well-known benchmarks. On average, HYDRA gains a 24.54x
speedup over single-accelerator performance when running on a 64-node
Intel Xeon Phi cluster and a 27.56x speedup when running on a 64-node
NVIDIA GPU cluster.

1 Introduction

The last decade has seen a steady rise in the use of accelerators towards high-
performance computing. Many supercomputers rely on devices such as NVIDIA
or AMD GPUs and Intel Xeon Phis to accelerate compute-intensive workloads.
Various programming models and frameworks [8, 14] have so far been proposed
to effectively use accelerators on individual compute nodes. As the productivity
of these frameworks has risen over the years, there is growing interest in pro-
gramming systems that can efficiently use accelerators on all nodes of a cluster.

Writing a program to exploit CPU clusters in itself is a tedious and error-
prone task. The need for accelerator programming adds further to this difficulty,
as the involved programming models differ substantially from those of common
CPUs. To achieve greater productivity, high-level programming models for ac-
celerator clusters are needed.

In response to such requirements, this paper presents compiler and runtime
techniques required for a shared address programming model for accelerator
clusters. In our research, we pursue a simple model, called HYDRA, where pro-
grammers only specify parallel regions and shared data in the program. From
our observation, most parallel applications in well-known benchmark suites, such
as Rodinia [4], can be implemented using only this construct. To demonstrate
the effectiveness of our techniques, we developed a source-to-source translation



system that converts a HYDRA program into an MPI + accelerator program
(referred to as accelerated MPI program hereafter).

There are two important performance factors for accelerator cluster pro-
grams: single-accelerator speed and scalability across nodes. Researchers have
previously proposed advanced techniques for generating optimized single-
accelerator code from shared address programs [8, 14]. By contrast, this paper
focuses on the scalability aspect, which is crucial, as large clusters are expected
to efficiently process increasingly large problem sizes. Optimization techniques
for single accelerators are insufficient. Realizing shared address programming
with high scalability on accelerator clusters poses the following three challenges.
These challenges do not exist on CPU clusters. Their solution represent the
specific contributions of this paper.

1. The first challenge comes from the fact that, unliked CPUs, current ac-
celerators have discrete and limited memories. Full data allocation of today’s
typical problem sizes on accelerator memories could exceed available capacities.
This limitation would result in failure of single-accelerator execution and an in-
ability to scale to multiple nodes. Programmers of accelerated MPI code avoid
this problem by allocating only the part of the data accessed by each process of a
distributed program. By contrast, shared address programming hides the access
distribution from programmers and, instead, relies on the compiler or runtime
support to extract such information. The distribution of the data accesses is
related to the partitioning of the program computation. The system must be
aware of such partitioning to precisely allocate memory on accelerators. With-
out advanced analysis, a compiler may allocate the entire shared data on the
accelerator memory, which could result in the said failure. Our first contribution
overcomes this issue by introducing a precise compile-time memory allocation
method.

2. A second critical issue is related to the data transfer between accelerator
and host memory. Minimizing this transfer is critical for scalability. The challenge
lies in the single machine image of the shared address space, where programmers
do not specify data movements between CPU and accelerator memories. The
compiler, having to derive such transfer from the program, might send entire
shared data structures to/from accelerator memory, introducing excessive over-
head. Our second contribution introduces a compile-time solution to minimize
such transfers.

3. Both proposed techniques are architecture-agnostic. We show results on
two common accelerators: NVIDIA’s GPUs and Intel Xeon Phis (referred to as
MIC hereafter). Our compiler design includes support for multiple architectures.
Our third contribution lies in this design, which separates passes that are com-
mon across architectures and specialized passes for the target architectures. The
compiler takes HYDRA programs as input, and translates them into acceler-
ated MPI programs, using CUDA or OpenCL, depending upon the underlying
architecture.

We demonstrate the efficacy of the proposed techniques by experiment-
ing with five common applications on two clusters of 64 nodes each; one has



NVIDIA GPUs, the other has Intel MICs. The speedup against optimized single-
accelerator performance is as high as 43.81x on a 64-node GPU cluster and 45.18x
on a MIC cluster.

The remainder of this paper is organized as follows. Section 2 describes the
baseline system on which HYDRA is built. Section 3 discusses the requirements
for the translation and our solutions. Section 4 describes the implementation of
the HYDRA translation system. Section 5 presents experimental results on five
benchmarks. We discuss related work in Section 6 and present conclusions in
Section 7.

2 Background

2.1 OMPD Baseline System

Our work builds on the OMPD [10] hybrid compiler-runtime system, which en-
ables OpenMP programs to utilize nodes of a distributed system.

The compiler is responsible to partition the program computation and to
perform the static part of the communication analysis.The compilation process
of OMPD consists of two phases: (1) program partitioning and (2) static com-
munication analysis. In program partitioning, the compiler divides the program
into sections, referred to as program blocks, each containing either serial code or a
parallel loop. The serial program blocks are replicated across processes while the
parallel blocks are work-shared. The parallel loop’s iterations are partitioned and
distributed across MPI processes. A barrier is placed at the end of each program
block, representing a potential communication point. The static communication
analysis performs array data flow analysis, described in Section 2.2, determining
local uses and local definitions of each program block. The compiler transfers
this information to the runtime system for complete communication analysis.

All inter-node communication is generated and executed at runtime. At each
barrier, the runtime system analyzes global uses, which determines future uses of
all data at any needed communication point. The communication messages are
determined by intersecting local definitions and global uses. The runtime system
uses this information to schedule communication and generate MPI messages.

2.2 Array Data Flow Analysis

Array data flow analysis [11] enables the compiler to analyze the precise producer
and consumer relationships between program blocks. The result of the analysis
is a set of local uses and local definitions of each program block, at each barrier
in the program. Every process will have its own local definitions and local uses.
For shared array A at barrier i, the local use is denoted by LUSEA

i and local
definition by LDEFA

i , defined as

LUSEA
i = {useA(i,j)|1 ≤ j ≤ n} (1)

LDEFA
i = {defA

(i,k)|1 ≤ k ≤ m} (2)



where each use represents a read access of array A in the program block after
barrier i and each def represents a write access of array A in the program block
before barrier i. n and m are the number of read accesses in the program block
after barrier i and the number of write accesses in the program block before
barrier i of array A, respectively. For a p-dimensional array A, each use and def
is defined as a pair of lower bound and upper bound accesses in each dimension
of the array. For dimension d, the lower and upper bound are represented as
[lbd : ubd]. An example of use and def for a p-dimensional array is as follows

useA(i,j) = [lbp−1 : ubp−1]...[lb1 : ub1][lb0 : ub0]

defA
(i,j) = [lbp−1 : ubp−1]...[lb1 : ub1][lb0 : ub0]

We extend this array data flow analysis framework for the new optimizations
described in Section 3.

3 Extending Shared Address Programming Beyond CPU
Clusters

Extending CPU-based shared address programming to support accelerator clus-
ters poses a number of challenges. While the model is convenient for users, the
programs abstraction hides information that is relevant for the translator. Thus,
the compiler needs sophisticated techniques to extract this information. The
need for such techniques is critical in our HYDRA programming model, as pro-
grammers only specify parallel regions and do not include such information as
data transfer and communication. Section 3.1 describes the model in more detail.

Our techniques deal with the fact that accelerators are independent compu-
tational components with separate address spaces, reduced memory capacities,
and diverse architectures. Section 3.2 explains these threee challenges in more
detail and presents our solutions.

3.1 HYDRA Programming Model

HYDRA is a directive-based shared address programming model offering a single
parallel loop construct

#pragma hydra parallel for [clauses]

The clauses are syntactically optional but might be needed for program seman-
tics. Table 1 lists all available clauses for the HYDRA parallel loop directive.
The shared, private, and firstprivate clauses specify characteristics of vari-
ables. Variables not listed explicitly are shared by default. The reduction clause
indicates that the annotated loop performs a reduction operation on variables
in varlist using operator op.

Despite HYDRA’s simplicity, many parallel applications can be implemented
using only this single HYDRA construct. All of our evaluation benchmarks were
available in the form of OpenMP programs. We generated HYDRA versions by



Table 1. Parallel Loop Directive Clauses

Clause Format Description

shared shared(varlist) List of shared variables.

private private(varlist) List of private variables.

firstprivate firstprivate(varlist) List of private variables, whose value must be
initiated before the start of the parallel loop.

reduction reduction(op:varlist) List of variables to perform reduction with op-
erator op.

a simple, syntactic translation. We chose HYDRA instead of available models,
such as OpenACC and OpenMP, for research purposed, which are to explore
the concepts of the translation and the generic characteristic of shared-address
models.

3.2 Compiler Analyses for Accelerator Data Management

In distributed programming, the computation is partitioned and distributed
across processes. The programmer is responsible for doing so. HYDRA instead
holds the underlying compiler and runtime responsible for these tasks. Program-
mers do not need to express any information about access ranges of shared data.

The lack of such information may tell the compiler that each process is ac-
cessing the entire data, although in reality, only a portion of the data is being
accessed. This problem is not critical in CPU clusters because of large physical
memory space and virtual address systems; however, accelerator memory is much
smaller and does not have a virtual memory system. As the typical problem sizes
used on clusters are much larger than a single accelerator’s memory, allocating
the entire data required by the computation on each accelerator would result
in program failure due to insufficient memory. Even if the data fits in the ac-
celerator memory, another issue would arise: accelerator memory is discrete and
input data must be transferred to it before being used. Transferring the entire
data would introduce excessive overhead. Therefore, data access information is
crucial to the scalability of accelerator cluster programs.

Data Transfer Analysis To minimize data transfers, a compiler analysis must
precisely identify the data accessed by each program block. The precise access
information can be identified by the union of read and write sections of live
data. The details of the analysis are as follows: The first part of our data transfer
analysis identifies the shared data that are live-in and live-out of a given program
block executing on the accelerators, Bi. This information can be derived from
the LUSE information, generated by the array data flow analysis described in
Section 2.2.

Let Bri denote the barrier before Bi, Brf denote the future barriers that
the program will reach after Bi, and ShareV ar(Bi) denote the set of shared
variables accessed in the program block Bi. Let A ∈ ShareV ar(Bi). If there
exists LUSEA

Bri
, array A will be used in Bi and a data transfer from host to

accelerator is required. On the other hand, if there exists LUSEA
Brf

array A will
be used in the future, requiring a data transfer from accelerator to host.



If it is determined that a data transfer is required for an array A at bar-
rier Bri, the next step is to identify the section of array A that will be trans-
ferred. The required section of an array A on each dimension can be obtained
as [lbmin,Bri : ubmax,Bri ] where lbmin,Bri is the minimum lower bound of all
local accesses of array A and ubmax,Bri is the maximum upper bound of all local
accesses of array A at barrier Bri in that dimension. Note that the upper and
lower bounds can be symbolic expressions. The analysis obtains lbmin,Bri and
ubmax,Bri by using the symbolic analysis capabilities of Cetus [1].

Memory Allocation Optimization Memory allocation/deallocation could be
done at the beginning/end of each kernel, based on the data size computed for
the transfer. However, as the same array may be accessed in multiple kernels, one
can do better. Our method performs global analysis to summarize all accesses
of the shared array in the program and allocates/deallocates only once, saving
costs and improving re-use of the allocated memory. There is a small sacrifice
in precision, in terms of the memory size allocated, which however is always
conservatively larger. Such sacrifice does not affect the correctness of the program
and is outweighed by the saved costs of repeated allocation and possible re-
transfer of data.

The optimization is based upon global array dataflow analysis for precise ar-
ray sections. The implementation also makes use of the advanced array dataflow
framework and symbolic analysis capabilities available in the Cetus compiler in-
frastructure. The memory space requirement of an array A is extracted from the
union of LDEFA and LUSEA, where LUSEA represents all read accesses and
LDEFA represents all write accesses of an array A in the program. LDEFA

is the union of all LUSEA
Bri

and LDEFA is the union of all LDEFA
Bri

in the

program. Thus, LUSEA ∪LDEF a represents all accesses of array a in the pro-
gram. The memory requirement for each dimension of the array can be defined
as [lbmin : ubmax] where lbmin ∈ (LUSEA ∪ LDEFA) is the minimum lower
bound of all accesses of array A and ubmax ∈ (LUSEA ∪ LDEFA) is the maxi-
mum upper bound of all accesses of array A. [lbmin : ubmax] indicates the bounds
of any access to array A in the local process. Thus, it also defines the memory
allocation for array A. The size of the new array is different from the original.
The compiler must incorporate this change into all accesses of the new array by
subtracting lbmin from all indices. The size and offset information is also utilized
while generating the data transfers.

The analysis does not require array sections to be contiguous and can sup-
port arrays with any number of dimensions. In our current implementation, if
the analysis results in multiple array sections, the algorithm will conservatively
merge them together. Further analysis can be done to determine whether the
sections should be merged or not, which we leave to future work.

4 Translation System Implementation

The HYDRA translation system consists of a compiler and a runtime system.
The compiler performs source-to-source translation to generate accelerated MPI



Fig. 1. HYDRA Compiler Translation Process: Grey boxes represent the new passes
in the HYDRA compiler.

code from input HYDRA programs. Section 4.1 explains the compiler design
to support multiple accelerator architectures. Section 4.2 presents the overall
translation process of the HYDRA compiler. The HYDRA runtime system is re-
sponsible for remote accelerator-to-accelerator communication in the compiler-
translated, accelerated MPI programs. The implementation of the runtime sys-
tem is described in Section 4.3.

4.1 Supporting Multiple Accelerator Architectures

To support a wide-range of accelerator clusters, the compiler must be able to
target different accelerator architectures. This requirement poses a challenge to
the compiler design as different architectures have different features, some of
which are common while others are unique to the specific architecture.

In the HYDRA compiler, most compilation passes are architecture-agnostic
with no specialization needed. The design defers specialization to as late as
possible in the translation process. In this way, only the last compilation pass of
code generation is architecture specific. The key to realizing such design is the
internal representation (IR).

From our observation the following four operations are sufficient to express
any accelerator program : (1) Memory Allocation, (2) Data Transfer, (3) Accel-
erator Kernel Execution, and (4) Memory Deallocation. By using these opera-
tions as IR constructs, the compiler can represent programs in an architecture-
independent form. To generate architecture-specific code, the compiler con-
verts architecture-independent constructs to their architecture-specific equiva-
lents during the code generation pass.

4.2 HYDRA Translation Process

Fig. 1 shows the overall translation process from the input HYDRA program to
the accelerated MPI program. Accelerator extensions are highlighted using grey
boxes. The dashed boxes represent existing CPU passes.

The compilation process starts with the CPU passes, which perform work
partitioning and array dataflow analysis. The partitioned program is then passed
to HYDRA’s accelerator extension. The passes in the extension perform acceler-
ator kernel generation, memory transfer analysis, memory allocation optimiza-
tion and further architecture-independent optimization (e.g. hoisting memory
transfers, prefetching, etc.). After the accelerator code is added, the compiler



analyzes and adds communication code to the program. The compilation pro-
cess completes with the code generation pass, which produces the accelerated
MPI program with accelerator kernels specific to the target architecture.

The current implementation of the HYDRA compiler supports two accel-
erator types: NVIDIA CUDA GPUs and Intel MIC. As target languages, we
choose CUDA for NVIDIA GPUs and OpenCL for Intel MICs. One might argue
that different architectures could be supported by using OpenCL as the target
language for all accelerator architectures; the compiler just needs to generate
OpenCL + MPI programs, allowing the generated code to run on any accelera-
tor cluster. However, OpenCL does not support accelerator-specific features, e.g.
using warp-level functions in CUDA. Thus, the translated code cannot fully uti-
lize the accelerator capabilities. Further, some architectures have limited support
for OpenCL features [6].

The HYDRA compiler faces similar limitations as the baseline OMPD sys-
tem: irregular programs are handled inefficiently for lack of compile-time infor-
mation about data accesses. Such accesses may lead to conservative memory
allocations and data transfers.

4.3 HYDRA Runtime System

The HYDRA runtime system is responsible for remote accelerator communica-
tion. In contrast to CPUs, accelerators cannot directly perform remote communi-
cation. The communication must be handled by the host CPU. Thus, additional
data transfer between host and accelerator memories is required before and after
the communication. We refer to such data transfer as message relay.

We designed a new runtime extension (ACC-RT), whose interaction with the
host-side runtime system (HOST-RT) enables remote accelerator communica-
tion. The HOST-RT system is responsible for generating communication mes-
sages and executing host-to-host communication, while the ACC-RT system is
responsible for managing host-accelerator data mapping and message relays. The
ACC-RT system uses communication information from the HOST-RT system to
generate message relays. The transfers are computed from the communication
messages generated by the HOST-RT system, and the mapping information pro-
vided by the HYDRA compiler. A runtime interface is designed for the compiler
to provide mapping information between host and accelerator data. The map-
ping information includes the host address, accelerator address, accelerator data
size, and accelerator data offset. The accelerator offset is necessary in order to
align accelerator and host data. The overhead of the ACC-RT system is negligi-
ble. In our experiments, we found this overhead to be less than 0.1% of the total
execution time on 64-node accelerator clusters.

5 Evaluation

This section evaluates the effectiveness of the proposed techniques on two accel-
erator clusters, one with NVIDIA GPUs and another with Intel MICs.



Table 2. Experimental Setup for Strong Scaling

Benchmark class-A Problem Size class-B Problem Size Number of Iterations

Jacobi 20000 × 20000 24000 × 24000 1000

Heat3D 768 × 768 × 768 800 × 800 × 800 1000

Blackscholes 67,000,000 options 400,000,000 options 1000

Bilateral Filter 12280 × 12280 20000 × 20000 1

Filterbank 67,000,000 134,000,000 32

5.1 Experimental Setup

We used the Keeneland cluster [20] to evaluate the GPU versions of the HYDRA
programs. Keeneland consists of 264 compute nodes, connected by an FDR In-
finiband network. Each node has two 8-core Xeon E5-2670 running at 2.6 Ghz,
32GB of main memory, and three NVIDIA Tesla M2090 GPUs. Each GPU has 6
GB of device memory available for computation. We evaluated the MIC program
versions on a community cluster, where each node contains two 8-core Xeon E5-
2670 CPUs, 64 GB of main memory, and two Intel Xeon Phi P5110 accelerators.
Each Xeon Phi has 6 GB of device memory available for computation. The nodes
are connected by an FDR-10 Infiniband network. Our evaluation uses up to 64
nodes with one MPI process and one accelerator per node.

We present the results for five representative benchmarks: Bilateral Filter,
Blackscholes, Filterbank, Jacobi, and Heat3D. Bilateral Filter and Blackscholes
are from the NVIDIA CUDA SDK. The benchmarks are implemented in HY-
DRA by converting their OpenMP counterparts. Bilateral Filter is a non-linear
and edge-preserving filter used for noise reduction and image recovery. It uses a
weighted average of intensity values from nearby pixels to update the intensity
value of each individual image pixel. Blackscholes is a financial formula to com-
pute the fair call and put prices for options. Filterbank is from StreamIt [19]
benchmark suite. The benchmark creates a filter bank to perform multi-rate
signal processing. Jacobi is a two-dimensional 5-point stencil computation that
solves Laplace equations using Jacobi iterations. Heat3D is a three-dimensional
7-point stencil computation that solves a heat equation. Both Jacobi and Heat3D
are common computations in scientific applications. These benchmarks represent
a class of applications and computations that perform well on single-accelerator
systems, and thus can be expected to take advantage of accelerator clusters.

5.2 Scalability

Strong scaling In the strong-scaling test, the problem size is kept fixed and
the number of processes is varied. We use two problem sizes for each bench-
mark: class-A and class-B. A class-A problem is small enough to fit the entire
computation data in a single accelerator’s memory. A class-B problem requires
more than one accelerator to execute, since the memory requirement exceeds the
capacity of a single accelerator. Table 2 shows the setting of each problem class.

Fig. 2 shows the results for both MIC and GPU clusters. HYDRA programs
with class-A problems achieve an average of 24.54x speedup on the 64-nodes MIC



Table 3. Experimental Setup for Weak Scaling

Benchmark MIC Problem Size GPU Problem Size Number of Iterations

Jacobi 8192 × 8192 8192 × 8192 100

Heat3D 512 × 512 × 512 450 × 450 × 450 100

Blackscholes 67,000,000 options 32,000,000 options 100

Bilateral Filter 5500 × 5500 5500 × 5500 1

Filterbank 4,000,000 4,000,000 32

cluster and 27.56x speedup on the GPU cluster. The maximum speedup is 45.18x
on the MIC cluster and 43.81x on the GPU cluster. The speedup is calculated
against a single accelerator execution time. We show the average speedup only
on class-A problems because they can correctly execute on a single node. For
class-B problems, the performance is compared against the performance of a
configuration with the smallest number of accelerators that allow the program to
be executed successfully. Our result shows that Jacobi, Heat3D, and Blackscholes
have good scalability on both MIC and GPU clusters.

MIC STRONG SCALING

(a) Jacobi (b) Heat3D (c) Blackscholes (d) Bilateral Filter (e) Filterbank

GPU STRONG SCALING

(f) Jacobi (g) Heat3D (h) Blackscholes (i) Bilateral Filter (j) Filterbank

Fig. 2. Strong scaling experimental results of five benchmarks on MIC cluster(a-e)
and GPU cluster (f-j). The speedup of the class-A problem is relative to a single-
node performance. The speedup of class-B problem is relative to the performance of a
configuration with the smallest number of accelerators that allow the program to be
executed successfully.

Bilateral Filter shows limited scalability on both MIC and GPU clusters.
The lack of coalesced memory accesses inside the accelerator kernel leads to in-
efficient execution, limiting performance gained by node-level parallelism. With
64 nodes, the speedup is 5.49x on MICs and 18.24x on GPUs. More advanced
compiler analysis may enable coalesced memory accesses, thus improving the
scalability of the generated program. Filterbank also exhibits scalability limita-



(a) Weak scaling-MIC (b) Weak scaling-GPU

Fig. 3. Weak scaling results of five benchmarks on MIC cluster(a) and GPU cluster(b).
The speedup shown is against the execution of a single-accelerator single-node setup.

tion on both MIC and GPU clusters. In contrast to Bilateral Filter, the cause of
the limitation is the conservative methods of the array data flow analysis. The
analysis summarizes memory accesses by all paths of conditional branches inside
the parallel loops, resulting in extra broadcast communications.

On the MIC cluster, Blackscholes with class-B problem size shows super-
linear speedup when the number of nodes increases from 4 to 8. The reason
lies in the data transfers inside the iteration loop. The transfer on 4 nodes is
22.14x slower than on 8 nodes due to MIC’s driver issue. This difference in data
transfer time contributes to the super-linear speedup. This transfer could have
been hoisted out of the iteration loop, however, automatic compiler hoisting
did not take place in this case due to implementation limitations. We tried
hoisting this transfer out of the loop manually, and observed that the achieved
performance showed linear scaling, as in the class-A problem.

Weak scaling In the weak scaling test, the problem size is increased as the
number of processes increases. The problem size per process is fixed. Table 3
shows the problem sizes per compute node used in the weak scaling experiment
on the GPU and MIC clusters. We performed this experiment using up to 32
accelerators. Fig. 3 shows the weak scaling results of both MIC and GPU clusters.
The speedup is calculated over the execution time of a single node with one
accelerator.

Jacobi, Heat3D, Bilateral Filter, and Blackscholes achieve high scalability in
the weak scaling test. Filterbank performs the worst in terms of the scalability
owing to excessive broadcast communication caused by the conservative array
data flow analysis. Note that the achieved scalability is better on the MIC cluster
than on the GPU one. This is because, on average, the accelerator execution time
is greater on MICs than that for GPUs. Therefore, the communication overhead
has a bigger impact on the scalability in the GPU cluster.

5.3 Memory Allocation

In this experiment, we show only weak-scaling results on the MIC cluster. The
other tests exhibited similar trends. Fig. 4 shows the memory allocation require-



(a) Jacobi (b) Heat3D (c) Blackscholes

(d) Bilateral Filter (e) Filterbank

Fig. 4. Accelerator memory allocation in weak-scaling experiments on MIC cluster.

ment for each benchmark in the weak scaling experiment on the MIC cluster.
Each chart shows the total amount of memory required by the entire problem
and the amount of memory actually allocated on the accelerator for each bench-
mark. For all benchmarks, except Filterbank, the size of allocated memory on
the accelerator memory is fixed as the number of nodes increases. The dotted
line indicates the single accelerator memory limitation. It shows the scaling limit
if the memory allocation optimization is not implemented. Without memory al-
location optimization, Jacobi cannot exploit more than 8 nodes, while Heat3D,
Blackscholes, and Bilateral Filter benchmarks cannot run beyond 4 nodes.

Unlike other benchmarks, the accelerator memories allocated by each pro-
cess are different for Filterbank. We report the minimum memory (required by
process 0) and the maximum memory (required by process N-1) in Fig. 4e. For
process 0, the accelerator memory requirement remains the same for any prob-
lem size. For other processes (1 to N-1), however, the memory requirement grows
with the problem size. This behavior is explained by the conservative array data
flow analysis employed by HYDRA that results in over-allocation in the presence
of conditional branches.

6 Related Work

Programming Models for Accelerator Clusters Several previous efforts
proposed programming models for accelerator clusters. OmpSs [2, 3] considers
a directive-based shared address programming model. This model requires the
users to provide extra information to the compiler about computation offload-



ing and data transfers. Programmers use data region to specify accessed regions
of shared data; the underlying runtime system then manages the allocations
and transfers of these regions. Several other approaches [13,16] extend a PGAS
(Partitioned Global Address Space) language to support GPU clusters. PGAS
languages require programmers to specify thread and data affinity explicitly.
In contrast to this work, the HYDRA compiler derives the required information
automatically from HYDRA programs, which are easier to write than PGAS pro-
grams. SnuCL [9] extends an OpenCL framework to run on CPU/GPU clusters.
The SnuCL runtime system provides a single machine image, which allows single-
node OpenCL programs to run on the cluster. In contrast to our work, SnuCL
programmers still face the programming complexity of accelerator programming.
Moreover, as we discussed earlier, OpenCL is not fully portable. Programmers
need to customize OpenCL programs for each architecture to fully utilize CPUs
and accelerators.

Memory Management and Communication Memory management and
communication are innate to any shared address programming model. Several
previous efforts proposed shared address programming models for CPU clusters.
There are two major approaches for memory allocation management in these
contributions. The first approach is to rely on the underlying operating system
or runtime system. For example, in OMPD [10], each process allocates the entire
shared data in every process and lets the virtual memory system allocate the
required physical memory when the data is accessed. This solution is not feasible
on accelerators because of the lack of virtual address space on GPUs and the lack
of swap space on MICs. Another example is Software Distributed Shared Mem-
ory (SDSM) [7]. The SDSM runtime system provides a shared address abstrac-
tion of the distributed system. The performance of this approach has remained
far below that of MPI programming. Another approach relies on information
provided by the programmers. In High Performance Fortran (HPF) [18], pro-
grammers explicitly provide data partitioning information through directives. In
PGAS languages, such as UPC [5], Co-array Fortran [15], and Titanium [21] , the
programmers explicitly specify the affinity between processes and data. In con-
trast to these systems, HYDRA neither requires additional directives nor relies
on the operating system. On the GPU side, Ramashekar and Bondhugula [17]
proposed a hybrid compiler-runtime analysis, based upon the polyhedral model,
to automate data allocation on multi-GPU machines. In contrast to their work,
HYDRA uses symbolic analysis to perform compile-time memory allocation and
transfer analyses targeting accelerator clusters and provides a complete transla-
tion system for multiple accelerator types. NVIDIA introduced Unified Memory
Access to simplify memory management on GPUs; however, this system incurs
high overhead [12].

7 Conclusion

We have introduced compile-time and runtime techniques for extending shared
address programs for execution on accelerator clusters of multiple types.



The paper presented two novel, architecture-agnostic compile-time analyses,
which ensure scalability of the translated program. We also presented a runtime
system to support accelerator communication. To show the effectiveness of these
analyses, we developed a source-to-source translation system that generated an
accelerated MPI program from a simple shared address programming model
called HYDRA. To support the architecture-agnostic nature of the proposed
technique, a careful compiler design was presented. We demonstrate this de-
sign for two common accelerators: NVIDIA GPUs and Intel Xeon Phi. With the
proposed techniques, we showed that the simple form of shared address program-
ming can be extended to accelerator clusters without additional involvement of
programmers.

HYDRA can achieve an average speedup of 24.54x against a single-accelerator
performance when running on a 64-node cluster with Intel Xeon Phis and a
27.56x speedup when running on 64 nodes with NVIDIA GPUs. We also showed
that our single-node performance is comparable to, or better than, a state-of-the-
art OpenMP-to-CUDA translation system. There are additional opportunities
for performance enhancements in our system for both computation and commu-
nication. Ongoing work is exploring these opportunities.
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Abstract. Legacy MPI applications are an important and economically
valuable category of parallel software that rely on the MPI-1, MPI-2
(and, more recently, MPI-3) standards to achieve performance and porta-
bility. Many of these applications have been developed or ported to MPI
over the past two decades, with the implicit (dual) goal of achieving ac-
ceptably high performance and scalability, and a high level of portability
between diverse parallel architectures. However they were often created
implicitly using MPI in ways that exploited how a particular underly-
ing MPI behaved at the time (such as those with polling progress and
poor implementation of some operations). Thus, they did not necessarily
take advantage of the full potential for describing latent concurrency or
for loosening the coupling of the application thread from the message
scheduling and transfer.
This paper presents a first transformation tool, Petal, that identifies
calls to legacy MPI primitives. Petal is implemented on top of the ROSE
source-to-source infrastructure and automates the analysis and trans-
formation of existing codes to utilize non-blocking MPI and persistent
MPI primitives. We use control flow and pointer alias analysis to over-
lap communication and computation. The transformed code is capable
of supporting better application bypass, yielding better overlapping of
communication, computation, and I/O. We present the design of the tool
and its evaluation on available benchmarks.

1 Introduction

The Message Passing Interface (MPI) describes a library that enables the de-
velopment of portable parallel software for large-scale systems. The first MPI
standard [12] focused on providing a basic framework for point-to-point and col-
lective communication. MPI-2 [8] introduced one-sided communication, added
support for parallel file access, and dynamic process management, and extended
the usefulness of two-group (inter-communicator) operations. MPI offers a small



set of core functions that are sufficient for the development of many applications,
and also offers functionality that helps experts optimize applications [10]. MPI
bindings exist for C++, Fortran, and many other languages, making MPI one of
the most prevalent programming models for high-performance computing. MPI
is supported on many platforms, which makes applications developed with MPI
portable to many large-scale systems. Building high-performance computing sys-
tems constitutes a large investment in human resources. As the communication
infrastructure advances and the MPI standards and library implementations fol-
low suite, legacy codes becomes a potential liability. Code that does not utilize
more recent MPI primitives will not scale well on newer architectures. This effect
will become more marked over time.

With Exascale systems on the horizon, the cost of communication is becom-
ing a major concern. Compared to older architectures, communication incurs
relatively more overhead. Legacy software written for older architectures often
utilizes MPI Send and MPI Recv for the communication of point-to-point messages.
These two primitives block until the data exchange completes (or at least till
the send buffer can be reused by the calling thread). While this makes it easy
for programmers to reason about communication, such methods fail to utilize
computing resources efficiently. On next generation hardware, the implied cost
of sending data using a polling and/or blocking mode of communication signif-
icantly rises and it is expected that software relying on blocking communica-
tion will have too much overhead. In order to take advantage of the architec-
tural changes in Exascale, existing code needs to be transformed to use better
primitives, some of which are only available in MPI-3 or higher. Non-blocking
primitives allow overlap of communication with local computation3. A paired,
non-blocking communication uses two MPI routines, one to start (MPI Isend,
MPI Irecv) and one to complete (MPI wait). After a communication has been ini-
tiated, code can compute, and only waits at the MPI wait to synchronize with
the communication operation. In addition to the benefits of non-blocking, ap-
plications that exhibit fixed point-to-point communication patterns can further
utilize persistent operations introduced in MPI-1 and being extended in MPI-
3.x. Persistent MPI primitives reduce communication overhead in applications
that exhibit fixed patterns. Persistent MPI operations minimize the overhead
incurred from redundant message setup.

Rewriting legacy MPI programs by hand is both tedious and error prone.
To relieve programmers of the task of manually rewriting applications, the au-
thors have developed tool support to replace uses of MPI primitives that are
known to perform slowly on modern hardware (or may have better alternatives,
especially on next-generation architectures) with better alternatives in the MPI
standard. We have implemented a source code rejuvenation tool [16] called Petal
using the ROSE source-to-source infrastructure [17][3]. We chose ROSE for its
support of many languages relevant for high-performance computing. Petal an-

3 provided the underlying MPI does not poll excessively to make progress or for mes-
sage completion, the messages are long enough, and there is sufficient memory band-
width for both communication and computation.



alyzes existing source code and finds calls to MPI Send and MPI Recv. It replaces
these primitives with their non-blocking counterparts and uses data-dependency
and control-flow information to find code locations where corresponding calls to
MPI Wait need to be inserted. If Petal can determine that the communication
partners, message buffer, and message length do not change, persistent commu-
nication primitives will be used in lieu of non-persistent functions.

Overall, this paper offers the following contributions:
– program analysis and transformation to replace blocking MPI calls with

non-blocking calls;
– program analysis and transformation to introduce persistent MPI calls; and,
– analysis of persistent MPI implementations.

The remainder of this paper is organized as follows. §2 presents more de-
tailed information on MPI and ROSE. §3 describes our implementations and
§4 discusses our evaluation and findings. §5 gives an overview of related work
on MPI transformations, and §6 offers conclusions and an outlook on possible
future work.

2 Background

This section provides background information on MPI and the ROSE compiler
infrastructure.

2.1 MPI primitives

MPI offers several modes of operation for point-to-point communication. Many
programs employ MPI Send and MPI Recv, two blocking MPI primitives. MPI Send

takes the following arguments: base pointer to message data, the number of
elements to send, a type descriptor, the destination, and a communicator. The
base pointer to data typically points to a send buffer, but it could also point
to data described by a type descriptor. Blocking means that the MPI primitive
waits until the message buffer containing the data being sent/received is safe to
be used again by the calling process. Only then is control returned to the caller.
On send, actual implementations of MPI Send may either block until all data has
been transmitted or copy the data to an intermediate internal buffer. The use of
blocking primitives may be prone to deadlocks, if programmers do not carefully
consider send and receive order [13]

MPI Isend and MPI Irecv are non-blocking versions for point-to-point mes-
sage communication. Compared to MPI Send’s arguments, MPI Isend adds an ad-
ditional argument for a request handle. The handle is used in calls to MPI Wait

to identify which send to wait for. Non-blocking calls return immediately after
initiating the communication and the user thread can execute more operations,
eventually followed by a completion operation (a wait or test) on the request.
The communication is considered complete after a successful call to MPI Wait (or
MPI Test, etc.). Non-blocking is used to help promote overlap communication
and computation, resulting in communicating cost hiding and yielding overall



better performance on systems that support it. To avoid tampering with the
data, programmers must ensure that the message data is not modified before
the communication is completed.

Another mode is offered by persistent communication primitives. If a pro-
gram exhibits regular communication patterns (static arguments), where the
same communication partners exchange fixed size messages, utilization of per-
sistent MPI enables exploitation of faster communication paths. Provided MPI
implementations efficiently implement these operations, persistence supports re-
duced overhead by eliminating cost associated with repeated operations and
streamlined processing of derived datatypes. Persistence also can reduce jitter
and allow for preplanned choice of algorithms, such as for MPI collectives. Since
persistence in MPI offers many benefits (potential and long observed), it is likely
that future MPI standards will enhance support for persistent primitives, for ex-
ample by supporting variable length messages between the same communication
partners.

Note that all three modes can be used interchangeably. It is possible that
one side uses persistent MPI, while the other side does not. That is why the
functions are sometimes referred to as providing half-channels.

Fig. 1 shows the use of blocking, non-blocking, and persistent operations for
a simple 1D heat transfer code. The basic design of the heat-transfer code is
depicted in Fig. 1d. The code uses two arrays, containing cells with tempera-
ture information. The initial temperatures are located in the even array. In odd
numbered timesteps the odd array is computed from the even array and in even
numbered timesteps vice versa. Red cells are computed by neighbors and dark
blue cells are needed by neighbors for the next iteration. Fig. 1a shows a blocking
implementation. The order of sends and receives is important to avoid deadlock.
Even-numbered MPI processes send first, odd numbered processes receive first.
D stands for MPI DOUBLE, and n is the rank of this node. For simplicity, the codes
assume that each process has two neighbors and ignores send and receive status.
Fig. 1b demonstrates the overlap of communication and computation in non-
blocking mode. The key idea is that the inner (light blue) cells can be computed
before the data from neighbors are received. The code starts two receive op-
erations to receive both neighbor’s data from the last iteration. Then it starts
two send operations to communicate its values from the previous iteration to its
neighbors. While the communication is ongoing, the inner cells are computed.
Before cells depending on neighbors’ data can be computed, the code waits un-
til the data have been received (Line 10). After computing the outer cells, the
wait in Line 13 blocks until the data have been sent. This is necessary in or-
der not to overwrite the data in the next iteration. Fig. 1c shows the persistent
version of the code. Since the communication patterns, buffer, and buffer size
do not change, we can set up the communication for sends and receives at the
beginning of the program, and reuse this pattern in every iteration.



1 double b[4]; // send/receive buffer

3 for (int i = 0; i<MAX; ++i) {
data to buf(prev, b+2);

5 if (n%2 == 0) {
7 MPI Recv(b+0, 1, D, n−1, 0, com);

MPI Recv(b+1, 1, D, n+1, 0, com);
9 }

MPI Send(b+2, 1, D, n−1, 0, com);
11 MPI Send(b+3, 1, D, n+1, 0, com);

if (n%2 == 1) {
13 MPI Recv(b+0, 1, D, n−1, 0, com);

MPI Recv(b+1, 1, D, n+1, 0, com);
15 }
17 buf to data(b, prev);

compute all(prev, curr);
19 swap(curr, prev);

}

(a) Blocking operations

MPI request r[4]; // request handler
2 double b[4]; // send/receive buffer

4 for (int i = 0; i<MAX; ++i) {
data to buf(prev, b+2);

6 MPI Irecv(b+0, 1, D, n−1, 0, com, r+0);
MPI Irecv(b+1, 1, D, n+1, 0, com, r+1);

8 MPI Isend(b+2, 1, D, n−1, 0, com, r+2);
MPI Isend(b+3, 1, D, n+1, 0, com, r+3);

10 compute inner(prev, curr);
MPI Wait(2, req+0, IGNORE);

12 buf to data(b, prev);
compute outer(prev, curr);

14 MPI Wait(2, req+2, IGNORE);
swap(curr, prev);

16 }

(b) Non-blocking operations

MPI request r[4]; // request handler
2 double b[4]; // send/receive buffer

4 MPI Recv init(b+0, 1, D, n−1, 0, com, r+0);
MPI Recv init(b+1, 1, D, n+1, 0, com, r+1);

6 MPI Send init(b+2, 1, D, n−1, 0, com, r+2);
MPI Send init(b+3, 1, D, n+1, 0, com, r+3);

8 for (int i = 0; i<MAX; ++i) {
data to buf(prev, b+2);

10 for (int j = 0; j < 4; ++j)
MPI Start(r+j);

12 compute inner(prev, curr);
14 MPI Wait(2, r+0, IGNORE);

buf to data(b, prev);
16 compute outer(prev, curr);

MPI Wait(2, r+2, IGNORE);
18 swap(curr, prev);

}

(c) Persistent operations

(d) Design Overview

Fig. 1: 1D heat transfer

2.2 The ROSE compiler infrastructure

The ROSE source-to-source translation infrastructure is under active develop-
ment currently at the Lawrence Livermore National Laboratory (LLNL). ROSE
provides front ends for many languages, including C/C++, Fortran 77/95/2003,
Java, and UPC. ROSE also supports several parallel extensions, such as OpenMP
and CUDA. ROSE generates an Abstract Syntax Tree (AST) for the source code.
The ASTs are uniformly built for all input languages. ROSE offers many spe-
cific analyses (e.g., pointer alias analysis) and makes these available through an
API. Users can write their own analyses by utilizing frameworks that ROSE
provides. These include attribute evaluation traversals, call graph analysis, con-
trol flow graphs, class hierarchies, SSA representation, and dataflow analysis.
The Fuse framework[4], is an object-oriented dataflow analysis framework that



affords users with the ability to create their own inter- and intra-procedural
dataflow analyses by implementing standard dataflow components. ROSE has
been used for building custom tools for static analysis, program optimization,
arbitrary program transformation, domain-specific optimizations, performance
analysis, and cyber-security. With the representation of the code as an AST and
using the static analysis provided from the ROSE libraries, one can explore the
code and determine how to improve it by looking for certain code style, inserting
new code, changing and/or removing old code, hence generating modified source
code while preserving the semantics of the original code.

3 Implementation

In this section, we describe Petal’s implementation of a mechanism to trans-
form applications from using blocking MPI point-to-point routines to using non-
blocking versions. We also describe the analysis and transformations to introduce
persistent routines.

3.1 Design

Petal transforms code to use non-blocking MPI operations to reveal a better
potential overlap of computation and communication and adds persistent op-
erations, whenever possible, to eliminate much of the overhead of repeatedly
communicating with a partner node.

Fig. 2 shows an overview of our transformation framework. The tool takes
MPI source files, for which ROSE compiles and generates the Abstract Syntax
Tree (AST), then function calls are inlined if the function implementation should
be available. Once inlined, ROSE’s query and builder libraries are used to find
and replace blocking with non-blocking calls and to identify where to insert
corresponding calls to MPI Wait. If some or all of these non-blocking calls are
used repeatedly with the same arguments, they are replaced with persistent
communication operations. At the end, Petal generates a new transformed source
file as its output, using either non-blocking or persistent communications (which
are always non-blocking).

The idea of following this approach is based on trying to maximize the overlap
between communication and computation without compromising the semantics
of the original application. Inlining eliminates the need to use inter-procedural
analysis and simplifies moving MPI Wait downward, crossing its original function
boundaries if no unsafe access to the message buffer is found across the function
calls. MPI uses pointers to the message buffers that they use in their communi-
cation. This fact allowed us to simplify the analysis used by the tool and focus
only on using pointer alias analysis. ROSE’s pointer alias analysis implements
Steensgaard’s algorithm, which has linear time complexity [19]. This allows our
tool to scale well with large applications.



Input:Source files MPI+C/C++

Inline function calls

Find and replace all MPI Send/

MPI Recv with MPI Isend/MPI Irecv

Find MPI Wait position

Is there
a loop

surrounding
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calls?

Check for consistent arguments
Add persistent communication

Output: source file
with persistent communication

Output: source file
with non-blocking calls

Interprocedural Pointer Analysis
ROSE

No

Yes

Fig. 2: Transformation Framework

3.2 Blocking to Non-blocking Transformation

Petal allows changing the blocking function call MPI Send/MPI Recv to the cor-
responding MPI Isend/MPI Irecv while ensuring proper access to the message
buffers, and once an operation that access the message buffer is encountered,
MPI Wait is inserted before it to ensure the safety of the data.

Calling MPI Send/MPI Recv is in effect the same as calling MPI Isend/MPI Irecv

immediately followed by MPI Wait. Our tool moves calls to MPI Wait downward
along forward control flow edges as long as the operations are safe with respect
to the MPI operation and buffer access. Any write to a message buffer that is
used in a send operation, and any access to a message buffer that is used in
a receive operation is considered an unsafe access and MPI Wait must be called
before that to maintain the correctness of the code.
For each blocking call, to be replaced by the corresponding non-blocking, three
variables are created, two of which are handlers for MPI Request and MPI Status

plus a flag introduced to ensure the execution of MPI Wait if and only if its cor-
responding non-blocking call is executed. Each blocking call is replaced with the
corresponding MPI Isend/MPI Irecv. After finding and replacing blocking calls,



control flow analysis is used to find subsequent statements, extract the variables
used in these statements and use pointer analysis to test for aliasing between
the message buffer used and the variables in hand. For the send operation, we
identify potential update operations, such as a variable occurring on the left
hand side of an assignment. We use pointer alias analysis to check whether an
update could modify some data. For the receive operation, all expressions that
read values from a variable are tested. Variable extraction includes subscripts of
an array, arguments in non-inlined function calls, variables used in conditions of
control statements, initial and increment statements of for loop, and operands
of binary and unary operations. Our tool uses ROSE’s pointer alias analysis to
test whether the extracted variables and the communication buffer could alias.
If there could be an alias, the tool inserts the corresponding MPI Wait before the
statement using this variable.

Because of inlining, Petal is able to bypass the end of the function and keep
searching for potential usage of the message buffer outside the function contain-
ing the original MPI calls. If no alias is found in all the statements following
the block call, the tool identifies where this statement is located. If it is in
main(), that means that no alias is found and the MPI Wait is inserted before the
MPI Finalize. Because of the complexity of loop-carried data dependencies, cur-
rently the tool does not support moving MPI Wait outside the loop body. Hence,
if it is in a loop statement (for, while, do-while) MPI Wait is inserted as the last
statement in the loop. Otherwise the statement following the block that has the
blocking call is examined for alias analysis. To ensure that the MPI Wait in its new
position gets executed only if its corresponding non-blocking call is executed, a
flag is set to true with each non-blocking call and then based on its value, the
corresponding MPI Wait is executed.

Fig. 3 shows an example of a snippet of code before and after transformation.
Fig. 3a shows the original blocking code and Fig. 3b shows how the code looks
after the transformation. Lines 3-5 shows the declaration of the MPI Request.
MPI Status and the flag variables.Line 10 sets the flag to 1 where Line 21 tests
for the flag’s value before executing the MPI Wait on Line 22. Since this is a send
call, the printf function call is a safe read access and the wait call is inserted
after it.

3.3 Non-persistent to Persistent Transformation

If a program exhibits regular communication patterns, where the same com-
munication partners exchange fixed size messages, utilization of persistent MPI
enables exploitation of faster communication paths4. In Shao et. al. [18] work to
identify communication patterns for MPI programs, they discovered that many
programs that are considered dynamic can use persistent communication. This
means that changing these programs to use persistence will result in better per-
formance. The difficulty of persistent communications is that possible uses in real
world codes are hard to determine statically. To overcome this limitation, we use

4 at least on high quality implementations of MPI.



1 int ∗buffer;
int x;

3 ... //code for main,initialization,...
5 for(int i=0;i<1000;i++)
7 {
9 if (myid == source) {

∗buffer = 123;
11 MPI Send(buffer,count,MPI INT,

dest,tag,MPI COMM WORLD);
13 x = 0;

}
15 else {
17 ∗buffer = 456;

x = 1;
19 }
21 printf(”%d\n”,∗buffer);

}

(a) Before

int ∗buffer;
2 int x;

MPI Request reqs[1];
4 MPI Status stats[1];

int flags[1];
6 ... //code for main,initialization,...

for(int i=0;i<1000;i++)
8 {

if (myid == source) {
10 flags[0]=1;

∗buffer = 123;
12 MPI Isend(buffer,count,MPI INT,

dest,tag,MPI COMM WORLD,&reqs[0]);
14 x = 0;

}
16 else {

∗buffer = 456;
18 x = 1;

}
20 printf(”%d\n”,∗buffer);

if (flags[0] == 1)
22 MPI Wait(&reqs[0],&stats[0]);

}

(b) After

Fig. 3: Non-Blocking Transformation Example

dynamic analysis. Petal transforms code to persistent mode and inserts guards
that test that the arguments did not change. Persistent communication is a four-
step process. First, a persistent request is created. Then, data transmission is
initiated. After that, wait routines must be called to ensure proper completion.
Lastly, the persistent request handlers must be explicitly deallocated.

Changing to persistent mode is best suited for non-blocking calls in a loop.
Petal does such transformations from non-blocking non-persistent to persistent
automatically. A structure is created to hold initial values for non-blocking call
arguments as its members. Using ROSE queries, the tool identifies MPI Isend/

MPI Irecv and checks to see which one is enclosed in a loop. If no call is in
a loop, no transformations are performed. If one or more are found inside a
loop, the tool initiates a persistent request with the same arguments as the
corresponding non-blocking call and places this initiation process before the loop
(MPI Send/Recv Init). In addition, it stores the values of the MPI Isend/MPI Irecv

arguments in a struct variable for comparing the values across iterations. Then
inside the loop, it inserts an if statement to check if the current values are the
same as the persistent request argument values, if the outcome is yes, it uses
this persistent request using MPI Start(&request), otherwise it uses the normal
MPI Isend/MPI Irecv call. After the loop, all the created persistent requests are
freed.

Following the output from Fig. 3b, Fig. 4 shows the result of applying the
persistence transformation. On the left side, line 6 shows the persistent request
handler and line 7-16 shows the struct definition and its instance declaration.
Line 20 initiates the persistent communication passing it all the non-blocking



1 int ∗buffer;
int x;

3 MPI Request reqs[1];
MPI Status stats[1];

5 int flags[1];
MPI Request preqs[1];

7 struct buf data
{

9 void ∗buf;
int count;

11 MPI Datatype datatype;
int dest;

13 int tag;
MPI Comm comm;

15 }
struct buf data temp data[1];

17 ... //code for main,initialization,...
19 MPI Send init(buffer,count,MPI INT,
21 dest,tag,MPI COMM WORLD,&preqs[0]);

23 temp data[0] . buf = buffer;
temp data[0] . count = count;

25 temp data[0] . datatype = MPI INT;
temp data[0] . dest = dest;

27 temp data[0] . tag = tag;
temp data[0] . comm =

29 MPI COMM WORLD;

(a) Persistent

1 for(int i=0;i<1000;i++)
{

3 if (myid == source) {
flags[0]=1;

5 ∗buffer = 123;
if (temp data[0] . buf == buffer

7 && temp data[0] . count == count
&& temp data[0] . datatype == MPI INT

9 && temp data[0] . dest == dest
&& temp data[0] . tag == tag

11 && temp data[0] . comm == MPI COMM WORLD
{

13 MPI Start(&preqs[0]);
}

15 else {
MPI Isend(buffer,count,MPI INT,

17 dest,tag,MPI COMM WORLD,&reqs[0]);
}

19 x = 0;
}

21 else {
∗buffer = 456;

23 x = 1;
}

25 printf(”%d\n”,∗buffer);
if (flags[0] == 1)

27 MPI Wait(&reqs[0],&stats[0]);
}

29 MPI Request free(&preqs[0]);

(b) contd

Fig. 4: Persistent Transformation Example

arguments and lines 23-29 represents the copying of the arguments values to the
struct instance. On the right side, line 6-11 represents the test against the current
values with the values stored in the persistent request. If they are the same
MPI Start on line 13 is executed, otherwise the original MPI Isend is executed on
line 16-17. Line 29 shows the deallocation of the persistent request.

3.4 Discussion

Even though the tool can detect any unsafe access to the message buffers cor-
rectly, the applied analysis has limitations in two cases. First, it treats any access
to a part of the array as an access to the whole array. For example if MPI sends
the first 10 elements of a 100-element array, an assignment to the 20th element
will be considered unsafe even though it is in a different place and can be safely
used. The second case is that Steensgaard algorithm treats a struct member ac-
cess as an access to the whole struct [19]. These two cases might lead to placing
the MPI Wait in overly conservative positions in some applications. We plan to
improve our tool to handles these cases better, since identifying these cases could
result into achieving better communication-computation overlap.

Currently, Petal cannot combine multiple consecutive calls to MPI Wait, if
found together, into a single MPI Waitall call. This is because different calls to



MPI Isend/MPI Irecv may originate in alternative blocks. For example, two calls
are part of the then and else branch of an if statement. We hope to find a better
solution instead of using flags and if-statement, to ensure the semantics of the
code and being able to take advantage of using MPI Waitall.

4 Evaluation

In this section, we present the preliminary evaluation of using Petal and the effect
of its transformations on overall application performance. The experiments were
performed on the TACC Stampede system. Stampede is a 10 Petaflop (PF) Dell
Linux Cluster with 6400+ Dell PowerEdge server nodes each with 32GB memory,
2 Intel Xeon E5 (8-core Sandy Bridge) processors and an additional Intel Xeon
Phi Coprocessor (61-core Knights Corner) (MIC Architecture) [20]. We used
the mvapich2 MPI library. Petal was tested with the 1D heat decomposition
described earlier, 2D heat [7] and DT from the NAS NPB 3.3 benchmark [1].

We tested the performance of the application while varying the number of
MPI processes. For 1D heat, we varied the number of MPI processes in each
case ranging from 6 to 200 tasks. For 2D heat and DT with classes W and A,
the number of MPI processors varied between 16 and 256. Fig. 5 shows the
execution time speedup (S = T original/T transformed) after applying non-blocking
transformation, and adding persistent communication. Fig. 5a shows the effect
when running applications with only 16 MPI processes, while Fig. 5b shows the
effect on applications with 200 and more processes. As shown in the figures,
we experienced good improvement with larger number of processes while flat
to minor slowdown was observed with fewer numbers of processes. However, in
both cases we experienced minor slowdown when adding persistence5.

4.1 Discussion of Results

Petal was able successfully to transform applications from blocking to non-
blocking while pushing MPI Wait as far as possible, while also preserving the
correctness of the code output. The results shows that with smaller programs
and few tasks, the non-blocking improvement is negligible and sometimes hurts
the application performance. However, with increasing problem size and number
of MPI tasks, non-blocking enhanced the performance by up to 30%.

Unfortunately, even though Petal was able to transform code to persistent
mode, the results of persistent performance showed a flat improvement and some-
times a slowdown.
To gain more insight into the usage of persistent communications, we applied
the persistent transformation on the LULESH code from LLNL [11] on Stam-
pede and on a Debian 7.6 amd64 computer with 1 Xeon E5410 @ 2.33GHz
using the Open MPI 1.6.5 library. LULESH already exploits non-blocking oper-
ations. Since it has some communications that are fixed for most of the program’s

5 This indicates that mvapich may not optimize the code path for persistent send
and/or receive.
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Fig. 5: Execution Time Speedup

execution time, persistent communication should be beneficial. However, upon
transforming to persistent no gain was seen and with increasing number of tasks
we saw a minor slowdown. Since Open MPI is open source, we investigated how
it implements its non-blocking and persistent communications. We found that
they optimize the code by creating persistent requests and using them whenever
possible. Hence, changing the applications’ code to persistent will not give a
speedup as Open MPI already uses similar optimization techniques internally.
The slowdown might be because of the overhead of checking the arguments on
each iteration.
According to the MPI Forum [2], persistent requests are considered to be half-
channels, which makes the connection faster by reducing the overhead of commu-
nication processing within each of the sender and receiver. Our results suggest
that the performance improvement is dependent not only on the standard defini-
tion of how code should work but it also depends on the actual MPI implemen-
tation and architecture. While the tested systems did not show any performance
improvements, the transformation may be beneficial on other systems.

5 Related Work

The idea of overlapping communication and computation code is of interest to
many researchers because of the promising results in better performance it can
give when applied efficiently. In this section, we describe previous research work
done to produce overlapped communication and computation in MPI.
Several methods were studied and implemented to handle the communication
computation overlap approach. Das et al. [6] represents the closest work to our
tool in which they developed an algorithm for pushing wait downward in a seg-
ment of code. However, they use Static Single Assignment (SSA) use-def analysis



to determine the statements that access the message buffer. Even though they
describe a method for moving a MPI Wait out of its current scope interval possi-
bility of going to the parent, they did not implement their method and currently
their compiler tool only detects MPI calls and finds MPI Wait’s final position;
however, insertion is done by hand. Haque et. al. [9] developed a similar tool for
transforming blocking to non-blocking; however, it does not use any compiler
analysis techniques and relies heavily on the programmer annotation to identify
where to move the corresponding non-blocking call and its corresponding wait.
Another work is presented by Nguyen et. al. in [14] in which they developed Bam-
boo, a transformation system that transforms MPI C code into a data-driven
application that overlaps computation and communication. It was implemented
with the ROSE compiler framework and runtime support using the Tarragon
runtime library. Their approach is to determine task precedence. It relies on
programmer annotations to mark parallel loops and data packing/unpacking
plus calls to communication routines. Other approaches were developed using
different techniques to achieve the same goal of maximizing communication and
computation overlap. Danalis et al. developed the ASPhALT tool [5] within
Open64. Their idea is based on automatically detecting where data is available
and applying the pre-pushing transformation to send data as soon as possible.
They focused on specific a type of applications that does its communication in
two parts where at first, it computes the data in a loop with minimum depen-
dencies across iterations, and then uses communication call(s) after the loop to
exchange the data generated by the loop. Pellegrini et al. [15] offer a different
approach in which they use the polyhedral model to determine exact dependen-
cies and automatically detect potential overlap on a finer grain. To simplify the
analysis, they normalize the code by changing non-blocking to blocking. Their
work is limited by polyhedral model requirements of using only affine expres-
sions.
Even though MPI included persistent communication since MPI-1 and these
calls emphasize the benefits of using persistent, to our knowledge, no available
work offers a tool that automatically transforms non-persistent to persistent
communication, when such patterns can be identified.

6 Conclusions and Future Work

In this paper, we described our development of Petal, a tool that supports trans-
forming a blocking MPI code to non-blocking version and introduces persistent
communication if possible. We have described the approach used in order to
push MPI Wait as far as possible from the corresponding communication call in
order to improve the potential for overlap of communication and computation
code and also to use persistent communication whenever two points communi-
cate the same type and amount of data over multiple iterations. Petal is based
on the ROSE framework and uses ROSE’s alias analysis to apply transformation
required and to preserve correctness of the code. Preliminary results showed that
we can improve performance by using non-blocking. In some cases we found that



persistent communication does not improve performance even with code that is
proved to have fixed communication for most of the execution time. It does not
only depend on having fixed arguments but the MPI library used has an effect
too. Further detailed analyses of persistent performance on different architec-
tures with different libraries will be explored.
In addition to analyzing data dependency within loop iterations and moving
MPI Wait outside the loop body, if no dependency found, techniques to eliminate
loop-carried dependencies on send and receive buffers and perhaps unrolling
the loops will also be explored. This will provide another opportunity to move
MPI Wait(s) outside loops boundaries. Another future step is to work on cases
where we have 3-D data models and to explore how they can be safely overlapped
in communication.
We are also extending the Petal tool to do other automatic translation and/or
refactoring that will allow a smooth transition for legacy MPI systems to Ex-
ascale systems, such as the use of one-sided communications and changing fur-
ther to use non-blocking and persistent collective operations (being proposed at
present in MPI-3.x).
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Abstract. Reducing floating-point precision allocation in HPC programs
is of considerable interest from the point of view of obtaining higher per-
formance. However, this can lead to unexpected behavioral deviations
from the programmer’s intent. In this paper, we focus on the problem of
divergence detection: when a given floating-point program exhibits dif-
ferent control flow (or differs in terms of other discrete outputs) with
respect to the same program interpreted under reals. This problem has
remained open even for everyday programs such as those that compute
convex-hulls. We propose a classification of the divergent behaviors ex-
hibited by programs, and propose efficient heuristics to generate inputs
causing divergence. Our experimental results demonstrate that our input
generation heuristics are far more efficient than random input generation
for divergence detection, and can exhibit divergence even for programs
with thousands of inputs.

1 Introduction

Almost anyone writing a program involving floating-point data types wonders
what precision to allocate (single, double, or higher). There is a great temptation
to get away with single precision, as it can yield performance advantage of a
factor of 2.5 for CPU codes [20] or even higher for GPU codes [29,21]. Yet,
floating-point arithmetic is highly non-intuitive, causing non-reproducible bugs
and nighmarish debugging situations [28,25,8,10,24]. For instance, experts in a
recent project had to waste several days chasing a Xeon vs. Xeon-Phi floating-
point behavioral deviation where identical source code running on these machines
took different control paths for the same input [22].

Any program in which floating-point results flow into conditional expressions
can decide to take different control paths based on floating-point round-off. Also,
if a developer banks on a program meeting a specific post-condition, they may
find that the truth of the post-condition can depend again on floating-point
round-off. Such divergent behaviors (“divergence”) have been widely discussed
in the literature. Kettner et al. [18] demonstrated that a geometric convex hull
construction algorithm can result in non-convex hulls under certain (manually
generated) inputs. Problems due to inconsistency in geometric computations are
described in great detail in the context of computer games [12]. The author
of [27] suggests the use of “padding constants” followed by “thorough testing”

? Supported in part by NSF Grants CCF 1421726 and ACI 1535032



1: float8 a, b, c, d, e, f;
2: procedure foo : → int
3: if (a+ b)+ c > (d+e)+f then
4: return 22;
5: else
6: return 33;
7: end if
8: end procedure

(a) Illustrating Divergence and ABS

1: float8 x, y;
2: procedure var : → float8
3: var = (x2+y2)/2−((x+y)/2)2;
4: return var;
5: end procedure
6: Desired Post-condition: var ≥ 0;

(b) Illustrating GRT

Fig. 1: Motivating Examples

as a practical solution to guard against the nasty surprises of divergence. With
the increasing role of geometry in real life (e.g., manufacture of prosthetics us-
ing 3D printing, computer gaming, mesh generation, robot motion planning),
divergence becomes a life-critical or resource-critical issue, and must be system-
atically tackled. While allocating higher floating-point precision can reduce the
incidence of divergence, a programmer will not go this route (and suffer a slow-
down) unless they have at least one piece of evidence (in the form of an input
causing divergence – hereafter called diverging input) that this measure is nec-
essary. We show that without systematic testing one can fail to find even one
divergent behavior for many programs.

The hopelessness of manual reasoning can be highlighted through the pro-
gram in Fig. 1a where, for simplicity, we consider 8-bit floating-point values. Let
float8 have one sign bit s, four bits of mantissa (or precision) m, and three bits
of exponent e representing the value (−1)s ·1.m ·2e−4. One may not be surprised
if told that this program may return 33 (under standard IEEE floating-point
with round to nearest applied), while returning 22 if we used reals instead of
float8. However, it is virtually impossible to manually obtain even one diverging
input. 1 Purely random testing is ineffective for exhibiting divergence due to
the huge state space it faces. There has been very little prior work on efficiently
identifying diverging inputs. In this paper, we propose and evaluate methods
to rapidly discover diverging inputs for many useful floating-point primitives.
Such primitives are known to be used in many applications—for example, mesh
generation.

We focus on the problem of developing efficient heuristics to generate di-
verging inputs. We assume that the user has identified discrete features (e.g.,
returning 22 or 33 in our example) as one of the key observable results from the
program.2 Our algorithms then generate diverging inputs in a lower precision
(say, 32-bit) computation.

While all divergences are attributable to some deviation in conversion of
floating-point to discrete value such as deviation in control-flow, it is also well

1 a = e = d = 1.0000 ·2−3, b = f = 1.0000 ·22, and c = 1.0001 ·2−3 causes divergence.
2 Real arithmetic is simulated by allocating very high precision. Typically we aim for

64- or 128-bit precision.



known (e.g., [7]) that many control-flow deviations do not cause divergence. In
this paper, we describe divergence detection with respect to the user-given set
of discrete features. Clearly, control-flow deviation is an extreme case in our
definition: the discrete feature in that case is nothing but the full control-flow
path.

The difficulty of identifying diverging inputs is due to (1) the sheer number of
input combinations to be considered, (2) non-uniformity of floating-point num-
ber distribution, (3) the layers of floating-point operations (e.g., non-linear and
transcendental operators and their associated rounding modes, catastrophic can-
cellations during subtraction [14]) that are involved before a conditional expres-
sion’s truth value is determined, and (4) poor scalability of symbolic methods
since floating-point arithmetic decision procedures are in their infancy. While
our previous work [9] helps identify inputs that cause high round-off errors in
floating-point functions, such methods cannot be directly used to identify diverg-
ing inputs. In this paper, we present an approach that addresses these difficulties
by employing empirical search methods to efficiently discover diverging inputs.
Ours is the first attempt to classify problems in this area into discernible groups,
and provide heuristic approaches for input generation to trigger divergence. Our
contributions in this paper are the following:

– Two approaches to trigger divergence in programs of interest to practitioners.

– A classification of programs into two categories, with corresponding new
heuristics to trigger divergence in each category.

2 Overview of our Approach

Given a program P and its input i, let PR(i) indicate the result of running the
program on i under real number arithmetic. For simplicity, let vector i capture
both the “data input” and “initial program state” of P . Let PF be the floating-
point version of PR. We are interested in those inputs i under which PF (i) 6≡
PR(i), where ≡ is some coarse equivalence relation since a programmer may
not want bit-for-bit equality, but rather something higher level. We define ≡
with the help of an abstract state space A ⊆ U for some universe U , and an
abstraction map α that maps into U . Then, a computation is divergent when
α(PF (i)) 6= α(PR(i)).

Example 1: In the example of Fig. 1a, the relevant abstract state space is given
by A = U = {22, 33}; we call the members of A discrete features (or discrete
signatures). The input a = e = d = 1.0000 · 2−3, b = f = 1.0000 · 22, and
c = 1.0001 · 2−3 causes divergence. We now introduce our first search method
called abstract binary search (ABS), which works as follows:

– We first use random testing to generate inputs i1 and i2 with signatures S1

and S2 under floating-point such that S1 6= S2. In Fig. 1a, i1 may under
float8 result in signature 22 and i2 in signature 33. Suppose i1 results in 22
and i2 in 33 under reals as well, and hence this is not a divergent situation.



– We use the discovered pair 〈i1, i2〉 to bootstrap the binary search part of
ABS. We compute the midpoint mid = (i1 + i2)/2 (taking /2 as a suit-
able way of finding the midpoint of two N-dimensional points) and proceed
recursively with 〈i1,mid〉 and 〈i2,mid〉 as new pairs of inputs (details in
Algorithm 1).

– If/when the floating-point signature output generated for mid differs from
its real signature, we have located a diverging input and the algorithm ter-
minates.

Example 2: We now introduce our second search method called guided random
testing (GRT). Fig. 1b computes the variance of x and y in terms of “mean of
squares minus square of mean.” Variances are non-negative, as captured by the
given post-condition. We therefore choose U = {T, F} to model Boolean truth,
and A = {T} to represent when the desired post-condition holds. In more detail,
we have observed that for many problems (examples given in §4.2), the desired
post-condition is of the form (e1 ≥ 0) ∧ (e2 ≥ 0) . . . (en ≥ 0), where ei
are expressions. GRT chooses one ei ≥ 0 conjunct, and it attempts to generate
inputs that falsify it under floating-points (all conjuncts are assumed to be true
under reals). In §3.2, we present a heuristic based on relative errors that helps
find such inputs.

ABS vs. GRT: We recommend the use of GRT whenever a post-condition
(always true under reals) has a chance of being violated under floating-points.
On the other hand, ABS is recommended whenever such a post-condition does
not exist, and one can bootstrap the process by quickly finding input i1 and i2
causing unequal signatures S1 and S2 under floating-points. The examples in
this paper clarify further how we choose between these two search methods. We
consider a more involved example next.

Example 3: Let P be a program computing a convex hull for a collection
of points i. First, consider a simple case where i consists of five 2D points
{〈0, 0〉, 〈C, 0〉, 〈C,C〉, 〈C, 2C〉, 〈0, 2C〉}, where C and 2C are representable in float-
ing-points. A convex hull algorithm is correct if the hull it returns is convex and
encloses all the points (i.e., no point lies outside). According to this definition,
there are two correct answers in this case:

– {〈0, 0〉, 〈C, 0〉, 〈C,C〉, 〈C, 2C〉, 〈0, 2C〉} or
– {〈0, 0〉, 〈C, 0〉, 〈C, 2C〉, 〈0, 2C〉}.

In this example, one could either choose an exact listing of coordinates as the
signature, or a more abstract signature such as the number of vertices in the
convex hull. Whatever be our choice of signatures, we reiterate that in our ap-
proach (1) signatures are the only means of observing program behavior, (2) the
signature returned by the real-valued computation is taken as the golden truth,
and (3) divergence exists when the floating-point computation returns a different
signature than the real computation.

Let the chosen signature be the number of vertices in the convex hull. Con-
sider the input {〈0, 0〉, 〈C, 0〉, 〈C − δ, C〉, 〈C, 2C〉, 〈0, 2C〉}, where δ is very small,
but C − δ is still representable in floating-points. For this input, our convex hull
program returns 4 as the signature under reals. However, it may return 5 under



floating-points due to round-off errors. This is an example of a divergent input
according to our definition. We now summarize some of our observations:
– Signatures are a mechanism to mimic the “desired output.”
– Some signatures (e.g., the count of the number of vertices in a convex hull)

are strong, in that we observe empirically that one can arrive at diverging
inputs fairly quickly.

– One can always choose the entire taken control-flow path as a signature.
We empirically show that such signatures are typically weak, meaning that
they make locating divergences very hard. Our experience shows that a good
signature must ideally be a mapping into a small abstract space A.

3 Methodology

Given a program P and its input domain I, we assume that each input i ∈ I is
a scalar vector and I is convex. Let iX , iY ∈ I be two inputs; then I is convex
if all inputs in-between are also in I: ∀0 ≤ k ≤ 1 . iX ∗ k + iY ∗ (1− k) ∈ I. The
midpoint of iX and iY is obtained by setting k to 0.5. A signature, as mentioned
in the previous sections, is a discrete feature (or abstraction) of the concrete
program output. Then, a signature function α maps program outputs under
either floating-point or real arithmetic executions to abstract signature states.

For every input i ∈ I, the output PF (i) of an execution under floating-points
is supposed to have the same signature as the output PR(i) of an execution under
reals. The differential contract of a program, which specifies when a divergence
exists, is defined using the following predicate:

div(P, i) =def α(PF (i)) 6= α(PR(i)). (1)

Predicate div states that a divergence occurs when the signatures of real and
floating-point outputs (i.e., executions) differ.

3.1 Abstract Binary Search (ABS)

Fig. 2a illustrates how ABS detects divergence for the program in Fig. 1a. Here,
the x-axis shows the values of (a+ b) + c and the y-axis the values of (d+ e) + f .
The diagonal separates the abstract signature state spaces of 22 and 33. ABS
first finds a vector i1 of values for inputs a, . . . , f , whose abstract signature is 33
under both reals and floating-points (shown as point (1)). Then, it finds a vector
i2 whose abstract signature is 22 under both reals and floating-points (shown as
point (2)). The pair 〈i1, i2〉 is the input of the subsequent binary search. (Note
that ABS is typically not applicable on examples where finding points as above
is extremely difficult, as Fig. 2b illustrates.)

Our binary search method successively divides the N-dimensional space be-
tween vectors i1 and i2 by finding midpoints of these vectors (points (3) and (4)
depict this N-dimensional binary search). It is highly unlikely that all points in
this search sequence would all evaluate to the same abstract state under reals



Algorithm 1 Abstract Binary Search (ABS)

1: procedure ABS(P , α, I)
2: repeat . Find starting pair of points
3: iA = Random(I)
4: if div(P, iA) then return iA
5: iB = Random(I)
6: if div(P, iB) then return iB
7: until α(PF (iA)) 6= α(PF (iB))
8: E = {〈iA, iB〉} . Bootstrap binary search between end points
9: while E 6= ∅ do
10: 〈iX , iY 〉 = Select(E)
11: E = E \ {〈iX , iY 〉}
12: if ∃iM midpoint of 〈iX , iY 〉 distinct from iX , iY then
13: if div(P, iM )) then return iM
14: if α(PF (iX)) 6= α(PF (iM )) then
15: E = E ∪ {〈iX , iM 〉}
16: end if
17: if α(PF (iM )) 6= α(PF (iY )) then
18: E = E ∪ {〈iM , iY 〉}
19: end if
20: end if
21: end while
22: restart search . Optional restart step
23: end procedure
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Fig. 2: Applying ABS and GRT on Examples from Figs. 1a and 1b

and floating-points. This is because it is also unlikely that the evaluations of the
constituent expressions in the given program under reals, and their correspond-
ing evaluations under rounding, would track each other perfectly with respect
to the chosen discrete features.3 As a consequence, ABS eventually encounters
a point (akin to point (4)) that lies at the borderline of the abstract spaces and
causes a divergence.

The efficiency of ABS heavily depends on the chosen signature function. It
must be possible to efficiently find — through a few random sampling steps —
the initial points i1 and i2 that map to distinct abstract states. For example, it
must be possible to efficiently locate points (1) and (2) in Fig. 2a.

3 In practice, we do occasionally encounter a sequence whose discrete signatures match
perfectly, and ABS exhausts all possible midpoints. In such cases, ABS is restarted
with a different random seed.



Algorithm 1 gives pseudocode of ABS. As input it takes a program P , a sig-
nature function α, and the input domain I, and it outputs a divergence-inducing
input vector. The first phase of ABS (lines 2–7) finds the initial pair of points
〈iA, iB〉 satisfying α(PF (iA)) 6= α(PF (iB)) by employing random sampling. The
second phase (lines 8–21) successively subdivides the space between a pair of
points by removing a pair 〈iX , iY 〉 from E and seeking a divergence-inducing
midpoint iM . Under floating-point arithmetic, iM can be equal to iX or iY ,
which means we exhausted all midpoints, but could optionally restart. Other-
wise, we determine which of the pairs 〈iX , iM 〉 or 〈iM , iY 〉 are eligible for further
search, and we add them to E. The while-loop of the second phase is guaran-
teed to terminate because floating-point domains are finite. The ABS procedure
either returns a divergence-inducing input vector or timeouts (with the optional
restart at line 22 using a different random seed). We rarely encountered timeouts
in our empirical evaluation.

3.2 Guided Random Testing (GRT)

We designed GRT based on a key observation: a divergence occurs when one of
the expressions in the signature has a high relative error; we now detail why this
is so. The relative error of a value v is defined as |vR−vFvR

| [14]. In the example
from Fig. 1b, the relative error of var must be high, and specifically greater than
1, when a negative variance is returned. Fig. 2b illustrates that this is very rare
by showing the space of contract (post-condition) violations and the space where
the contract is met. Similarly, Fig. 2c shows all the diverging inputs obtained
using a satisfiability modulo theories (SMT) solver [11].4

Let varR (resp. varF ) be the variance computed under real (resp. floating-
point) execution. Then, a divergence occurs when (varR ≥ 0) ∧ (varF < 0),
which implies varR− varF > varR. Thus, the relative error on var must exceed
1, meaning |varR−varFvarR

| > 1.
We have found that many problems amenable to GRT have a post-condition

expressible as a conjunction (e1 ≥ 0) ∧ (e2 ≥ 0) ∧ . . . ∧ (eN ≥ 0), where ei is a
floating-point expression. Given such a formula, GRT aims to negate one of the
conjuncts using guided random search. For this purpose, we employ our S3FP
tool that efficiently maximizes a relative error of a given expression [9]. We now
detail two approaches we investigated to drive the optimization.
Single-term Objective: Choose one ei from e1 . . . eN as the objective for trig-

gering high relative error.
Multi-term Objective: Maximize

∑N
i=1 err(ei) such that

err(ei) =

{
|rel err(ei)| : |rel err(ei)| < 1

1 : otherwise
,

where rel err(ei) is the relative error of expression ei.

4 Current state-of-the-art SMT solvers work on micro-benchmarks with micro floating-
point formats such as the program in Fig. 1b; they still cannot handle realistic
floating-point programs used in our work.



Algorithm 2 Guided Random Testing (GRT)

1: procedure GRT(P , α, I)
2: fobj = ExtractObjective(α)
3: while ¬Timeout() do
4: i = Optimizer(P, I, fobj)
5: if div(P, i) then return i
6: end while
7: end procedure

Algorithm 2 gives the pseudocode of GRT where we assume existence of
a suitable function ExtractObjective that realizes either the single-term or the
multi-term objective. Note that it if often convenient to provide a signature func-
tion that only loosely specifies program contracts, and falsifying such a contract
does not always imply divergence (an example is provided in §4.2). Hence, each
input vector returned by the optimizer (S3FP in our case) has to be checked to
establish divergence using predicate div.

4 Experimental Results

We have evaluated ABS and GRT on a collection of realistic numerical routines.
These routines regularly find applications in implementations of higher level
algorithms such as Delaunay triangulation (often used for mesh generation) and
other operations in high-performance computing [6]. Divergence detection for all
benchmarks is achieved using differential contracts as stated in Equation 1 and
defined in §3. The only exception is the approximate sorting benchmark, which
invokes an externally specified contract (see §4.2). As defined in §3, a differential
contract is a comparison between signatures of outputs computed under reals
and floating-points. We use high-precision floating-points to approximate reals,
which is a technique employed in many floating-point analysis approaches (e.g.,
[3,9]). We categorize our benchmarks based on the signature model they follow.

4.1 ABS Benchmarks

Convex Hull: The algorithm takes a set of 2D points as input and outputs a
2D polygon. A coordinate of each point is a floating-point value in the range
[−100, 100). The generated (convex) polygon must encompass all input points;
we take the polygon vertex-count as our signature. We study four convex hull
algorithms: simple [4], incremental [18], quick-hull [5], and Graham’s scan [15].
The quick-hull and Graham’s scan algorithms were taken from CGAL [6], which
is a popular open-source geometric computation library.
Shortest Path: We implemented the well-known Floyd-Warshall shortest path
algorithm [13], which calculates all-pair shortest paths for a graph. Our imple-
mentation takes a complete directed graph as input, and outputs a boolean value
indicating the existence of a negative cycle. The input graph is represented as



a sequence of floating-point edge-weights in the range [−1, 10). The signature is
the same as output: a boolean value indicating the existence of a negative cycle.
Intersection Between a 3D Line and Adjacent Triangles: This benchmark
checks whether a 3D line intersects with two adjacent triangles. It takes six
3D points as input—four for the adjacent triangles and two for the line. The
intersection scenario is one of the following types: the line (1) intersects with
a triangle, (2) passes between the two triangles, and (3) neither. The signature
indicates whether the intersection scenario is type (2), which is an unexpected
scenario as described in related work [12]. This benchmark is taken from CGAL.
Geometric Primitives: These benchmarks, taken from CGAL, involve com-
puting relationships between geometric objects, including a 2D triangle inter-
section test and several point-orientation tests. The triangle intersection test
takes two 2D triangles as input, and determines if they intersect or not. Each
point-orientation test takes a 2D/3D point and a 2D/3D shape as input, and
determines if the point is inside/above or outside/below the shape. We collected
four point-orientation tests: 2D point-to-triangle, 2D point-to-circle, 3D point-
to-sphere, and 3D point-to-plane. All geometric primitives take a sequence of
floating-point coordinates in the range [−100, 100) as input. Their output is a
boolean value indicating the relationship between geometric objects, which is
also our chosen signature.

4.2 GRT Benchmarks

Variance Calculation: We implemented the näıve variance calculation, which
is known to suffer from catastrophic cancellation effects [23]: var(X) = E[X2]−
(E[X])2. Here, X is a random floating-point variable in the range [−100, 100)
and var(X) is its variance. The post-condition states that the computed variance
must be non-negative, and is captured with the signature var(X) ≥ 0.
Exclusive Prefix Sum: The procedure takes an array X1, . . . , XN as input,
and outputs a sequence of summations Y1, . . . , YN such that Y1 = 0 and Yi =∑i−1
k=1Xk for 2 ≤ i ≤ N . If all input values are non-negative, exclusive prefix sum

must output a monotonically increasing sequence. We implemented the näıve and
two-phase scan [17] algorithms. We provide them with a sequence of floating-
point values in the range [0, 100) as input. Given output values Y1, . . . , YN , the
post-condition is directly described in the signature function as:

(Y2 ≥ Y1) ∧ (Y3 ≥ Y2) ∧ . . . ∧ (YN ≥ YN−1). (2)

Standard and Approximate Sorting: These benchmarks bubble-sort a se-
quence of N floating-point values obtained using a procedure that introduces
round-off errors. More specifically, we generate each value in the sequence to
be sorted by summing over N floating-point values in the range [−100, 100).
Standard sorting judges the output sequence as correct when it is strictly non-
decreasing, whereas approximate sorting allows for a bounded degree of mis-
orderings, defined as follows. Given an unsorted input X = X1, . . . , XN and a
sorted output Y = Y1, . . . , YN , let Z = Z1, . . . , ZN be the permutation vector.



Benchmark ISize SRate Samples Restarts RT

Conv. hull simple
200 10/10 3.21e+2 0.2 0
2000 6/10 3.66e+2 0 N/A

Conv. hull
simple (1 hr.)

2000 9/10 4.61e+2 0 N/A

Conv. hull
simple (2 hr.)

2000 10/10 5.16e+2 0 N/A

Conv. hull
incremental

200 10/10 2.65e+2 0.1 0
2000 10/10 5.60e+2 0.1 0

Conv. hull
quick-hull

200 10/10 3.03e+2 0.1 0
2000 10/10 4.68e+2 0.2 0

Conv. hull
Graham

200 10/10 2.26e+2 0.0 0
2000 10/10 6.09e+2 0.2 1

Shortest path
90 10/10 2.43e+2 5.7 0

2450 0/10 N/A N/A 0
Shortest path
with manual hint

2450 10/10 1.27e+2 2.4 0

Line × Adjacent
Triangles

18 10/10 8.19e+2 15.7 0

Line × Adjacent
Triangles 18 10/10 6.24e+2 5.5 0
with manual hint

Tri. intersection 12 10/10 3.86e+1 0.3 0

Pt. triangle 8 10/10 8.43e+1 1.2 0

Pt. plane (3x3) 12 10/10 5.02e+1 0.7 0
Pt. plane (4x4) 12 10/10 6.11e+1 1.0 1

Pt. circle (3x3) 8 10/10 2.64e+1 0 0
Pt. circle (4x4) 8 10/10 3.70e+1 0.3 0

Pt. sphere (4x4) 15 10/10 3.05e+1 0.1 1
Pt. sphere (5x5) 15 10/10 3.33e+1 0.2 1

(a) Experimental Results for ABS

Benchmark ISize SRate Samples RT

Variance est.
1000 10/10 1.28e+3 0
10000 10/10 6.10e+2 0

Näıve scan
(single)

1024 10/10 2.55e+3 0
8192 10/10 1.03e+3 0

Näıve scan
(multi)

1024 0/10 N/A 0
8192 0/10 N/A 0

Two-phase scan

(single)
1024 0/10 N/A 0
8192 0/10 N/A 0

Two-phase scan

(multi)
1024 0/10 N/A 0
8192 0/10 N/A 0

Standard sorting

(single)
4096 10/10 7.25e+2 70
10000 10/10 2.42e+2 220

Standard sorting

(multi)
4096 10/10 5.08e+2 70
10000 10/10 1.19e+2 220

Approx. sorting

(single)
4096 9/10 2.15e+4 0
10000 7/10 2.06e+4 0

Approx. sorting

(multi)
4096 10/10 4.63e+3 0
10000 10/10 1.89e+3 0

(b) Experimental Results for GRT. The
two-phase scan is divergence-free. The
results of the näıve scan and sorting
show the difference between selecting the
single-term (single) and the multi-term
(multi) objectives for optimization. The
random testing results are the same for
the two objectives.

Table 1: Experimental Results. ISize is the input size (i.e., the number of input
floating-point values); SRate is the number of divergences detected in ten runs
(each run either finds a divergence or timeouts after 30 minutes); Samples is the
average number of inputs enumerated to trigger the first divergence, computed
over runs that successfully found one (N/A denotes experiments that fail in all
runs); RT is the number of divergences triggered using 1 million random inputs;
Restarts is the average number of restarts over 10 runs of ABS.

For example, if X = 〈7, 6, 8, 5〉 and Y = 〈5, 6, 7, 8〉, then Z = 〈3, 2, 4, 1〉. Let
ZF be the permutation vector under floating-points and ZR under reals. We de-
fine the degree of misorderings dmis as the mean-square of ZR − ZF . Then, our
post-condition for approximate sorting is dmis ≤

√
N . For standard sorting, our

post-condition is Y1 ≤ Y2 ≤ . . . ≤ YN . We define a common signature function
as Equation 2.

For both types of sorting we use the above conjunctive signature. Hence,
signature violations do not necessarily lead to post-condition violations for ap-
proximate sorting. Thus, an additional divergence check dmis <

√
N is required

to confirm the inputs violating the differential contract. We call this additional
divergence check an externally specified contract.



4.3 ABS Results

Table 1a shows our experimental results for ABS. Each run of ABS can restart
multiple times to find an initial pair of points. All our experiments were per-
formed on a machine with 12 Intel Xeon 2.40GHz CPUs and 48GB RAM. (We
currently use only one processor of this multi-processor machine; parallelizing
ABS and GRT is future work.) We measure the efficiency of ABS using the
number of inputs enumerated to trigger the first divergence within 30 minutes.
To measure scalability, we experiment with large program inputs (thousands
of input variables). Our experiments show that ABS efficiently detects diver-
gences by enumerating just a few hundreds of inputs even for large input sizes.
Furthermore, ABS usually restarts only a few times to find initial end points.

Discussion: As expected of dynamic analysis techniques that need to repeatedly
execute programs, practical efficiency of our divergence detection methods is
related to execution times of programs under test. For example, simple convex
hull is an O(N3) algorithm, and its execution time becomes very long for large
input sizes. Hence, ABS detected only 6 divergences over 10 runs for Conv. hull
simple with 2000 input variables. When given extra time, more runs of ABS
successfully detect divergences: Conv. hull simple (1 hr.)/(2 hr.) in Table 1a
denotes the result of running ABS for 1/2 hour(s).

ABS uses random search to find initial end points (see Algorithm 1), but
programmers can provide hints to facilitate search. For our shortest path bench-
mark with input size of 2450, ABS failed to detect divergences in all runs since it
failed to find initial end points: all randomly sampled inputs contained negative
cycles. However, it is easy to manually provide an input which does not contain
a negative cycle by assigning positive values to all edges’ weights. Using this
simple hint, ABS successfully detected divergences even in this case (see Short-
est path with manual hint in Table 1a). Applying manual hints also improves
ABS’s efficiency of divergence detection. For our intersection check benchmark,
we provided ABS with a manual hint causing different triangles to be intersected
by the line (see Line × Adjacent Triangles with manual hint in Table 1a). Com-
pared to the result that uses random search (see Line × Adjacent Triangles),
with the manual hint ABS spent fewer enumerations to detect divergences.

Weak Signature Functions: Both ABS and GRT expect signature functions
that satisfy Equation 1. However, both methods could work even with signa-
ture functions that do not satisfy this equation. For example, for the convex hull
benchmarks we used a signature function that generates a boolean vector record-
ing the point-orientation decisions made in the process of generating a convex
hull. We call such signature functions weak signature functions, while those sat-
isfying the equation are strong signature functions. Fig. 3 shows the comparison
between using the two types of signatures. The black bars indicate the usage of a
strong signature function (the number of the output hull vertices), and the white
bars the usage of a weak signature function (the decision sequence). The shorter
the bar, the fewer inputs enumerated by ABS were required to trigger the first
divergence, implying better efficiency of divergence detection. Our results show
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that ABS can work with weak signature functions, but the efficiency is lower
than when using the strong ones.

4.4 GRT Results

Table 1b shows our experimental results for GRT. Benchmarks labeled with sin-
gle/multi denote the single-/multi-term objective applied to our optimizer (as
described in §3.2). The S3FP optimizer we use is an efficient tool for trigger-
ing high round-off errors [9]. Note that the random testing results under both
objectives are the same because objective selection and random testing are inde-
pendent. GRT detects divergences in all our benchmarks except the two-phase
exclusive scan, which is expected since it is a divergence-free benchmark. The
results also suggest that GRT is scalable since it can handle large input sizes. It
is more efficient than random testing even for standard sorting. For example, for
the standard sorting with 256 input variables, GRT enumerates 5590 inputs on
average to trigger a divergence, while random testing needs over 300, 000 inputs.
Discussion: While our dynamic analysis methods can precisely detect diverging
inputs, they cannot establish divergence-freedom when divergence is not possi-
ble in any feasible execution. For example, even though two-phase scan is a
divergence-free algorithm when inputs are non-negative, we cannot infer that
solely because GRT did not detect a divergence. (We omit the proof in this
paper; it can be done by a simple induction.) Automatically proving divergence-
freedom can be done using static analysis techniques [7], which is complementary
to our work.

The results of the näıve scan and approximate sorting benchmarks indicate
that the GRT’s efficiency can be affected by optimization objective selection.
Applying the single-term objective to the näıve scan can successfully detect di-
vergences in all runs. On the other hand, applying the multi-term objective
resulted in no detected divergences. However, the results for the approximate
sorting show the opposite: applying the multi-term objective found more diver-
gences than the single-term objective (29 over 30 runs versus 20 over 30 runs).
As future work, we plan to explore heuristics for choosing a good optimization
objective.



4.5 Random Testing

To demonstrate efficiency, we compare our methods with random testing, which
is, to the best of our knowledge, the only divergence detection approach avail-
able to today’s designers. In all our experiments, we randomly generated one
million inputs for each input size, and column RT in Table 1 gives the number
of divergences detected. At most one divergence was triggered in most of the
benchmarks except the standard sorting. The results for Conv. hull simple with
the input size of 2000 are not available because the execution time is very high
(one million executions can take more than a week to finish). Our random testing
results suggest that divergence is very difficult to detect without applying good
search strategies such as ABS and GRT.

5 Related Work

In [7], the authors propose a verifier that attempts to prove that a set of user-
specified axioms (e.g., Knuth’s axioms for convex hulls [19]) cannot be violated
by any control-flow path in a piece of code. Their work does not address floating-
point directly; in fact, they treat all conditionals as non-deterministic selection
statements, which can be unrealistic. Also, devising axioms for new problems is
non-trivially hard. The scalability of their symbolic decision procedure is also in
doubt (tool unavailable), and it can also generate false alarms (our method does
not generate false alarms). Our approach is more practical, as it requires users
to provide discrete features, and not an axiomatic specification.

Runtime instability detection could also be used to detect divergence [1].
This work does not address the task of generating inputs that can quickly induce
divergence.

The authors of [16] propose a method for witnessing branch deviations across
platforms. Their targeting problem is similar to the problem described in [22],
and it is different from our targeting problem: witnessing discrete feature devi-
ations between floating-point and real computations (which is called divergence
in this paper). The key idea of their method is firstly using a SMT solver to find
a candidate input, and then searching close inputs around the candidate and
checking if any of them triggering a deviation. Our approach can address many
practical scalability issues such as handling non-linear operations, and can be
applied with equal ease even when source codes are unavailable.
White-box Sampling: White-box sampling [2] was proposed for finding dis-
continuous program behaviors. In this work, a program is seen as a composition
of continuous functions which have disjoint input domains. White-box sampling
tries to discover all continuous functions by finding at least one input for each
of their input domains. The approach of checking whether two inputs belong to
the same continuous function’s domain is by comparing the decision sequences
generated in the executions. A decision sequence is composed with floating-
point-decided discrete values, called discrete factors, like branch decision and
float-to-int type casting. Such discrete factor sequence can be one of the weak



signatures adopted by ABS (demonstrated in §4.3). Extracting discrete factor
sequences from executions requires program instrumentation which is difficult to
apply to large-scale programs (e.g. programs invoke dynamic linked libraries).
However, ABS is not restricted to using discrete factor sequence as signature.
ABS can treat programs as black boxes and adopt signature functions which
directly observe program outputs.
Floating-point Program Testing Methods and Dynamic Precision Anal-
ysis: Both our divergence detection method and dynamic round-off error esti-
mation [9] are methods for testing floating-point programs. However, dynamic
round-off error estimation merely triggers high error on a given expression while
ABS and GRT automatically find inputs that cause divergence. We can see the
both divergence detection and round-off error estimation are two methods for
finding inputs triggering floating-point imprecision scenarios. The inputs are im-
portant for dynamic floating-point analyses to avoid overly under-approximating
floating-point imprecision. Examples of dynamic floating-point analyses which
use concrete inputs to profile precision are catastrophic cancellation detection [3],
instability detection [1], auto-tuning [25], and synthesis [26].

6 Concluding Remarks

With the increasing pressure to reduce data movement, reducing floating-point
precision allocation is a necessity. Also, the increasing platform heterogeneity is
likely to increase the proclivity for program divergence — a definite impediment
to achieving execution reproducibility. In this paper, we offer the first in-depth
study of divergence. Our experimental results suggest that our new heuristics,
namely ABS and GRT, are capable of handling many practical examples with
well over 1000 inputs by quickly guiding input generation to locate divergence.
For our future work, we plan to study heterogeneity-induced divergence scenar-
ios.
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Abstract. Constraint solving and satisfiability checking play an impor-
tant role in various tasks such as formal verification, software analysis
and testing. In this paper, we identify a particular kind of constraints
called ordering constraints, and study the problem of deciding satisfia-
bility modulo such constraints. The theory of ordering constraints can
be regarded as a special case of difference logic, and is essential for many
important problems in symbolic analysis of concurrent programs. We
propose a new approach for checking satisfiability modulo ordering con-
straints based on the DPLL(T) framework, and present our experimental
results compared with state-of-the-art SMT solvers on both benchmarks
and instances of real symbolic constraints.

1 Introduction

In the past decade, constraint solving and satisfiability checking techniques and
tools have found more and more applications in various fields like formal meth-
ods, software engineering and security. In particular, Satisfiability Modulo The-
ories (SMT) solvers play a vital role in program analysis and testing. This work
is motivated by the increasingly important use of SMT solving for symbolic
analysis of concurrent programs.

It is well-known that concurrent programs are error-prone. Analyzing con-
current programs has been a big challenge due to subtle interactions among the
concurrent threads exacerbated by the huge thread scheduling space. Among the
broad spectrum of concurrency analysis techniques, symbolic analysis is proba-
bly the most promising approach that has attracted significant research attention
in recent years [7,9,16,17,18,20,23,25,27,30]. Generally speaking, it models the
scheduling of threads as symbolic constraints over order variables correspond-
ing to the execution order of critical operations performed by threads (such as
shared data accesses and synchronizations). The symbolic constraints capture

? This work is supported in part by National Basic Research (973) Program of China
(No. 2014CB340701), National Natural Science Foundation of China (Grant No.
91418206, 91118007).
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both data and control dependencies among threads such that any solution to
the constraints corresponds to a valid schedule.

A key advantage of symbolic analysis is that it allows reasoning about thread
schedules with the help of automated constraint solving. By encoding interesting
properties (such as race conditions) as additional constraints and solving them
with a constraint solver, we can verify if there exists any valid schedule that can
satisfy the property. Such an approach has been used for finding concurrency
bugs such as data races [18,25], atomicity violations [30], deadlocks [7], null
pointer executions [9], etc, and has also been used to reproduce concurrency
failures [20,23], to generate tests [8], and to verify general properties [16,17]. In
our prior work [18], we developed a tool called RVPredict, which is able to detect
data races based on symbolic analysis of the program execution trace.

Despite its huge potential, symbolic analysis has not been widely adopted
in practice. The main obstacle is the performance of constraint solvers. For real
world applications, the size of complex constraints can be extremely large that
is very challenging for existing SMT solvers to solve. For example, for data race
detection in RVPredict, the number of constraints is cubic in the trace size, which
can grow to exascale for large programs such as Apache Derby1, the traces of
which contain tens of millions of critical events [18]. We provide an illustrative
example for RVPredict in Section 2.

To improve the scalability of symbolic analysis for analyzing concurrent pro-
grams, we need highly efficient constraint solvers. Fortunately, we note that the
symbolic constraints in many problems [9,16,17,18,20,23,25] take a simple form.
Each constraint consists of conjunctions and disjunctions of many simple Boolean
expressions over atomic predicates which are just simple ordering comparisons.
An example is: O1 < O2∧O3 < O4∧(O2 < O3∨O4 < O1). Here each variable Oi
denotes the occurrence of an event; and the relation Oi < Oj means that event
ei happens before event ej in certain schedules. A constraint like this is called
an ordering constraint (OC). The relational operator could also be ≤, ≥, etc.
However, the specific value difference between variables is irrelevant, because
in many applications we do not concern about the real-time properties among
events. Therefore, to solve ordering constraints, it is not necessary to use the
full (integer) difference logic (DL), which is the most efficient decision procedure
used by existing solvers for OC.

In this paper, we study properties and decision procedures for ordering con-
straints (OCs). The theory of ordering constraints is a fragment of difference
logic, which can be decided by detecting negative cycles in the weighted di-
graph. However, we find that detecting negative cycles is not essential to the
consistency checking of ordering constraints. In fact, the problem is closely re-
lated to the decomposition of a digraph into its strongly connected components.
Based on Tarjan’s strongly connected components algorithm, we propose a linear
time decision procedure for checking satisfiability of ordering constraints, and
investigate how to integrate it with the DPLL(T) framework. We have also de-
veloped a customized solver for SMT(OC), and conducted extensive evaluation

1 http://db.apache.org/derby/
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of its performance compared with two state-of-the-art SMT solvers, Z3 [5] and
OpenSMT [3], on both benchmarks and real symbolic constraints from RVPre-
dict. Though not optimized, our tool achieves comparable performance as that
of Z3 and OpenSMT both of which are highly optimized. We present our exper-
imental results in Section 6.

The rest of the paper is organized as follows. We first provide a motivating
example to show how ordering constraints are derived from symbolic analysis of
concurrent programs in Section 2. We then formally define ordering constraints
and the constraint graph in Section 3 and present a linear time decision procedure
for OC in Section 4. We further discuss how to integrate the decision procedure
with the DPLL(T) framework to solve SMT(OC) formulas in Section 5.

2 Motivation
initially x=y=0 resource z=0
Thread t1 Thread t2

1. fork t2
2. lock l

3. x = 1
4. y = 1
5. unlock l

6. { //begin
7. lock l
8. r1 = y
9. unlock l

10. r2 = x
11. if (r1 == r2)
12. z = 1 (auth)
13. } //end

14. join t2
15. r3 = z (use)
16. if (r3 == 0)
17. Error

Fig. 1. An example program with a race (3,10).

To elucidate the or-
dering constraints, let’s
consider a data race de-
tection problem based on
the symbolic analysis pro-
posed in RVPredict [18].

The program in Fig-
ure 1 contains a race
condition between lines
(3,10) on a shared vari-
able x that may cause
an authentication fail-
ure of resource z at
line 12, which in conse-
quence causes an error
to occur when z is used
at line 15. Non-symbolic
analysis techniques such
as happens-before [10],
causal-precedes [28], and
the lockset algorithm [19,26]
either cannot detect this race or report false alarms. RVPredict is able to detect
this race by observing an execution trace of the program following an interleav-
ing denoted by the line numbers (which does not manifest the race). The trace
(shown in Figure 2) contains a sequence of events emitted in the execution, in-
cluding thread fork and join, begin and end, read and write, lock and unlock, as
well as branch events.

The constructed symbolic constraints (shown in Figure 3) based on the trace
consist of three parts: (A) the must happen-before (MHB) constraints, (B) the
locking constraints, and (C) the race constraints. The MHB constraints encode
the ordering requirements among events that must always hold. For example,
the fork event at line 1 must happen before the lock event at line 2 and the
begin event of t2 at line 6, so we have O1 < O2 and O1 < O6. The locking
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constraints encode lock mutual exclusion consistency over lock and unlock events.
For example, O5 < O7 ∨ O9 < O2 means that either t1 acquires the lock l first
and t2 second, or t2 acquires l first and t1 second. If t1 first, then the lock at line
7 must happen after the unlock at line 5; otherwise if t2 first, the lock at line 2

should happen after the unlock at line 9.

initially x = y = z = 0
1. fork(t1, t2)
2. lock(t1, l)
3. write(t1, x, 1)
4. write(t1, y, 1)
5. unlock(t1, l)

6. begin(t2)
7. lock(t2, l)
8. read(t2, y, 1)
9. unlock(t2, l)
10. read(t2, x, 1)
11. branch(t2)
12. write(t2, z, 1)
13. end(t2)

14. join(t1, t2)
15. read(t1, z, 1)
16. branch(t1)

Fig. 2. A trace corresponding to the example

The race constraints encode
the data race condition. For ex-
ample, for (3,10), the race con-
straint is written as O10 = O3,
meaning that these two events are
un-ordered. For (12,15), because
there is a branch event (at line
11) before line 12, the control-
flow condition at the branch event
needs to be satisfied as well. So
the race constraint is written as
O10 = O3 ∧ O3 < O10 ∧ O4 <
O8, to ensure that the read event
at line 10 reads value 1 on x, and
that the read event at line 8 reads
value 1 on y. The size of symbolic
constraints, in the worst case, is
cubic in the number of reads and
writes in the trace.

A. MHB
O1 < O2 < . . . < O5

O14 < . . . < O16

O6 < O7 < . . . < O13

O1 < O6 ∧ O13 < O14

B. Locking O5 < O7 ∨ O9 < O2

C. Race (3,10) O10 = O3

C. Race (12,15)
O15 = O12

O3 < O10 ∧ O4 < O8

Fig. 3. Symbolic constraints of the trace

Putting all these constraints
together, the technique then in-
vokes a solver to compute a so-
lution for these unknown order
variables. For (3,10), the solver
returns a solution which corre-
sponds to the interleaving 1-6-7-
8-9-2-3-10, so (3,10) is a race. For
(12,15), the solver reports no so-
lution, so it is not a race.

The symbolic constraints above
are easy to solve, since the size of
the trace is small in this simple
example. However, for real world
programs with long running executions, the constraints can quickly exceed the
capability of existing solvers such as Z3 [5] as the constraint size is cubic in the
trace size. As a result, RVPredict has to cut the trace into smaller chunks and
only detects races in each chunk separately, resulting in missing races across
chunks. Hence, to scale RVPredict to larger traces and to find more races, it
is important to design more efficient solvers that are customized for solving the
ordering constraints. Although we focus on motivating this problem with RVPre-
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dict, the ordering constraints are applicable to many other concurrency analysis
problems such as replay [23], failure reproduction [20], concurrency property
violation detection [9,17], model checking [16], etc.

We next formalize the ordering constraints and present our algorithm to solve
this problem with a linear time decision procedure.

3 Preliminaries

Definition 1. An ordering constraint (OC) is a comparison between two nu-
meric variables. It can be represented as (x op y), where op ∈ {<,≤, >,≥,=, 6=}.

The theory of ordering constraints is a special case of difference logic, where
the constant c in the difference theory atom ((x− y) op c) is restricted to 0.

Definition 2. An SMT formula φ over ordering constraints, i.e., an SMT(OC)
formula, can be represented as a Boolean formula PSφ(b1, . . . , bn) together with
definitions in the form: bi ≡ x op y, where op ∈ {<,≤, >,≥,=, 6=}. That means,
the Boolean variable bi stands for the ordering constraint (x op y). PSφ is the
propositional skeleton of the formula φ.

Without loss of generality, we can restrict the relational operators to < and
≤. In other words, the problem at hand is a Boolean combination of atoms of
the form x < y or x ≤ y.

A set of ordering constraints can be naturally represented with a directed
graph.

Definition 3. Given a set of ordering constraints, the constraint graph of
the ordering constraints is a digraph G = {V,E} which is constructed in the
following way:

1. For each variable xi, introduce a vertex vi ∈ V .
2. For each constraint xi < xj, introduce an edge e<i,j ∈ E from vi to vj.

3. For each constraint xi ≤ xj, introduce an edge e≤i,j ∈ E from vi to vj.

Definition 4. The out-degree of a vertex v of digraph G is the number of edges
that start from v, and is denoted by outdeg(v). Similarly, the in-degree of v is
the number of edges that end at v, and is denoted by indeg(v).

Fig. 4. Example 1

Example 1. Consider a set of order-
ing constraints: {x1 < x2, x2 ≤ x3,
x3 ≤ x4, x4 ≤ x3}. Figure 4 shows the
constraint graph constructed by Def-
inition 3. The variables {x1, x2, x3,
x4} are represented by the nodes {v1,
v2, v3, v4}, respectively, and outdeg(x3) = 1 and indeg(x3) = 2.

Recall that difference logic also has a graph representation. A set of difference
arithmetic atoms can be represented by a weighted directed graph, where each
node corresponds to a variable, and each edge with weight corresponds to a dif-
ference arithmetic atom. Obviously the constraint graph of ordering constraints
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can be viewed as a special case of that of difference logic, where all weights can
only take two values. The distinction between ordering constraints and difference
logic seems to be slight. However, in the rest of the paper we will show how this
minor difference leads to a new decision procedure with lower time complexity.

4 The Decision Procedure for Ordering Constraints

It is well known that DL can be decided by detecting negative cycles in the
weighted directed graph with the Bellman-Ford algorithm [24]. The complexity
of the classical decision procedure for DL is O(nm), where n is the number of
variables, and m is the number of constraints. As a fragment of difference logic,
ordering constraints can be directly checked with the aforementioned algorithm.
However, through exploring the structure of the constraint graph of ordering
constraints, we observe that detecting negative cycles is not essential to the
consistency checking of OC. In this section, we propose a new way to check the
inconsistency of OC, which needs only to examine the constraint graph in linear
time.

Before presenting the decision procedure for OC, we first introduce some
theoretical results on OC and its constraint graph.

Lemma 1. If digraph G has no cycle, then G has a vertex of out-degree 0 and
a vertex of in-degree 0.

Proof. We prove this lemma via reduction to absurdity. Assume for each vertex
v of G, outdeg(v) > 0. Let v1 be a vertex in V . Since outdeg(v1) > 0 by the
assumption, there exists an edge e1 which starts from v1 and ends at v2. Since
outdeg(v2) > 0, there exists an edge e2 which starts from v2 and ends at v3,
and so on and so forth. In this way, we obtain an infinite sequence of vertices
{v1, . . . , vk, . . .}. Note that |V | is finite, there must exist a cycle in this sequence,
which contradicts the precondition that G has no cycle. The proof of case of
in-degree is analogous.

Lemma 2. Given a set of ordering constraints α, if its constraint graph G has
no cycle, then α is consistent.

Proof. Based on the acyclic digraph G, we construct a feasible solution to the
variables of α in the following way:

(1) Set i = 0, and G0 = G.
(2) Find the set V ′i of vertices of in-degree 0 in Gi = (Vi, Ei). For each vertex vt

in V ′i , let the corresponding variable xt = i.
(3) Let E′i = {e|e ∈ Ei and e starts from a vertex in V ′i }. Construct the sub-

graph Gi+1 of Gi by Gi+1 = (Vi+1, Ei+1) = (Vi − V ′i , Ei − E′i).
(4) Repeat step (2) and (3) until Gi is empty.

We now show that this procedure terminates with a solution that satisfies α.
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Note that G is acyclic and each Gi is a subgraph of G, so Gi is acyclic.
According to Lemma 1, we have |V ′i | > 0 every time the iteration reaches step
(2). Therefore, this procedure will terminate.

Consider two adjacent vertices vp and vq with an edge 〈vp, vq〉. As long as vp
remains in the current graph Gi, indeg(vq) > 0. Hence vp must be deleted earlier
than vq, and we have xp < xq. In general, for an arbitrary pair of vertices (vp
and vq), if there exists a path from vp to vq, namely 〈vp, vp1 , . . . , vpk , vq〉, then
we have xp < xp1 < . . . < xpk < xq ⇒ xp < xq.

Theorem 1. Given a set of ordering constraints α and its constraint graph G, α
is inconsistent if and only if there exists a maximal strongly connected component
of G that contains an e< edge.

Proof. ⇐= Let G′ be a maximal strongly connected component of G which
contains an e< edge 〈v1, v2〉. Since v1 and v2 are reachable from each other,
there exists a path from v2 to v1 in G′. Without loss of generality, we assume
the path is {v2, . . . , vn, v1}. The path and the edge 〈v1, v2〉 form a cycle in G′,
which implies that x1 < x2 ≤ . . . ≤ xn ≤ x1. Thus x1 < x1, and α is inconsistent.

=⇒We prove this via reduction to absurdity. Suppose every maximal strongly
connected component of G does not contain an e< edge. Consider an arbitrary
pair of vertices vp and vq that are reachable from each other. Since vp and vq
belong to a maximal strongly connected component, there only exist e≤ edges
in the path from vp to vq, then xp ≤ xq. On the other hand, we have xp ≥ xq.
As a result, xp = xq.

Let Gs = (Vs, Es) be a maximal strongly connected component of G. We
could merge vertices of Vs into one vertex v and obtain a new graph G′ =
(V ′, E′), where V ′ = (V − Vs)∪ {v} and E′ = {〈vi, vj〉|〈vi, vj〉 ∈ E, vi 6∈ Vs, vj 6∈
Vs} ∪ {〈v, vj〉|〈vi, vj〉 ∈ E, vi ∈ Vs, vj 6∈ Vs} ∪ {〈vi, v〉|〈vi, vj〉 ∈ E, vi 6∈ Vs, vj ∈
Vs}. In addition, x = xi,∀vi ∈ Vs.

Consider the following way to construct a solution to α. For each maximal
strongly connected component of G, we merge it into a vertex and finally obtain
G′ = (V ′, E′). Note that such G′ is unique and acyclic. We could construct a
solution from G′ by Lemma 2.

We now show the solution constructed by this procedure satisfies α. That
is, for each pair of vertices (vp, vq), if there exists a path from vp to vq, then
xp ≤ xq. Furthermore, if there exists an e< edge in a path from vp to vq, then
xp < xq.

Let vp and vq map to v′p and v′q of G′. If v′p = v′q, then xp = x′p = x′q = xq.
Otherwise, there exists a path from v′p to v′q. By Lemma 2, xp = x′p < x′q = xq.
Hence xp ≤ xq always holds. If there exists an e< edge in a path from vp to vq,
then vp and vq cannot be in the same maximal strongly connected component.
Therefore, v′p 6= v′q ⇒ xp < xq. It can be concluded that α is consistent since the
solution satisfies the constraints of α.
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Fig. 5. Example 2

Example 2 Recall in Ex-
ample 1 that there are 3
strongly connected compo-
nents {{v1},{v2},{v3,v4}}.
If we add a constraint x3 ≤
x1, the resulting constraint
graph is shown in Figure 5.
There is only one strongly
connected component, which itself is a connected graph. Since 〈v1, v2〉 is an e<

edge, the conjunction of ordering constraints is inconsistent by Theorem 1. The
conflict x1 < x1 can be drawn from {x1 < x2, x2 ≤ x3, x3 ≤ x1}.

Theorem 1 suggests that, to check the consistency of ordering constraints, we
can decompose its constraint graph into maximal strongly connected components
and then examine the edges. We use Tarjan’s algorithm [29] to find the max-
imal strongly connected components in our ordering constraints theory solver.
It produces a unique partition of the graph’s vertices into the graph’s strongly
connected components. Each vertex of the graph appears in exactly one of these
components. Then we check each edge in these components whether it is an e<

edge. Therefore the consistency of conjunctions of ordering constraints can be
decided in O(n+m) time.

5 Integrating DPOC into DPLL(T)

5.1 The DPLL(T) Framework

DPLL(T) is a generalization of DPLL for solving a decidable first order theory
T . The DPLL(T) system consists of two parts: the global DPLL(X) module and
a decision procedure DPT for the given theory T . The DPLL(X) part is a general
DPLL engine that is independent of any particular theory T [13]. It interacts
with DPT through a well-defined interface.

Fig. 6. The DPLL(T) Framework

The DPLL(T) frame-
work is illustrated in Fig-
ure 6. We assume that the
readers are familiar with
DPLL components, such
as Decide, BCP, Analyze
and Backtrack. The com-
ponent TP represents the-
ory propagation, which is
invoked when no more im-
plications can be made
by BCP. It deduces liter-
als that are implied by
the current assignment in
theory T , and communi-
cates the implications to
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the BCP part. Although theory propagation is not essential to the functionality
of the solving procedure, it is vital to the efficiency of the procedure. The compo-
nent Check encapsulates the decision procedure DPT for consistency checking of
the current assignment. If inconsistencies are detected, it generates theory-level
minimal conflict clauses.

5.2 Theory-level Lemma Learning

We now discuss how to integrate the decision procedure DPOC into the DPLL(T)
framework. In DPLL(T), the decision procedure is called repeatedly to check the
consistency of (partial) assignments. To avoid frequent construction/destruction
of constraint graphs, at the beginning of the solving process, we construct the
constraint graph G of the set of all predicates in the target SMT(OC) formula.
In this graph, each edge has two states: an edge is active if its corresponding
boolean variable is assigned a value (true, false); and is inactive if its corre-
sponding boolean variable is undefined.

Notice that initially all edges are inactive. When the solver finds a partial
assignment α, the edges in G corresponding to α are activated. Hence the con-
straint graph Gα of the ordering constraints of α consists of every active edge in
G, and is a subgraph of G. The decision procedure DPOC checks the consistency
of α based on Gα.

Fig. 7. Example 3

Example 3. Consider a for-
mula PSφ(b1, b2, b3, b4, b5) =
(b1 ∧ (¬b2) ∧ (b3 ∨ b4 ∨ b5)),
{b1 ≡ x1 < x2, b2 ≡ x3 < x2,
b3 ≡ x3 ≤ x4, b4 ≡ x4 ≤
x3, b5 ≡ x3 ≤ x1}. Figure 7
shows the constraint graph Gβ of all predicates in this formula with a possi-
ble partial assignment β, {b1 = True, b2 = False, b3 = True, b4 = True, b5 =
Undefined}. Note that {〈v1, v2〉, 〈v2, v3〉, 〈v3, v4〉, 〈v4, v3〉} are active and 〈v3, v1〉
is inactive. Actually, the graph of Example 1 is a subgraph of Gβ , which can be
constructed by choosing all active edges in Gβ .

To maximize the benefits of integration, the OC solver should be able to
communicate theory lemmas to the SAT engine, including conflict clauses and
deduction clauses at the OC theory level. We next discuss two such techniques.

Minimal Conflict Explanation According to Theorem 1, the OC solver de-
tects an inconsistency of the current assignment if it finds an e< edge in a strongly
connected component of the constraint graph G. Without loss of generality, we
assume the e< edge is e = 〈v1, v2〉, and denote the strongly connected component
by G′. The inconsistency is essentially caused by a cycle that contains e. Note
that all paths from v2 to v1 are in G′. Hence we only have to find a shortest path
from v2 to v1 in G′ instead of G. The shortest path from v2 to v1 and the edge
e = 〈v1, v2〉 form a shortest cycle with an e< edge, corresponding to the minimal
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conflict that gives rise to the inconsistency. Therefore, we generate theory-level
conflict clauses according to such cycles.

Theory Propagation In order to improve performance, we apply a “cheap”
theory propagation technique. Our theory propagation is combined with the
consistency check to reduce its cost. However, it is an incomplete algorithm.

Algorithm 1 is the pseudocode of the whole consistency check procedure. It
is mainly based on the Tarjan algorithm on the graph G′ = (V, active(E)). Like
the original Tarjan algorithm, the index variable counts the number of visited
nodes in DFS order. The value of v.index numbers the nodes consecutively in
the order in which they are discovered. And the value of v.lowlink represents
the smallest index of any node known to be reachable from v, including v itself.
The scc variable counts the number of strongly connected components. And the
attribute scc of a vertex records the strongly connected component it belongs
to. S is the node stack, which stores the history of nodes explored but not yet
committed to a strongly connected component.

We introduce two values for a vertex v, v.father and v.nf, for theory propaga-
tion. The value of v.father represents a vertex w, that the DFS procedure visits
v through edge 〈w, v〉. Assume the DFS procedure starts from vertex u. Then
we can generate a path from u to v by retrieving the father attribute of each
vertex on this path from v. The number of e< edges on this path is recorded by
v.nf.

We add two parts into the original Tarjan algorithm. In Algorithm 1, the
statements from line 7 to line 12 record the “father” and the “nf” attribute of
w. The loop from line 23 to line 27 recursively checks the vertex t by retrieving
father records from s. We can obtain a path pts from t to s in this way. If
t.nf<s.nf, there exists at least one e< edge on this path. Thus pts and edge st
compose a negative cycle if t.nf<s.nf or st is an e< edge. We can determine the
assignment of the Boolean variable which corresponds to the edge ts or st and
generate the Boolean clause of this deduction.

In Example 3, our algorithm starts from v1, and then applies a DFS proce-
dure. When the algorithm visits the last vertex, v4, we have v4.nf = v3.nf =
v2.nf = v1.nf + 1. Then the algorithm starts popping stack S and constructing
strongly connected components. At vertex v3, we find v1 is the father of v3.father,
〈v3, v1〉 is inactive and v3.nf > v1.nf, so we deduce that b5 ≡ 〈v3, v1〉 should be
False and generate a clause, (¬b1) ∨ b2 ∨ (¬b5).

6 Experimental Evaluation

We have implemented our decision procedure in a tool called COCO (which stands
for Combating Ordering COnstraints) based on MiniSat 2.02. We have evaluated
COCO with a collection of ordering constraints generated from RVPredict and two

2 N. Eén and N. Sörensson. The MiniSat Page. http://minisat.se/
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Algorithm 1 Tarjan’s SCC Algorithm Combined With Theory Propagation

1: function Tarjan()
2: initialize v, S, index, scc
3: for each v that v.index is undefined in V do
4: Tarjan DFS(v)
5: end for
6: end function

1: function Tarjan DFS(v)
2: v.index, v.lowlink ← index
3: index ← index + 1
4: S.push(v)
5: for each active edge 〈v, w〉 in E do
6: if w is not visited then
7: w.father ← v
8: if 〈v, w〉 is an e< edge then
9: w.nf ← v.nf + 1

10: else
11: w.nf ← v.nf
12: end if
13: Tarjan DFS(w)
14: v.lowlink ← min(v.lowlink, w.lowlink)
15: else if w in S
16: v.lowlink ← min(v.lowlink, w.index)
17: end if
18: end for
19: if v.lowlink = v.index then
20: repeat
21: s ← S.pop()
22: s.scc ← scc
23: t ← s
24: while t.father is defined do
25: t ← t.father
26: if (〈s, t〉 or 〈t, s〉 is inactive) and (s.nf > t.nf or 〈s, t〉 is an e< edge)

then
27: generate TP clause from s to t by father vertex records
28: end if
29: end while
30: until (s = v)
31: scc ← scc + 1
32: end if
33: end function
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series of QF IDL benchmarks (diamonds and parity) in SMT-Lib3, which are
also SMT(OC) formulas. The experiments were performed on a workstation with
3.40GHz Intel Core i7-2600 CPU and 8GB memory.

For comparison, we also evaluated with two other state-of-the-art SMT solvers,
i.e., OpenSMT4 and Z35. The experimental results are shown in Figure 8 and
Figure 9. Note that each point represents an instance. Its x-coordinate and y-
coordinate represent the running times of COCO and Z3/OpenSMT on this instance,
respectively. All figures are in logarithmic coordinates.
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Fig. 8. Experiments on instances generated from RVPredict

Figure 8 shows the results on instances that are generated from RVPredict.
Our tool performs well on some small instances. It takes dozens of milliseconds
for COCO to solve them. Z3 usually consumes more time and memory than COCO,
and it fails to solve some large instances, due to the limit on memory usage. For
such instances, we regard the running time of Z3 as more than 3600 seconds.
Nevertheless, on some larger instances OpenSMT is more efficient. Our investi-
gation of OpenSMT reveals that it adopts an efficient incremental consistency
checking algorithm and integrates minimal conflict with a theory propagation
technique, which COCO currently does not fully support. The advantage of theory
propagation is that it allows the solver to effectively learn useful facts that can
help reduce the chances of conflicts. On the instances generated from RVPredict,
theory propagations are very effective, because the Boolean structures of the
SMT(OC) formulas are quite simple.

Table 1 gives more details on some “hard” instances in Figure 8. “TS sat
calls” and “TS unsat calls” represent the number of satisfiable/unsatisfiable
calls of the theory solver, respectively. “Dims” denotes the number of numeric
variables, i.e., dimension of the search space. The running times of both OpenSMT

and COCO are closely related to the dimension of the instance and the number
of calls of the theory solver. An unsatisfiable call of the theory solver causes
backtracking and retrieving reasons; so it consumes much more time than a

3 They are available at: http://www.cs.nyu.edu/˜barrett/smtlib/
4 The OpenSMT Page. http://code.google.com/p/opensmt/
5 The Z3 Page. http://z3.codeplex.com/
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Table 1. More details about the “Hard” instances.

Instance OpenSMT COCO Z3

Name Dims
TS sat
calls

TS unsat
calls

Time(s)
TS sat
calls

TS unsat
calls

Time(s) Time(s)

Harness 1 19783 40460 1 9.489 21664 12775 59.768 —
Harness 2 19783 41278 1 9.929 18703 12011 50.937 —

JigsawDriver 3 1548 5796 0 0.892 12797 15604 10.447 10.549
JigsawDriver 7 1548 6198 0 0.848 997 1671 0.538 8.813
BubbleSort 3 1195 36989 71 0.868 47643 52508 30.708 15.761

JGFMolDynA 1 7718 11448 0 3.028 3 17 0.074 2.64
JGFMolDynA 2 7718 12914 4 2.972 2214 3181 2.522 748.207

BoundedBuffer 39 828 5640 1 0.500 787 1109 0.312 1.196
BoundedBuffer 40 828 11464 47 0.444 2621 2924 0.830 1.360
BoundedBuffer 41 828 5537 1 0.500 3256 3327 1.252 1.640

main 15 9707 12882 1 3.228 2132 2122 2.184 158.214
“—” means that the tool ran out of memory.

satisfiable call. Notice that OpenSMT hardly encounters unsatisfiable calls. Its
theory propagation procedure greatly reduces the number of unsatisfiable calls.
On the contrary, COCO even encounters more unsatisfiable calls than satisfiable
calls in some circumstances, because its theory propagation is incomplete.
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Fig. 9. Experiments on QF IDL benchmarks in SMT-Lib

Figure 9 shows the experimental results on SMT-Lib benchmarks “diamonds”
and “parity”. It appears that OpenSMT is often slower than COCO, and Z3 per-
forms well in these cases, in contrast to Figure 8.

OpenSMT only applies the incremental algorithm which cannot skip steps, so
it checks consistency incrementally whenever it makes decision or propagation.
On instances that contain complicated Boolean components, like some SMT-Lib
benchmarks, OpenSMT is not so efficient, because it has to backtrack often and
applies the consistency checking algorithm step by step again even with complete
theory propagations. On the other hand, Z3 tightly integrates many strategies,
some of which are hand-crafted and fall outside the scope of DPLL(T), such
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as formula preprocessing, which COCO does not implement. These may be the
reasons for the good performance of Z3 in Figure 9.

In addition to the running time, we also compared the memory usage of these
three solvers. It turned out that COCO always occupies the least memory. The
memory usage of OpenSMT is about 5 to 10 times as much as that of COCO, and
Z3 consumes tens of times even hundreds of times higher memories than COCO.
The detailed data are omitted, due to the lack of space.

To summarize, COCO achieves better scalability than Z3 on the real instances
generated by RVPredict. On the other hand, when comparing COCO with OpenSMT,
there seems no clear winner. The incremental decision procedure with complete
theory propagation enables OpenSMT to perform well on many instances gener-
ated by RVPredict, whereas it results in poor performance of OpenSMT on the
classical SMT-Lib instances. Besides, our current tool has potential to achieve
better performance as we have not designed a complete theory propagation, as
demonstrated by OpenSMT, and many other optimization strategies used by
Z3.

7 Related Work

As we mentioned earlier, there has been a large body of work on solving (in-
teger) difference constraints. See, for example, [22,24,4,12]. Nieuwenhuis and
Oliveras presented a DPLL(T) system with exhaustive theory propagation for
solving SMT(DL) formulas [24]. They reduced the consistency checking for DL
to detecting negative cycles in the weighted digraph with the Bellman-Ford al-
gorithm [24]. The complexity of this decision procedure is O(nm), where n is the
number of variables, and m is the number of constraints. In [4] Cotton and Maler
proposed an incremental complete difference constraint propagation algorithm
with complexity O(m + nlogn + |U |), where |U | is the number of constraints
which are candidates for being deduced. However, to check the consistency of
conjunctions of constraints, the incremental algorithm has to be called for each
constraint. Therefore, the complexity of the whole procedure is even higher. In
contrast, the complexity of our decision procedure for ordering constraints is
only O(n+m).

Besides, there are some works consider extending a SAT solver with acyclicity
detection. [21] deals with a conjunction of theory predicates, while our work is
concerned with arbitrary Boolean combinations of ordering constraints. Due to
the existence of the logical connectives (OR, NOT) of SMT(OC) formulas, the
equality and disequality relations can be represented by inequality relations.
We only have to consider two types of edges (e>= edge and e> edge) in our
graph, which is more simple than four types of edges in [21]. Moreover, our
theory propagation exploits the information from Tarjans algorithm. [14], [15],
and recent versions of MonoSAT [2] all rely on similar theory propagation and
clause learning techniques. [2], for example, also uses Tarjan’s SCC during clause
learning in a similar way as this paper. However, they don’t have a notion of



15

e< edges versus e<= edges, and they couldn’t support distinction of e< edges
versus e<= edges without significant modifications.

8 Conclusion

Satisfiability Modulo Theories (SMT) is an important research topic in auto-
mated reasoning. In this paper, we identified and studied a useful theory, i.e.,
the theory of ordering constraints. We demonstrated its applications in sym-
bolic analysis of concurrent programs. We also presented methods for solving
the related satisfiability problems. In particular, we gave a decision procedure
that has a lower complexity than that for the difference logic. We have also
implemented a prototype tool for our algorithm and compared its performance
with two state-of-the-art SMT solvers, Z3 and OpenSMT. Although our current
implementation is not optimized, it achieves comparable performance as that
of Z3 and OpenSMT which have been developed for years and are highly opti-
mized. We explained why a particular tool is more efficient on certain problem
instances. In our future work, we plan to further improve the performance of
our approach by developing incremental and backtrackable decision procedures
with more efficient theory propagation.
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Abstract. Error Correction Code decoding algorithms for consumer
products such as Internet of Things (IoT) devices are usually imple-
mented as dedicated hardware circuits. As processors are becoming in-
creasingly powerful and energy efficient, there is now a strong desire
to perform this processing in software to reduce production costs and
time to market. The recently introduced family of Successive Cancella-
tion decoders for Polar codes has been shown in several research works to
efficiently leverage the ubiquitous SIMD units in modern CPUs, while of-
fering strong potentials for a wide range of optimizations. The P-EDGE
environment introduced in this paper, combines a specialized skeleton
generator and a building blocks library routines to provide a generic,
extensible Polar code exploration workbench. It enables ECC code de-
signers to easily experiments with combinations of existing and new op-
timizations, while delivering performance close to state-of-art decoders.

Keywords: Error Correction Codes, Polar Codes, Successive Cancella-
tion decoding, Generic programming, Code generation, Domain Specific
Language, SIMDization

1 Introduction

Error correction coding aka channel coding is a technique that enables the trans-
mission of digital information over an unreliable communication channel. In to-
day’s communication systems, hardware digital circuits are in charge of perform-
ing the encoding (resp. decoding) of transmitted (resp. received) information.
These custom Error Correction Code (ECC) circuits lack flexibility and suffer
from very long, expensive development cycles. In order to improve the system
flexibility and to reduce time to market, and as a consequence from the strong
performance increase of low power general purpose processors such as found in
IoT devices, researchers recently suggested implementing channel decoders in
software. Moreover, it is also much needed to be able to run such algorithms on
high end, high performance processors to shorten the computationally intensive
algorithm validation process. During such a process, long sequences of informa-
tion are encoded with the studied algorithm, altered with a controlled random



noise, decoded, and compared with the initial sequence to assess the error cor-
recting power. Indeed, some classes of decoding algorithms can take advantage of
modern CPU features such as SIMD units, and even many/multi-cores, making
the software approach even more desirable.

In this paper, we focus on the software implementation of Successive Can-
cellation (SC) decoder for a recent family of error correction codes: Polar Codes
[2]. As an alternative to hardware implementation, several software implemen-
tations were proposed in the literature in order to demonstrate that polar codes
decoding can be efficiently implemented on a multi-core CPUs (x86, ARM).
These software implementations take advantage of various optimizations that
were first proposed for hardware implementations. However, depending on the
processor micro-architecture and instruction set, some optimization techniques
may not work equally on distinct processors. New optimization techniques may
be designed. Some optimization combinations may be less successful than others.
As a result, the optimization space of polar decoder implementations is wide,
and its exploration non trivial.

For this reason, we propose a new polar decoder experimentation framework
named P-EDGE (Polar ECC Decoder Generation Environment), which combines
a specializing skeleton generator with a building block library of elementary po-
lar code processing routines. The algorithm-centric skeleton generator is fully
independent from the hardware architecture enabling high-level algorithmic op-
timization to be implemented in a portable manner. The architecture-centric
building block library is fully independent from the generated skeleton instance,
enabling architecture porting effort and low-level routine optimization to be
concentrated on a small set of short functions. P-EDGE enables separation of
concern between algorithmic and architecture optimizations. The panel of eval-
uation experiments we conducted shows the high flexibility of our framework.
The performance evaluation results we obtained, nearing and sometime outper-
forming state-of-the-art handwritten implementations, confirm that the benefit
from this high flexibility is not cancelled by an expensive penalty.

The remainder of this paper is organized as follows. Section 2 details the
context and relevant characteristics of the general polar code decoding process,
as well as the large optimization space resulting from its implementation. Sec-
tion 3 presents our proposed framework as well as the architecture independent
skeleton generator. Section 4 provides implementation details on the architec-
ture dependent building blocks. Section 5 talks about the achieved related works
in the domain. Section 6 shows experiments and performance results. Section 7
concludes this talk.

2 Successive Cancellation decoding of Polar Codes

Error correction codes are widely used in digital communication or data storage
applications. The encoding process consists in adding some redundant informa-
tion (parity check bits) in order to strengthen the message against transmission
errors. On the receiver side, the decoder estimates the transmitted bits based



on i) the received sequence and ii) the knowledge of the encoding process. Polar
Codes were recently proposed in [2]. Similar to state of the art LDPC codes
[4] [9] and Turbo codes [3], polar codes can achieve very good error correction
performance. However, a very large codelength (N > 220) is required in order
to approach to the theoretical error correction limit proved by Shannon [13].
The challenge is then to design polar codes decoders able to decode several mil-
lions bits frames while guaranteeing a compelling throughput. Assume we want
to transmit K bits over a noisy communication channel. The encoding process
appends N −K parity check bits before the resulting N bits codeword can be
transmitted over the channel. On the receiver side, the noisy sequence Y is a
vector of N real values each corresponding to a priori beliefs on the transmitted
bits. These beliefs are in the form of a Log-Likelihood-Ratio (LLR). Using the
knowledge of the encoding process, the decoder job is to estimate the transmitted
N -bit codeword based on a received sequence of N LLRs.
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Fig. 1. a) Tree layout. b) Per-node downward and upward computations.

The SC decoding algorithm can be seen as the traversal of a binary tree
starting from the root node. For a codelength N = 2m, the corresponding tree
thus includes m + 1 node layers, indexed from l = 0 (root node layer) down
to l = m (leaf nodes layers). As the tree is initially full, each layer l contains
2l nodes, each node of that layer l containing 2m−l LLRs (λ) and 2m−l binary
values denoted as partial sums (s). At initialization, LLRs received from the
channel (Y ) are stored in the root node. Then, the decoder performs a pre-order
traversal of the tree. When a node is visited in the downward direction, LLRs
of the node are updated. In the upward direction, partial sums are updated.
Fig. 1b summarizes the computations performed in both directions. The update
functions are:λc = f(λa, λb) = sign(λa.λb).min(|λa|, |λb|)

λc = g(λa, λb, s) = (1− 2s)λa + λb
(sc, sd) = h(sa, sb) = (sa ⊕ sb, sb).

(1)

The f and g functions both generate a single LLR. The h function provides a
couple of partial sums.



Before recursively calling itself on the left node, the algorithm apply the f
function, respectively, before calling itself on the right node the g function is
applied. At the end (after the recursive call on the right node) the h function is
applied. The f and g functions use the LLRs (read only mode) from the current
node in order to produce the new LLR values into respectively left and right
nodes. The h function, in the general case (non-terminal case), reads the bits
from the left and right node in order to update the bit values of the current
nodes. For the terminal case, the h function reads the LLRs from itself and
decides the bit values.

Leaf nodes are of two kinds: information bit nodes and frozen bit nodes.
When a frozen bit leaf node is reached, its binary value is unconditionally set
to zero. Instead, when an information leaf node is reached, its binary value is
set according to the sign of its LLR (0 if LLR is positive, 1 otherwise). Once
every node in the tree has been visited in both directions, the decoder eventually
updates partial sums in the root node and the decoding process is terminated.
At this point, the decoding result is stored in the root node in the form of a
N -bit partial sum vectors.

2.1 Code Optimization Space

The previous decoder algorithm has a number of characteristics of interest for its
optimization. Generating decoders able to take advantage of this optimization
space is the key for high performance decoders:

– The tree traversal is sequential, but f , g and h are applied element-wise to
all elements of the LLR and bits in the nodes and their children. As there
is no dependence between computations involving different elements of the
same node, these node computations can be parallelized or vectorized (cf.
the intra-frame strategy introduced in [5]),

– Frozen bits fully define their leaf values, hence some part of the traversal can
be cut and its computation avoided, depending on the location of the frozen
bits. More generally, the tree computation can be versioned depending on
these bits (cf. [1] [12]),

– The decoder can be specialized for a particular configuration of frozen bits,
as frozen bit locations do not change for many frames,

– Similarly, multiple frames can be decoded concurrently, with parallel or vec-
tor code. Such inter-frame optimizations can increase the decoding through-
put, however at the expense of latency, which is also one important metric
of the application (cf. [8]).

Beside optimizations coming from the computations in the tree, several rep-
resentations of LLR may lead to different error correction performance. LLR for
instance can be represented by floats or integers (fixed point representation),
LLR from different frames can be packed together.

Finally, usual code optimizations, such as unrolling or inlining can also be
explored. For instance, the recursive structure of the tree computation can be
fully unrolled, depending on the size of the codelength.



3 The P-EDGE framework

We now presents the framework we designed to study, experiment with, and opti-
mize the decoding of polar codes. While our contributions focus on the decoding
stage, a whole encoding/decoding chain is required for testing and validation
purpose, and we therefore give an overview of our communication chain.

Comm. Chan.Transmitter Receiver

UK XN YN VN

ChannelEncoderSource Decoder Sink

Fig. 2. The communication chain.

Fig. 2 depicts the whole communication chain of our framework. The chain
stages are organized as the following main segments:

The Transmitter segment is made of two Stages: 1) The source signal gener-
ator stage (Source) produces the vector of information bits UK to be transmitted.
2) The polar encoding stage (Encoder) inserts parity check redundancy bits into
information vector. For every packet of K information bits, a total of N bits
are produced (information+redundancy bits). The resulting N-bit vector (XN )
is transmitted over the communication channel.

The Communication channel segment simulates a noisy communication,
adding additive white Gaussian noise to the frames, producing the real vector
YN from the binary vector XN .

TheReceiver segment is made of two Stages: 1) The Decoder stage produces
a binary vector VN from YN along using the algorithm described above. 2) The
Sink stage eventually compares the K information bits (VK) in VN with UK
in order to count the number of remaining binary errors after the decoding is
performed. The more effective the error correction code is, the closer the VK
bits should be from the UK bits. Resilient errors may come from 1) inherent
limitations in the polar code construction, 2) sub-optimal decoding algorithm,
3) a high noise power in the communication channel. Moreover, while testing
new algorithm implementations or optimizations, an abnormally high error rate
can also be the sign of a bug.

3.1 The P-EDGE Decoder Generator

Specialized Decoder Skeletons and Building Blocks Library. The tree structure
at the heart of SC decoders is fully determined by the parameters of a given
code instance: the code size, the code rate (R = K/N), position of the frozen



���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
���� ����

����
����
����

���
���
���

���
���
��� ��

��
��
��

��
��
��

��
��
�� ����

����
����
����

��
��
��
��

��
��
��
��

����
����
����
����

?

?

? ?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

????

?
level >= 2

???

?

f() g()

xor()

f() gr()

xor()

f()

xor()

g1()g0()
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Repetition, left only Standard Case

Fig. 3. Subtree rewriting rules for processing specialization.

bits. All these parameters are statically known at compile time. Thus, the recur-
sive tree traversal code structure and the corresponding tree data structure are
challenging to optimize and vectorize for a compiler. Our Polar ECC Decoder
Generation Environment (P-EDGE) builds on this property to provide a general
framework for polar decoder design, generation and optimization. Beyond the
code parameters, Polar decoders can be tweaked and optimized in many differ-
ent orthogonal or loosely coupled ways: Elementary type (floating point, fixed
point), Element containers (array size), Data layout (bit packing techniques),
Instruction Set (x86, ARM), SIMD support (scalar, intra-frame or inter-frame
processing vectorization), SIMD instruction set variant (SSE, AVX, NEON),
as well as the set and relative priorities of the rewriting rules for tree pruning.
Our framework enables to quickly experiment the different combinations of all
optimizations. The decoder code thus results from two distinct parts:

– An architecture independent specialized decoder skeleton generated by our
decoder generator, from a given frozen bits location input. Starting from the
naive, recursive expression of the computational tree, we apply successively
cuts and specializations on the tree. They are described through a set of
rewriting rules, that can be customized according to the specificities of the
decoder and to the constraints in term of code size for instance.

– A library of architecture dependent elementary computation building blocks,
corresponding to the implementation variants of the f , g and h functions
(fixed or floating point versions, scalar or vector versions, ...). These blocks
do not depend on the frozen bits location and can therefore be used by any
specialized skeleton.

This separation of concerns between high-level specialized algorithmic skele-
tons and low-level arithmetic routines, enables both ECC experts to focus on op-
timizing algorithm skeletons and architecture experts to focus on writing highly
optimized routines, without interferences.

Decoder Generation. The decoder generator first builds the binary tree structure
as shown in Fig. 1a from the frozen bit location input. Each internal node has
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void Generated_SC_decoder_N8_K4::decode()
{

f < R, F, FI, 0, 4, 8, 4>::apply(l );
rep<B, R, H, HI, 8, 0, 4>::apply(l, s);
gr <B, R, G, GI, 0, 4, 0, 8, 4>::apply(l, s);
spc<B, R, H, HI, 8, 4, 4>::apply(l, s);
xo <B, X, XI, 0, 4, 0, 4>::apply( s);

}

Fig. 4. Generation process on a small binary tree (N = 8). The tree is cut and the
computations are versioned according to the location of the frozen bit. The final code
generated is in the right.

a tag indicating the the type of processing required at that node (recursive
children processing, f/g/h functions to be applied or not). This tag is initially
set to standard, corresponding to the canonical processing described in Fig. 1b.

For some sub-tree pattern configurations, the processing to be performed
at the root of such sub-trees can be simplified, or even skipped completely,
for instance when a node only has two frozen bit leaf children. To exploit such
properties, the decoder generator repeatedly applies the set of sub-tree rewriting
rules listed in Fig. 3 using a depth first traversal to alter the node tags, until no
rewriting rule applies anymore.

Each rewriting rule defines a subtree pattern selector, a new tag for the
subtree root, and the f , g, and h processing functions to be applied, simplified
or skipped for this node in the resulting decoder. A null f (resp. g) function cuts
the left (resp. right) child of the node. From an implementation point of view, a
rule is defined as a class, with a match function, and a set of functions f , g, and
h. The current set of rewriting rules can thus easily be enriched with new rules
to generate even more specialized versions.

Patterns on the first two rows result in cutting away both children. For
instance, the first rule, named Rate 0, leaf children, cuts the two frozen bit leaf
children of the parent node, and tag it as Rate 0 (white node). Processing is
completely skipped on this node since the values of the bits are unconditionally
known. The Repetition rules match subtrees where only the rightmost leaf is
black (tag Rate 1 ), the others being frozen bits. In this case, the whole subtree
is cut and replaced by a more simple processing. Moreover a single, specialized
rep function is applied on the node instead of the three functions f , g and h.
The third line describes partial cuts and specialization. For instance, the rule
“Repetition, left only” specializes the g and h functions to use, but does not
prune the recursive children processing.

Rewriting rules are ordered by priority (left to right, then top row to bottom
row in Fig. 3), thus if more than one rule match an encountered subtree, the
highest priority rule is applied. The priority order is chosen such as to favor
strongest computation reducing rules over rules with minor impact, and to ensure
confluence by selecting the most specific pattern first. Rules selectors can match



on node tags and/or node levels (leaf, specific level, above or below some level).
A given rule is applied at most once on a given node.

Finally, once the tree has been fully specialized, the generator perform a
second tree traversal pass to output the resulting decoder. An example of such a
tree specialization process together with the generator output is shown in Fig. 4.

4 Low Level Building blocks

template <typename R>
R f_seq(const R& la,

const R& lb)
{

auto abs_la = (la >= 0) ? la : -la;
auto abs_lb = (lb >= 0) ? lb : -lb;
auto min_abs = std::min(abs_la, abs_lb);
auto sign = (0 < la*lb) - (la*lb < 0);
auto lc = (R)sign * min_abs;

return lc;
}

template <typename R>
mipp::vec f_simd(const mipp::vec& la,

const mipp::vec& lb)
{

auto abs_la = mipp::abs <R>(la );
auto abs_lb = mipp::abs <R>(lb );
auto min_abs = mipp::min <R>(abs_la, abs_lb);
auto sign = mipp::sign<R>(la, lb );
auto lc = mipp::neg <R>(min_abs, sign );

return lc;
}

Fig. 5. Example of the C++ implementation of the f function in P-EDGE (the se-
quential version is in the left whereas the SIMD one is in the right).

The main challenge in implementing P-EDGE’s architecture dependent build-
ing blocks is to provide enough flexibility to enable varied type, data layout
and optimization strategies such as intra-frame SIMDization (intra-SIMD) and
inter-frame SIMDization (inter-SIMD), without breaking the high level skele-
ton abstraction. To meet this requirement, our building block library heavily
relies on generic programming and compile time specialization by the means of
C++ templates, in a manner inspired by expression template techniques [15].
Template specializations provide node functions. Fig. 4 gives a example of a
generated decoder for N = 8, calling template instances of the node functions.
B: partial sum type; R: LLR/λ type; F/G/H/X: Scalar standard SC function ver-
sions; FI/GI/HI/XI SIMD versions. Remaining template parameters are offsets
and chunk sizes to control data layout.

A single SIMD set is needed because SIMD routines are common to both
intra-SIMD and inter-SIMD. In the later case, the generated decoder packs as
many frames together from the frame stream as the vector size in a transparent
manner. In both cases, offsets are fully precomputed at compile time. Intra-
SIMD exploits SIMD units without increasing the decoder latency, since it still
processes frames one at a time and thus preserves fine grain frame pipelining.
However, at leaf nodes and nearby, too few elements remain to fill SIMD units.
For instance, 4-way SIMD registers are fully filled only at level 2 and above. Thus,
Intra-SIMD will only be effective on trees that can be heavily pruned from these
numerous scalar nodes. Inter-SIMD does not suffer from this problem, since
SIMD register lanes are filled by LLRs and bits from multiple frames instead.



However, the decoder needs to wait for enough frames to arrive, which increases
latency, and to interleave the LLRs from these frames (gather) before proceeding.
It also needs to de-interleave the resulting data (the bits) after decoding (scatter).
Refer to [8] for more details about the interleaving process.

The framework instantiates scalar or SIMD functions as appropriate (hence
the two sets of functions). These two sets of functions are themselves independent
on the element type. Scalar functions are datatype-parametered templates. SIMD
functions use the template-based MIPP intrinsics wrapper library developed by
one of the authors to benefit from SSE, AVX and NEON flavors SIMD instruction
sets in a portable and extensible manner. As an example, the generic scalar and
SIMD implementations of the f function are shown in Fig. 5. We also tried an
auto-vectorized approach but even if all the routines were well vectorized (from
the compiler report), the performance was, at least, 3 times slower than the
MIPP handwritten versions.

The decoder stores its state using two data buffers, one for the LLR values
(λ) and the other for the bits (partial sums s). The “logical” tree layout is
implemented as a simple and efficient heap vector data layout. Traversing the
tree therefore corresponds to moving through the array, at different offsets and
considering different index intervals. The LLR offset is computed from the graph
depth d (or the node vertical indexing) as follows:

offλ(d = 0) = 0, offλ(d > 0) =

d∑
i=1

N

2i−1
. (2)

Given l the lane (or the node horizontal indexing), the bit offset is determined
as follows:

offs(d, l) =
N

2d
× l. (3)

The LLR buffer size is 2N and the bit buffer is N , for a frame of N bits. Thus,
the memory footprint per frame is:

memfp = N × (2× sizeof(LLR) + sizeof(bit)). (4)

LLRs element size is 4 bytes (float) or 1 byte (fixed point numbers). The Inter-
SIMD version also employs a bit packing memory footprint reduction tech-
nique [8] to pack several bits together by using shifts and masking instructions.

5 Related works

Polar codes [2] keep on gaining attention from circuits and systems designers.
The practical interest of these codes comes from the possibility to implement
them efficiently in software. Software implementations were proposed in [5] on
x86 processor targets, using SIMD instructions to speed-up single frame decoding
(intra-frame parallelism). In addition to SIMD optimizations, the tree pruning
step described in section 3 was also applied to the decoder in [12]. Moreover, fixed
point representation was implemented in order to speed up the decoding process.



This modification of the data format has a negligible impact on error correction
quality while enabling better throughput. The authors proposed to improve the
throughput performance by auto-generating the source code of their floating
point decoders [11]. A second set of works [8] has considered an another way to
take advantage of SIMD processing capabilities. Authors focused on inter-frame
parallelism using both SIMD and multi-thread parallelization. Indeed, this ap-
proach enables constant parallelism level during the overall decoding process, at
the cost of an increased latency. Throughputs achieved using this approach and
the associated implementation optimizations were about ×4 to ×8 times higher
than [5]. An ARM-based implementation was also explored in [7] to enable low
power consumption software decoding for a potential use on consumer devices.

The P-EDGE philosophy differs from these previous approaches by promot-
ing separation of concerns and genericity as first class objectives to enable exper-
imenting with multiple optimization strategies. Results presented in Section 6
show that these objectives are not incompatible with performance.

Concerning automatic generation of high performance libraries, ATLAS gen-
erator [18], LGen [14] and SPIRAL [10] are examples for linear algebra libraries
and signal processing domains, all resorting to autotuning to find the best ver-
sion. LGen and SPIRAL generate optimized code from a Domain Specific Lan-
guage (DSL). A different generative approach is adopted by Eigen [6] or uBLAS
[17]. While Eigen focuses on structural recursion, it is applied to matrices and not
to trees. They use C++ templates to optimize the code at compile time. Com-
paratively, the technique presented in this paper combines the two generative
approaches: the generator produces code from an initial formulation, optimized
by rewriting rules. The second step also optimizes code from C++ templates.

6 Evaluation

In this section we first describe the protocol we used, after that we provide a
performance comparison between the state-of-the-art and P-EDGE. At the end
we discuss the exploring capabilities of our framework.

x86-based ARMv7-based prev. work arch.[11]
CPU Intel Xeon E31225 ARM Cortex-A15 Intel Core i7-2600

3.10Ghz MPCore 2.32GHz 3.40GHz
Cache 32KB L1I/L1D, 256KB L2 32KB L1I/L1D, L2 1024KB 32KB L1I/L1D, L2 256KB

L3 6MB No L3 L3 8MB
Compiler GNU g++ 4.8 GNU g++ 4.8 GNU g++ 4.8

Table 1. Performance evaluation platforms.

The platforms used for performance evaluation are shown in Table 1. Unless
stated otherwise, each measure is obtained as the best of ten runs of a 10 second
simulation, taking into account frame loading and result storing. SNR (Signal
Noise Ratio) is set to 2.5 dB for tests with 1/5 and 1/2 rates, and to 4.0 dB for



the 5/6, 0.84, and 9/10 rate tests. Colors differentiate the codes rates of the Polar
Code, point shapes differentiate decoder types (Intra-SIMD vs Inter-SIMD).

6.1 Comparison between P-EDGE and the State of the Art

Intra frame vectorization (32-bit, float)
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Fig. 6. Performance comparison between several code rates of 32-bit floating point
decoding stages (running on the IntelR©XeonR©CPU E31225 and, respectively, on the
NvidiaR©Jetson TK1R©CPU A15).

(N,K) Decoder Info T/P (Mb/s) Latency (µs)

(16384, 14746) prev. work[11] 292 50
this work 341 43

(32768, 27568) prev. work[11] 220 125
this work 241 114

(32768, 29492) prev. work[11] 261 113
this work 293 101

Table 2. Comparing P-EDGE with a state-of-art software polar decoder, for codes of
rate 0.84 and rate 0.9, using Intra-SIMD. The two cross marks show state-of-the art
performance results reported in [11], for comparison.

Fig. 6 shows P-EDGE intra-frame throughput on different architectures. Our
generic framework performance outperforms previous work decoder results (be-
tween 10% and 25% higher). This is confirmed in Tab. 2 which compares P-
EDGE with the state-of-the-art result samples for some specific rates reported
in [11]. The throughput of the inter-frame implementation is shown in Figure 7
for different architectures. Again, the results confirm that our generic approach
overtakes handwritten code (also between 10% and 25% higher on x86).



Inter frame vectorization (8-bit, char)
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Fig. 7. Performance comparison between several code rates of 8-bit fixed point de-
coding stages (running on the IntelR©XeonR©CPU E31225 and, respectively, on the
NvidiaR©Jetson TK1R©CPU A15). Circles show P-EDGE results. Triangles show our
former “handwritten” implementation results [8].

Decoder N = 26 N = 28 N = 210 N = 212 N = 214 N = 216

inter 32-bit, R = 1/2 1 (7) 2 (24) 7 (77) 9 (254) 19 (736) 40 (2528)
inter 32-bit, R = 5/6 1 (4) 2 (19) 4 (53) 7 (167) 16 (591) 32 (1758)
intra 32-bit, R = 1/2 1 (4) 3 (16) 9 (56) 8 (182) 19 (563) 38 (1947)
intra 32-bit, R = 5/6 1 (3) 3 (13) 6 (38) 7 (126) 20 (392) 27 (1365)
inter 8-bit, R = 1/2 1 (5) 2 (22) 7 (72) 8 (252) 17 (665) 36 (2220)
inter 8-bit, R = 5/6 1 (4) 2 (18) 4 (51) 6 (191) 14 (461) 26 (1555)

Table 3. Code size (in KB) of the generated decoders depending on the number of
bits N per frame (code respectively compiled with AVX1 instructions for the 32-bit
decoders and with SSE4.1 instructions for the 8-bit decoders). For comparison, code
size without compression are shown in parentheses.

For all the test series, the bandwidth first increases with codeword size, as
the tree pruning becomes increasingly more effective with larger trees. The effect
is stronger for Intra-SIMD where pruning also results in removing inefficient
scalar nodes. However, beyond a codeword size point which depends on the
architecture and on the selected SIMD version, performance decreases again due
to L1 cache misses, not only L1D but L1I as well. Indeed, decoders are generated
as straight-line code (no recursive calls), with all node computations put in
sequence. This improves performance for small to medium codeword size, up to
the point where the compiled binary exceeds the L1I cache size. We mitigated
this issue by reducing decoder binary sizes using two compression techniques:
1) in the generated code, we moved the buffer offsets from template arguments
to function arguments, which enabled the compiler to factorize more function
calls than before (improvement by a factor of 10), 2) we implemented a sub-tree
folding algorithm in the generator, to detect multiple occurrences of a same sub-



tree and to put the corresponding code into a dedicated function (improvement
by a factor of 5 for N = 216, the compression ratio increases with the size of the
tree).

Table 3 shows the binary code size of the decoders depending on N . The
results which exceed the 32KB of the L1I cache are highlighted in bold font.
Sub-tree folding was enabled starting from N = 212 because there is an overhead
(at run-time) when using this technique. P-EDGE decoder code sizes without
compression are shown in parentheses: we can observe a huge improvement, until
N = 214 the code size never exceeds the L1I cache anymore.

6.2 Exploring respective optimization impacts with P-EDGE

In this sub-section the compression techniques have been disabled.

Impact of the different optimizations on the throughput
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Fig. 8. Throughput depending on the different optimizations for N = 2048, for intra-
frame vectorization on the left and intra-frame vectorization on the right, resp. (on the
IntelR©XeonR©CPU E31225).

The tree pruning step has a dramatical effect in general. For example, the
reference code for a rate of 1/2 has 2047 nodes, whereas only 291 nodes remain
in the pruned version. However, the individual effect of each rewriting rule is not
trivial. The plots in Figure 8 show the respective impact of several rewriting rules
(cuts, repetitions, single parity checks (SPC)), with N = 2048 and multiple code
rates, for Intra-SIMD and Inter-SIMD respectively. The purpose of the plots is
to show that no single rewriting rule dominates for every code rate, and that
the respective impact of each rule may vary a lot from rate to rate, making
the case for the flexible, extensible architecture of P-EDGE. Indeed, P-EDGE’s
rewriting rule set can also be enriched we rules for specific ranges of code rate.
For instance, the rule Single Parity Check (SPC) has been applied with different
level limits for 9/10 code rate, where it has a significant impact and may benefit
from fine tuning.
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A comparison between the performance of the different decoder instances
obtained from the same code is shown in Figure 9. Only codeword sizes of more
than 28 are shown, as smaller sizes are of little interest in practice. One can see
that for a given bit rate, the best version depends on the codeword size. Inter-
SIMD dominates for a 1/2 rate, while Intra-SIMD dominates for a 5/6 rate on
code size larger than 212. This shows the interest of having both intra-frame and
inter-frame SIMD in the same framework.

7 Conclusion and future works

In this paper, we have developed a framework that enables exploring optimiza-
tions for Successive Cancellation decoders of the Polar Codes family while enforc-
ing a clear separation of concerns between the generic, abstract algorithmic level
and the low-level architecture dependent on building block implementations.
The benefits in terms of software design and flexibility are not overshadowed
by prohibitive run-time performance results. On the contrary, the use of a spe-
cialized skeleton generator to produce optimized compile-time decoders enables
performance levels to match, and even to exceed state of art implementations.

Future work will in priority be dedicated to a more in-depth performance
analysis, for instance by applying the Roof-line model [19] or even better the
Execution-Cache-Memory (ECM) model [16], would also give us much more
insight about the remaining code optimization head-room, as the algorithm tend
to be inherently memory bound. Finally, we intend to stress-test the genericity
of our framework on other decoder variants from the Polar Codes family.
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Abstract. We present a novel parallel approach, parallel nearest neigh-
bor unit (PNNU), for finding the nearest member in a learned dictionary
of high-dimensional features. This is a computation fundamental to ma-
chine learning and data analytics algorithms such as sparse coding for
feature extraction. PNNU achieves high performance by using three tech-
niques: (1) PNNU employs a novel fast table look up scheme to identify
a small number of atoms as candidates from which the nearest neighbor
of a query data vector can be found; (2) PNNU reduces computation
cost by working with candidate atoms of reduced dimensionality; and
(3) PNNU performs computations in parallel over multiple cores with
low inter-core communication overheads. Based on efficient computa-
tion via techniques (1) and (2), technique (3) attains further speed up
via parallel processing. We have implemented PNNU on multi-core ma-
chines. We demonstrate its superior performance on three application
tasks in signal processing and computer vision. For an action recogni-
tion task, PNNU achieves 41x overall performance gains on a 16-core
compute server against a conventional serial implementation of nearest
neighbor computation. Our PNNU software is available online as open
source.

Keywords: Nearest neighbor, NNU, PNNU, data analytics, sparse cod-
ing, learned dictionary, parallel processing, multi-core programming, speedup,
matching pursuit, signal processing, computer vision, KTH, CIFAR

1 Introduction

In the era of big data, the need for high-performance solutions to support data-
driven modeling and prediction has never been greater. In this paper, we consider
parallel solutions to the nearest neighbor (NN) problem: given a set of data points
and a query point in a high-dimensional vector space, find the data point that is
nearest to the query point. NN is used in many data applications. For example,
NN (or its extension of finding k nearest neighbors, kNN) is used to identify
best-matched patterns in a set of templates [13]. NN also serves as an inner loop
in popular feature-extraction algorithms such as matching pursuit (MP) [11] and
orthogonal matching pursuit (OMP) [19].

A key operation in NN is the vector dot-product computation which com-
putes the “closeness” of two vectors under cosine similarity. Exhaustive search
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of data points to find the largest dot-product value with the query point can
quickly become prohibitively expensive as data size and dimensionality increase.

Developing efficient NN solutions for general data sets is known to be a
challenging task. There is a vast amount of literature on this topic, including
k-d trees [21], locality sensitive hashing [3], and nearest-neighbor methods in
machine learning and computer vision [18]. For high-dimensional data, most
methods in the literature usually do not outperform exhaustive NN search [6].
This is due to the fact that, in practical applications, the high-dimensional data
space is commonly only sparsely populated. In our experiments, we find that
this observation often holds for even a moderate dimensionality, such as 30.

In this paper, we consider parallel computing approaches to NN for applica-
tions in machine learning and data analytics. Particularly, we consider the prob-
lem of finding the nearest neighbor in a dictionary of atoms (features) learned
from training data. We present a novel parallel scheme, parallel nearest neigh-
bor unit (PNNU), offering a high-performance NN solution to this problem. By
exploiting data characteristics associated with a learned dictionary, such as the
dominance of a small number of principal components, PNNU realizes its high
performance with three techniques:

T1. reducing the number of required dot-product computations,

T2. reducing the dimensionality in each dot-product computation, and

T3. parallel processing with low inter-core communication overheads.

For T1, we use a fast table look up scheme to identify a small subset of
dictionary atoms as candidates. By carrying out dot-product computations only
with these candidates, the query vector can quickly find its nearest neighbor or a
close approximation. Our look-up tables are based on principal component anal-
ysis (PCA). For accurate candidates identification, we apply PCA to dictionary
atoms rather than the original data set from which the dictionary is learned. The
construction and usage of this fast table look up scheme is novel. For T2, we
apply the same PCA technique to reduce dimensionality of the candidate atoms
to lower the cost of computing their dot-products with the query vector. Finally,
for T3, we show that multiple cores can each work on scalar projections of dic-
tionary atoms on their respective dimensions independently without inter-core
communication until the very end of the PNNU computation. At the very end, a
simple and inexpensive reduction operation among multiple cores is carried out.
The parallel processing enabled by T3 results in substantial speed-up gains on
the already efficient computation brought by T1 and T2. Thus, PNNU does not
suffer from a common drawback in parallel processing that good speedups are
obtained only on more parallelizable but less efficient computations. We have
implemented PNNU with these techniques in software for multicore computers,
and our code is available as open source for public research use [10]. PNNU is
written in C++ and contains language bindings and examples for Python and
MATLAB making it simple to integrate into existing codebases.
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2 Background: Learned Dictionaries and Spare Coding

A data-driven modeling and prediction task, such as those considered in this
paper, generally involves two phases. The first phase is feature extraction, where
we use clustering methods such as K-means and K-SVD [1] to learn a dictionary
where atoms (features) are cluster centroids. These atoms are the most occurring,
representative features of the data. The second phase is classification/regression,
where we compute a sparse representation, via sparse coding, of an input data
vector in the learned dictionary, and then based on the sparse representation
perform classification/regression.

Mathematically, sparse coding is an optimization problem expressed as

ŷ = arg min
y
‖x−Dy‖22 + λ · ψ(y), (1)

where x is an input data vector, D is a learned dictionary, ŷ is an sparse repre-
sentation of x, λ is certain constant and ψ(y) is a sparsity constraint function.
The choices of ψ(y) are usually either the L0-norm ‖y‖0 or the L1-norm ‖y‖1.

Algorithms for sparse coding include those such as MP and OMP which
greedily perform minimization under a L0-norm constraint, and those such as
Basis Pursuit [2] and LARS [4] which perform minimization under a L1-norm
constraint.

The inner loop in these algorithms is the NN problem for a learned dictio-
nary: for a given input vector x ∈ Rm, find its nearest feature (atom) dj in a
m × n dictionary D =

[
d1 d2 . . . dn

]
. In machine learning and data analytics

applications, D is generally overcomplete with m � n, and that m and n can
be large, e. g., m = 100 and n = 4000. In these cases, sparse coding is computa-
tionally demanding. The PNNU approach of this paper aims at alleviating this
computational problem.

Convolutional neural networks (CNN) and convolutional sparse coding (CSC)
have become popular due to their success in many machine learning tasks [12,
9]. Interestingly, PNNU can help accelerate CSC. Convolution in CNN with Fast
Fourier Transform has a complexity of O(nm log(m)) as compared to O(nm2)
for CSC. With PNNU, CSC’s complexity cost is reduced to O(αβm2) with a
penalty to accuracy, for small α and β, which is discussed in detail in Sec. 5.

3 Parallel Nearest Neighbor Unit (PNNU)

In this section, we describe parallel nearest neighbor unit (PNNU) for a learned
dictionary D. The three subsections describe three techniques that make up the
PNNU algorithm. The first technique T1 uses the Nearest Neighbor Unit (NNU)
to reduce the number of dot-product computations. The second technique T2
reduces the cost of each dot-product computation via dimensionality reduction.
The third technique T3 parallelizes NNU. These three techniques work in con-
junction for high-performance nearest neighbor computation. That is, the first
two techniques improves computation efficiency by reducing total cost of dot-
product computations while the last technique further reduces the processing
time via parallel processing.
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3.1 Technique T1 (NNU): Identification of Candidates for Reducing
Dot-product Computations

Technique T1 concerns a novel table look-up method for identifying a small
number of candidate atoms in D from which the nearest neighbor of a query
data vector or a close approximation can be found. We call this the nearest
neighbor unit or NNU. As Fig. 1 depicts, the naive exhaustive search involves
O(n) dot-product computations while NNU’s candidate approach reduces this
number to O(m). This saving is significant for overcomplete dictionaries with
m� n. As described below, the technique is divided into two steps: offline table
preparation and online candidates identification.

Fig. 1. A contrast between the naive ex-
haustive search and the NNU’s candi-
dates approach in the number of dot-
product computations. The k candi-
dates are a subset of D which are se-
lected by NNU. Increasing the α and β
parameters in NNU increases k, where
k ≤ α · β.

Fig. 2. Offline table preparation of con-
tent for TABLE-i associated with the
top principal component vi of D for
i = 1, 2, . . . , α. For each possible w-bit
value W for vTi x the dictionary posi-
tions of the β atoms for which their
scalar projections on vi are nearest to
W are stored at table location W .

NNULookup Table Preparation We first compute principal components V
for D by performing PCA [7] on D, that is, DDT = VΣVT for a diagonal Σ.
We then form a sub-matrix Vα of V by including the top α principal components
for some α = O(m), which together explain the majority of data variations in

D, that is, VT
α =

[
vT1 ,v

T
2 , . . . ,v

T
m

]T
.

Based on D and Vα, we prepare content for α tables using VT
αD. As depicted

in Fig. 2, for TABLE-i corresponding to vi, i = 1, . . . , α, we map each possible
w-bit value of vTi x to the dictionary positions of the β atoms dj , for which vTi dj
are nearest to the vTi x value.

To contain the table size, we aim for a small bit width w in representing
vTi x. Specifically, we use the 16-bit IEEE 754 half-precision floating-point data
type for all of our experimental results. Empirically, we have found that for many
practical applications such as object classification for tens or hundreds of classes,
w = 16 is sufficient. In this case, the tables can be easily fit in the main memory
or even the L3 cache (4-8 MB) of today’s laptops. However, this is no inherent
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restriction on the data type stored in the table and w can be increased when
higher precision is required.

Fig. 3. Cumulative variance explained by
PCA applied to the learned dictionary and
raw input data for the action recognition
task described in Sec. 5.1. The eigenvalues
are sorted by magnitude and cumulatively
summed to show total explained variance.

Table 1. Accuracy results of
PNNU(α,β), for different α and
β configurations, for the ac-
tion recognition task described
in Sec. 5.1 when applying PCA
on a learned dictionary (PCA-
D) versus applying PCA on the
raw data (PCA-X).

PCA-X PCA-D

PNNU(1,1) 64.20% 82.70%

PNNU(1,5) 79.20% 87.30%

PNNU(1,10) 80.30% 89.60%

PNNU(5,1) 78.60% 87.90%

PNNU(5,5) 83.20% 92.50%

PNNU(5,10) 86.70% 90.80%

PNNU(10,1) 79.80% 86.70%

PNNU(10,5) 87.30% 90.20%

PNNU(10,10) 89.00% 90.80%

Note that our use of PCA here departs from the conventional application of
PCA where principal components are computed from the raw data set, rather
than the dictionary learned from this data set. Since dictionary atoms are cluster
centroids learned by clustering methods such as K-means, they are denoised
representation of the data. As a result, when PCA is applied to dictionary atoms,
a smaller percentage of principal components can capture most of variations in
the data, as compared to PCA applied to the raw data directly. This is illustrated
by Fig. 3. The top 10 eigenvalues of the learned dictionary explain over 80.7% of
the variance, compared to 49.3% for the raw data. Moreover, as shown in Table 1,
NNU with applying PCA on a learned dictionary rather than the raw data gives
results of substantially higher accuracy for an action recognition task. The use
of PCA in this way, using the projection between Vα and an input vector x to
build a fast look up table, is novel and one of the largest contributions of this
paper. (We note a similar use of PCA in [5] for a different purpose of preserving
pairwise dot products of sparse code under dimensionality reduction.)

NNULookup Algorithm Given an input vector x we are interested in
finding its nearest atom in D. We first prepare search keys for x, that is,

VT
αx =

[
vT1 x,vT2 x, . . .vTmx

]T
. Next, for i = 1, 2, . . . , α, we use a w-bit rep-

resentation of vTi x as a key into TABLE-i, as depicted in Fig. 4. Note that these
α table look ups can be done independently in parallel, enabling straightfor-
ward parallelization (see Sec. 3.3). Finally, we identify candidates for the nearest
neighbor of x by taking the union of the results from all α tables as illustrated in
Fig. 5 for α = 3. Note that taking a union with the “OR” operator is amenable
to efficient hardware and software implementations.
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For a given α and β, our table-lookup method will yield at most αβ can-
didates. Increasing α and β will raise the probability that identified candidate
atoms will include the nearest neighbor. In Sec. 4 we show that this probabil-
ity approaches 1 as α and β increase. Since tables can be accessed in parallel
(see Sec. 3.3 for PNNU), increasing α does not incur additional look up time
beyond the final low-cost reduction step. Additionally, since each look up pro-
duces β neighbors at the same time from each table, increasing β does not incur
additional look up time beyond the cost of outputting β values for the union
operation of Fig. 5.

Fig. 4. Online retrieval of content
from tables.

Fig. 5. The union operation: pooling re-
sults from 3 tables with the “OR” operator.

3.2 Technique T2: Dimension Reduction for Minimizing the Cost of
Each Dot-product Computation

By technique T1, we can identify a set of candidate atoms that have a high
likelihood of containing the nearest neighbor of an input vector x. Among these
candidate atoms, we will find the closest one to x. The straightforward approach
is to compute the dot product between x and each candidate atom. In this
subsection, we describe technique T2 based on dimension reduction using the
same PCA on D as in technique T1, now for the purpose of lowering the cost
of each dot-product computation. For example, suppose that the original atoms
are of dimensionality 500, and after PCA we keep only their scalar projections
onto the top 10 principal components. Then a dot-product computation would
now incur only 10 multiplications and 9 additions, rather than the original 500
multiplications and 499 additions. Note that it is also possible to apply PCA
on raw data X, but applying PCA on D is more natural to our approach, and
produces superior results on application accuracy as we demonstrate in Sec. 5.

Since PCA dimensionality reduction is a lossy operation, it is inevitable that
dot-products over reduced-dimension vectors will lower the accuracy of the ap-
plication result. In practice, we keep the top principal components whose eigen-
values can contribute to over 80% of the total for all eigenvalues. In this case,
as results in Sec. 5 demonstrate, the impact on accuracy loss is expected to be
acceptable for typical applications we are interested in.

Note that in the preceding subsection, we use PCA to identify candidates. In
this subsection, we use the same PCA to reduce dimensionality. These are two
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different usages of PCA. The former usage is novel in its role of supporting fast
table look up for NNU, while the latter usage is conventional.

3.3 Technique T3: Parallel Processing with Low Inter-core
Communication Overheads

This subsection describes the third technique making up PNNU. The NNU al-
gorithm of technique T1 leads naturally to parallel processing. We can perform
table-lookup operations for α dimensions in parallel on a multi-core machine.
That is, for i = 1, 2, . . . , α, core i performs the following operations for an in-
put data vector x: (1) compute vTi x, (2) look up β values from table i based
on vTi x, (3) compute β dot-product computations or reduced-dimension dot-
product computations between the candidate dictionary atoms and x, and (4)
output the candidate atom which yields the maximum dot-product value on the
ith dimension.

The final reduction step is performed across all cores (dimensions) to find
the dictionary atom which yields the maximum dot-product value. We note
that the table look-ups from multiple tables are carried out in parallel, so are
the corresponding dot-product computations or reduced-dimension dot-product
computations. We also note that this parallel scheme incurs little to no inter-core
communication overhead, except at the final reduction step where α candidate
atoms are reduced to a single atom that has the maximum dot-product value
with x. In Sec. 5, experiments show that this low communication overhead leads
to large parallel speedups.

4 Probabilistic Analysis of PNNU

In this section, we analyze the probability P that for a given query vector
x, the PNNU algorithm finds the nearest neighbor d in a dictionary D. Let
v1,v2, . . . ,vα be the α top principal components of D. We show that the prob-
ability P approaches 1 as α and β increase, satisfying a certain condition.

For a given ε ∈ (0, 1), let βi be the least number of the nearest neighbors of
vTi x such that the probability that vTi d is not any of the βi nearest neighbors
of vTi x is less than or equal to ε. Given an α, for i = 1, . . . , α, let Yi be an event
that vTi d is not any of the β nearest neighbors of vTi x, where β = max1≤i≤α βi.
Therefore, Pr(Yi) ≤ ε. Assume that Yi are mutually independent. Then, we have

P = 1 − Pr
(⋂α

i=1 Yi

)
= 1 −

∏α
i=1 Pr(Yi) ≥ 1 − εα. Thus, as α increases, and

also β increases accordingly, εα decreases toward 0 and P approaches 1.

Consider using the parallel processing T3 technique of PNNU. Since we have
low inter-core communication overheads, increasing α (the number of cores)
does not impact the processing time significantly. Therefore, for a particular
application, we can pick an ε and keep increasing α, and also β accordingly,
until the probability Pr(A) is high enough.
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To simplify the analysis, we have assumed that Yi are mutually independent.
Experimentally, we have found that this assumption holds well. For all exper-

iments reported in this paper, Pr
(⋂α

i=1 Yi

)
and

∏α
i=1 Pr(Yi) are reasonably

close empirically. For example, in one experiment, these two numbers are 0.72
and 0.71 and in another experiment, they are 0.47 and 0.45.

5 Experimental Results of PNNU on Three Applications

In this section, we provide empirical performance results for PNNU on three
applications: action recognition, object classification and image denoising. All
three applications require the nearest neighbor computation. We replace the
nearest neighbor computation with PNNU(α,β), where α, β denote different
parameter configurations of PNNU. All experiments are run on a compute server
using two Intel Xeon E5-2680 CPUs, with a total of 16 physical cores.

Algorithms to Compare. We consider both PNNU and PNNU without tech-
nique T2 (PNNU-no-T2). The latter involves more dot-product computations,
but yields better application accuracy. We compare PNNU and PNNU-no-T2
(both serial and parallel implementations) with three other algorithms:

1. Straightforward method (S). This is the straightforward exhaustive search
algorithm to find the nearest neighbor in terms of the cosine distance. If
the input data vector is x and candidate atoms are the columns of D, we
compute DTx. We call its serial implementation S. This method is the only
algorithm in the comparison that is guaranteed to find the nearest neighbor
of x in D.

2. PCA-dimensional-reduction-on-dictionary (PCAonD(α)). For dimensional-
ity reduction, we first perform PCA on D to get its top α principal compo-
nents VT

D, that is, DDT = VDΣVD
T for some diagonal Σ. Then dur-

ing computation, instead of computing DTx, we compute dot products
(VT

DD)T (VT
Dx) of reduced dimensionality. Note the parameter α specifies

dimensionality of dot-product computations after PCA dimension reduction.
In these experiments, we use α = 10.

3. PCA-dimensional-reduction-on-data (PCAonX(α)). This is the same as the
previous algorithm, but instead we compute PCA on the input data X. Let
VT
X contain the top α principal components. We compute (VT

XD)T (VT
Xx).

Note the parameter α specifies the dimensionality of dot-product computa-
tions after PCA dimension reduction. We use α = 10.

Performance Measures. We compare algorithms in terms of the following per-
formance related measures, where an algorithm Y can be S, PCAonD, PCAonX,
PNNU or PNNU-no-T2:

N: The number of arithmetic operations per query vector. This is the number
of addition and multiplication operations each algorithm performs for a single
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query vector. For S, a dot-product between a query vector x ∈ Rm and
a dictionary D ∈ Rm×n incurs n(2m − 1) arithmetic operations (nm for
the multiplication and n(m − 1) for the addition). For PCAonD(α) and
PCAonX(α), it is n(2α−1). For PNNU(α,β), it is bounded above by αβ(2α−
1). For PNNU-no-T2(α,β), it is bounded above by αβ(2m− 1).
G: Efficiency gain. For an algorithm Y, its efficiency gain is the number of
arithmetic operations of the straightforward method (NS) over that of the
algorithm Y (NY): NS/NY.
Ts: Serial processing wall clock time in seconds. This is the time it takes for
the serial implementation of the algorithm to run.
Us: Serial speedup of an algorithm Y over the serial straightforward method.
It is the wall clock serial execution time of the straightforward method over
that of algorithm Y: TsS/TsY

. This is a run-time realization of the theoretical
efficiency gain G.
Tp: Parallel processing wall clock time in seconds. This is the time it takes
for the parallel implementation of the algorithm to run.
Up: Parallel-over-serial speedup. This is the parallel scaling performance of
the algorithm. It is Ts/Tp.
Ut: Total performance gain of an algorithm Y over the serial implementation
of the straightforward method: TsS/TpY

= Us × Up.
Q: Quality metric which is defined per application. For action recognition
and object classification, we report the recognition/classification accuracy on
the test set, i.e., the percentage of times the algorithm predicts the correct
class labels. For image denoising, we report the peak signal-to-noise ratio
(PSNR).

Performance Highlights. For each application, we will highlight the following
points in our performance analysis:

1. A comparison of how PNNU performs compared to the simple PCA methods
(PCAonX and PCAonD).

2. The algorithm and setting with the best quality metric (Q) compared to the
straightforward method.

3. The algorithm and setting with the best total performance gain (Ut).

In the following we will explicitly mention these highlighted points for each
application, and mark them with bold faces in the tables which report experiment
results.

5.1 Application A1: Action Recognition

For the action recognition task we use a standard benchmark dataset, the KTH
dataset [17], which is a video dataset consisting of 25 subjects where in each
video a single subject is performing one of six actions (walking, jogging, running,
boxing, hand waving and hand clapping). The dataset is split on subjects into
a training and testing set. Features are extracted from each video using the
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same method as described in [20]. Features from each video consist of a variable
number of columns, where each column is a 150-long feature vector. K-means is
then performed on the training set to learn a dictionary of size 1000. Finally, each
column from every video is then encoded with the learned dictionary using either
conventional dot product or our PNNU approach. Each column is given a single
atom assignment, and for a given video these column assignments are aggregated
using a bag-of-words model. An SVM classifier with chi-squared kernel is then
trained on the bag-of-words representation in order to obtain prediction results.

Table 2. The experiment results for the KTH dataset.
Algorithm N G Ts Us Tp Up Ut Q

S 299,000 1 692.89 1.00 108.48 6.39 6.39 94.20%

PCAonX(10) 19,000 16 129.25 5.36 13.15 9.83 52.69 77.50%

PCAonD(10) 19,000 16 128.40 5.40 13.24 9.70 52.34 77.50%

PNNU-no-T2(1,1) 299 1,000 7.39 93.75 9.80 0.75 70.71 82.70%

PNNU-no-T2(1,10) 2,990 100 28.80 24.06 20.41 1.41 33.94 89.60%

PNNU-no-T2(5,1) 1,495 200 22.91 30.24 12.44 1.84 55.71 87.90%

PNNU-no-T2(5,5) 7,475 40 75.30 9.20 16.73 4.50 41.41 92.50%

PNNU-no-T2(5,10) 14,950 20 140.23 4.94 22.90 6.12 30.26 90.80%

PNNU-no-T2(10,1) 2,990 100 19.24 36.01 10.44 1.84 66.35 86.70%

PNNU-no-T2(10,10) 29,900 10 260.30 2.66 24.99 10.42 27.73 90.80%

PNNU(1,1) 1 299,000 6.36 108.96 5.73 1.11 120.95 82.70%

PNNU(1,10) 10 29,900 15.75 43.99 6.91 2.28 100.29 78.00%

PNNU(5,1) 45 6,644 15.56 44.54 8.05 1.93 86.08 85.50%

PNNU(5,5) 225 1,329 44.64 15.52 8.16 5.47 84.95 83.80%

PNNU(5,10) 450 664 80.87 8.57 8.98 9.01 77.16 84.40%

PNNU(10,1) 190 1,574 27.33 25.35 9.53 2.87 72.69 83.80%

PNNU(10,10) 1,900 157 162.95 4.25 10.69 15.24 64.79 87.30%

Table 2 shows the experiment results for the KTH dataset. The straight-
forward method, denoted as S, achieves the highest accuracy (Q) of 94.20%.
PCAonX(10) and PCAonD(10) both achieve accuracy (Q) of 77.50%, which is
in general substantially lower than PNNU configurations. Additionally, many
PNNU configurations are strictly better in terms of both quality (Q) and total
performance gain (Ut).

PNNU-no-T2(5,5) has an accuracy of 92.50%, the closest to that of S, with
an efficiency gain (G) of 40. This translates into a serial speedup (Us) of 9.20x
(the difference between G and Us is due to both run-time overhead and G only
counting arithmetic operations). The parallel speedup (Up) is 4.50x, for a total
performance gain (Ut) of 41.41x over the serial implementation of S.

Notably, PNNU(1,1) achieves the highest total performance gain (Ut) of
120.95x with accuracy (Q) of 82.70%. This trade-off is good for applications
that can accept a small reduction in quality in order to significantly reduce run-
ning time. As expected, PNNU-no-T2 achieves higher accuracy than PNNU at
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the expense of increased running time. We note this trend in other applications
as well.

Though in general increasing α and β improves Q, it is not always the case.
For instance, we observe a drop of 1.7% in Q when going from PNNU-no-T2(5,5)
to PNNU-no-T2(5,10). The reason for this is explained in the following example.
Suppose given an input sample x, the nearest atom to x is d∗. Increasing β from
5 to 10 leads to finding the candidate atom dβ=10 that is nearer to x than the
candidate atom dβ=5. Nonetheless, there is a chance that dβ=10 is further away
from d∗ than dβ=5. This results in the drop in Q. In general, when x is already
close to d∗, this phenomenon is unlikely to happen.

5.2 Matching Pursuit Algorithm with PNNU

The object classification and image denoising tasks rely on computing sparse
codes. Before going into those applications, we introduce MP (Algorithm 1), the
sparse coding algorithm that we use to compute sparse representations for these
tasks. We modify the nearest neighbor computation section of MP to use PNNU
and obtain MP-PNNU (Algorithm 2). For comparison with other algorithms, we
just replace PNNU routine with other algorithms’ routines of finding the nearest
neighbor.

Algorithm 1. MP

1: Input: data vector x, dictionary
D = [di, . . . ,dn], and the number
of iterations L

2: Output: sparse code y
3: r← x
4: for t = 1 to L do
5: i← arg max |DT r|
6: yi ← dT

i r
7: r← r− yidi

8: end for

Algorithm 2. MP-PNNU

1: Input: data vector x, dictionary
D = [di, . . . ,dn], orthonormal ba-
sis V, the number of iterations L,
and PNNU

2: Output: sparse code y
3: r← x
4: for t = 1 to L do
5: v← VT r
6: C← PNNU(v)
7: j ← arg max |CT r|
8: i← i s.t. di = cj
9: yi ← dT

i r
10: r← r− yidi

11: end for

The MP algorithm finds the column dj in the dictionary D which is best
aligned with data vector x. Then, the scalar projection yj along this dj direction
is removed from x and the residual r = x − yjdj is obtained. The algorithm
proceeds in each iteration by choosing the next column dj that is best matched
with the residual r until the desired number of iterations is performed. We note
that for each iteration, line 5 is the most costly nearest neighbor step. As we
noted previously, for a m × n dictionary D, exhaustive search will incur a cost
of O(mn) and thus can become prohibitively expensive when m and n are large.
The MP-PNNU algorithm can mitigate this problem. MP-PNNU has the same
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overall structure as MP, except that in finding the best matched column dj , it
uses the PNNU approach as described in Sec. 3.

5.3 Application A2: Object Classification

For the image object classification task we use the CIFAR-10 image dataset [8],
an image dataset of 10 object classes. We randomly select 4,000 images from the
training set and evaluate on 1,000 images from the test set (we ensure that the
same number of samples are selected from each class). For each image, all 6 by
6 3-color-channel (RGB) patches are extracted sliding by one pixel, and there-
fore, each vector is 108 dimension long. We learn a 3,000-atom dictionary using
K-SVD [1], a generalization of K-means, on the training patches. For encoding,
we compare the classic MP (Algorithm 1) with MP-PNNU (Algorithm 2), set-
ting k = 5 (number of coefficients) for both algorithms. Finally, we perform a
maximum pooling operation over each image to obtain a feature vector. A linear
SVM classifier is trained on the obtained training set feature vectors and testing
set accuracy results are reported.

Table 3. The experiment results for the CIFAR-10 dataset.
Algorithm N G Ts Us Tp Up Ut Q

S 645,000 1 3,815.89 1.00 890.37 4.29 4.29 51.90%

PCAonX(10) 57,000 11 1,492.36 2.56 187.27 7.97 20.38 30.40%

PCAonD(10) 57,000 11 1,600.88 2.38 185.38 8.64 20.58 33.10%

PNNU-no-T2(1,1) 215 3,000 38.2375 99.79 76.1259 0.50 50.13 33.90%

PNNU-no-T2(1,10) 2,150 300 69.9699 54.54 86.6791 0.81 44.02 41.70%

PNNU-no-T2(5,1) 1,075 600 65.3232 58.42 80.3086 0.81 47.52 40.20%

PNNU-no-T2(5,5) 5,375 120 143.894 26.52 93.466 1.54 40.83 42.30%

PNNU-no-T2(5,10) 10,750 60 241.786 15.78 113.46 2.13 33.63 45.10%

PNNU-no-T2(10,1) 2,150 300 199.547 19.12 153.835 1.30 24.81 39.40%

PNNU-no-T2(10,10) 21,500 30 971.899 3.93 115.558 8.41 33.02 46.60%

PNNU(1,1) 1 645,000 76.8262 49.67 68.934 1.11 55.36 33.10%

PNNU(1,10) 10 64,500 113.847 33.52 72.8819 1.56 52.36 34.10%

PNNU(5,1) 45 14,333 114.627 33.29 65.21 1.76 58.52 37.30%

PNNU(5,5) 225 2,867 227.224 16.79 85.5631 2.66 44.60 37.30%

PNNU(5,10) 450 1,433 367.583 10.38 95.8492 3.84 39.81 36.30%

PNNU(10,1) 190 3,395 165.41 23.07 121.995 1.36 31.28 35.80%

PNNU(10,10) 1,900 5 724.173 5.27 108.528 6.67 35.16 39.10%

Table 3 shows the experiment results for the CIFAR-10 dataset. The straight-
forward method S achieves the highest accuracy (Q) of 51.90%. (This multi-class
classification task is known to be difficult, so the relatively low 51.90% achieved
accuracy is expected for a simple algorithm like this [14].) PCAonX(10) and
PCAonD(10) achieve accuracy of 30.40% and 33.10%, respectively. Once again,
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we see that many PNNU configurations are strictly better in terms of both qual-
ity (Q) and total performance gain (Ut). PNNU-no-T2(10,10) has an accuracy of
46.60%, the closest to that of S, with an efficiency gain (G) of 30. This translates
into a serial speedup (Us) of 3.93x, a parallel speedup (Up) of 8.41x, for a total
performance gain (Ut) of 33.02x over the serial implementation of S. PNNU(5,1)
achieves the highest total performance gain (Ut) of 58.52x with accuracy (Q) of
37.30%.

5.4 Application A3: Image Denoising

In the previous subsections, we have shown that PNNU works well for classifica-
tion problems. In this subsection, we showcase its performance at reconstruction,
specifically, removing noise from an image of Lena [15]. First, a noisy version of
the Lena image is generated by adding Gaussian noise with zero mean and stan-
dard deviation 0.1. This noisy image is then patched in the same manner as
described in the previous subsection, using 8 by 8 grayscale patches, creating
64-dimensional vectors. These patches (roughly 250,000) are then used to learn
a dictionary of 3,000 atoms using K-SVD with the number of sparse coefficients
set to 5. The denoising process consists of encoding each patch with either MP
or MP-PNNU. After encoding, each patch is represented as a sparse feature vec-
tor (sparse representation). To recover a denoised version of the input signal,
the dot-product between the sparse vectors and learned dictionary is computed.
Finally, the recovered patches are each averaged over a local area to form the
denoised image. For our quality measure (Q), we report the peak signal-to-noise
ratio (PSNR). A PSNR for a 8-bit per pixel image that is acceptable to human
perception ranges between 20dB and 40dB [16].

Table 4 shows the experiment results for denoising the Lena image. From the
table, we see that S achieves the highest PSNR (Q) of 32.34. PCAonX(10) and
PCAonD(10) achieve similar PSNR of 31.18 and 31.20 respectively. In contrast
with the other two applications, both algorithms perform reasonably well for
this application. PNNU-no-T2(10,10) has PNSR (Q) of 32.19, the closest to
that of S, with a G of 30, translating into a 12.49x speedup (Us). Its parallel
implementation (Up) adds another 4.18x speedup, for a total performance gain
(Ut) of 52.16x. Notably, PNNU(1,1) achieves the highest total performance gain
(Ut) of 80.34x with PSNR (Q) of 25.71. This is good for scenarios where a
rougher denoising result is acceptable for a significant gain in performance.

6 Conclusion

In this paper, we have described how nearest-neighbor (NN) is a key function for
data analytics computations such as sparse coding. To enhance the performance
of the NN computation, we have taken three orthogonal techniques: (T1) re-
duce the number of required dot-product operations; (T2) lower the cost of each
dot-product computation by reducing dimensionality; and (T3) perform parallel
computations over multiple cores. Noting that the gains from (T1), (T2) and
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Table 4. The experiment results for denoising the Lena image.
Algorithm N G Ts Us Tp Up Ut Q

S 381,000 1 392.92 1.00 39.24 10.01 10.01 32.34

PCAonX(10) 57,000 7 48.27 8.14 13.59 3.55 28.90 31.18

PCAonD(10) 57,000 7 59.23 6.63 16.78 3.53 23.42 31.20

PNNU-no-T2(1,1) 127 3,000 5.98 65.68 5.42 1.10 72.51 25.88

PNNU-no-T2(1,10) 1,270 300 6.79 57.89 8.29 0.82 47.40 27.36

PNNU-no-T2(5,1) 635 600 11.25 34.91 8.66 1.30 45.35 29.05

PNNU-no-T2(5,5) 3,175 120 22.95 17.12 8.06 2.85 48.74 30.95

PNNU-no-T2(5,10) 6,350 60 35.85 10.96 10.47 3.42 37.53 31.58

PNNU-no-T2(10,1) 1,270 300 8.22 47.82 7.55 1.09 52.03 29.84

PNNU-no-T2(10,10) 12,700 30 31.46 12.49 7.53 4.18 52.16 32.19

PNNU(1,1) 1 381,000 4.55 86.33 4.89 0.93 80.34 25.71

PNNU(1,10) 10 38,100 5.64 69.61 5.28 1.07 74.41 25.80

PNNU(5,1) 45 8,467 6.77 58.07 5.42 1.25 72.45 28.71

PNNU(5,5) 225 1,693 11.14 35.28 5.49 2.03 71.60 29.87

PNNU(5,10) 450 847 14.88 26.41 5.68 2.62 69.23 30.17

PNNU(10,1) 190 2,005 6.76 58.11 5.26 1.29 74.75 29.67

PNNU(10,10) 1,900 201 25.96 15.13 5.96 4.36 65.95 31.64

(T3) complement each other, we have proposed a parallel nearest neighbor unit
(PNNU) algorithm which uses a novel fast table look up, parallelized over mul-
tiple dimensions, to identify a relatively small number of dictionary atoms as
candidates. Only these candidates are used to perform reduced-dimension dot
products. PNNU allows the dot-product computations for these candidates to
be carried out in parallel. As noted in Sec. 3.1, a key to the success of the PNNU
approach is our application of PCA to dictionary atoms, rather than raw data
vectors as in conventional PCA applications. This use of PCA to build a table
lookup for the purpose of identifying the nearest candidate atom is novel.

We have validated the PNNU approach on multi-core computers with several
application tasks including action recognition, image classification and image de-
noising. Substantial total performance gains (e.g., 41x) are achieved by software
implementations of PNNU without compromising the accuracy required by the
applications.

Other potential applications for PNNU are abundant. For example, large-
scale data-driven deep learning can benefit from reduced dot product require-
ments in its computation. Mobile computing can benefit from speed and en-
ergy efficient implementation of sparse coding resulting from PNNU to allow
sophisticated learning on client devices. In the future, we expect to implement
PNNU as a hardware accelerator which can further speed up NN computations.
In addition, we will explore integrated use of PNNU in conjunction with GPU
accelerators.

Acknowledgments: This work is supported in part by gifts from the Intel Cor-
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15-0050 awarded by the Naval Supply Systems Command.



15

References

1. Aharon, M., Elad, M., Bruckstein, A.: K-svd: An algorithm for designing overcom-
plete dictionaries for sparse representation. IEEE Transactions on Signal Process-
ing 54(11), 4311–4322 (2006).

2. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit.
SIAM journal on scientific computing 20(1), 33–61 (1998).

3. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proceedings of the twentieth annual
symposium on Computational geometry, pp. 253–262 (2004).

4. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. The
Annals of statistics 32(2), 407–499 (2004).

5. Gkioulekas, I.A., Zickler, T.: Dimensionality reduction using the sparse linear
model. In: Advances in Neural Information Processing Systems, pp. 271–279 (2011).

6. Indyk, P.: Nearest neighbors in high-dimensional spaces. (2004).
7. Jolliffe, I.: Principal component analysis. Wiley Online Library (2002).
8. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.

Computer Science Department, University of Toronto, Tech. Rep (2009).
9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-

volutional neural networks. In: Advances in neural information processing systems,
pp. 1097–1105 (2012).

10. Kung, H., McDanel, B., Teerapittayanon, S. NNU Source Repository. Available at
https://gitlab.com/steerapi/nnu.

11. Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE
Transactions on Signal Processing 41(12), 3397–3415 (1993).

12. Mathieu, M., Henaff, M., LeCun, Y.: Fast training of convolutional networks through
ffts. arXiv preprint arXiv:1312.5851 (2013).

13. Peterson, L.E.: K-nearest neighbor. Scholarpedia 4(2), 1883 (2009).
14. Rifai, S., Muller, X., Glorot, X., Mesnil, G., Bengio, Y., Vincent, P.: Learning

invariant features through local space contraction. arXiv preprint arXiv:1104.4153
(2011).

15. Roberts, L.: Picture coding using pseudo-random noise. Information Theory, IRE
Transactions on 8(2), 145–154 (1962).

16. Saha, S.: Image compression-from DCT to wavelets: a review. Crossroads 6(3),
12–21 (2000).

17. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM ap-
proach. In: Proceedings of the 17th International Conference on Pattern Recogni-
tion, pp. 32–36 (2004).

18. Shakhnarovich, G., Indyk, P., Darrell, T.: Nearest-neighbor methods in learning
and vision: theory and practice. (2006).

19. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthog-
onal matching pursuit. IEEE Transactions on Information Theory 53(12), 4655–
4666 (2007).

20. Wang, H., Klaser, A., Schmid, C., Liu, C.-L.: Action recognition by dense trajecto-
ries. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3169–
3176 (2011).

21. Wess, S., Althoff, K.-D., Derwand, G.: Using kd trees to improve the retrieval step
in case-based reasoning. Springer (1994).

https://gitlab.com/steerapi/nnu


Coarse Grain Task Parallelization of Earthquake

Simulator GMS

Using OSCAR Compiler on Various cc-NUMA

Servers

Mamoru Shimaoka1, Yasutaka Wada12, Keiji Kimura1, and Hironori Kasahara1

1 Advanced Multicore Processor Research Institute, Waseda University, Tokyo, Japan
2 Dept. of Information Science, Meisei University, Tokyo, Japan

Abstract. This paper proposes coarse grain task parallelization for a
earthquake simulation program using Finite Difference Method to solve
the wave equations in 3-D heterogeneous structure or the Ground Mo-
tion Simulator (GMS) on various cc-NUMA servers using IBM, Intel
and Fujitsu multicore processors. The GMS has been developed by the
National Research Institute for Earth Science and Disaster Prevention
(NIED) in Japan. Earthquake wave propagation simulations are impor-
tant numerical applications to save lives through damage predictions of
residential areas by earthquakes. Parallel processing with strong scal-
ing has been required to precisely calculate the simulations quickly. The
proposed method uses the OSCAR compiler for exploiting coarse grain
task parallelism efficiently to get scalable speed-ups with strong scaling.
The OSCAR compiler can analyze data dependence and control depen-
dence among coarse grain tasks, such as subroutines, loops and basic
blocks. Moreover, locality optimizations considering the boundary cal-
culations of FDM and a new static scheduler that enables more efficient
task schedulings on cc-NUMA servers are presented. The performance
evaluation shows 110 times speed-up using 128 cores against the sequen-
tial execution on a POWER7 based 128 cores cc-NUMA server Hitachi
SR16000 VM1, 37.2 times speed-up using 64 cores against the sequential
execution on a Xeon E7-8830 based 64 cores cc-NUMA server BS2000,
19.8 times speed-up using 32 cores against the sequential execution on a
Xeon X7560 based 32 cores cc-NUMA server HA8000/RS440, 99.3 times
speed-up using 128 cores against the sequential execution on a SPARC64
VII based 256 cores cc-NUMA server Fujitsu M9000, 9.42 times speed-up
using 12 cores against the sequential execution on a POWER8 based 12
cores cc-NUMA server Power System S812L.

Keywords: earthquake,GMS,OSCAR,task parallelism,compiler,cc-NUMA

1 Introduction

Earthquake simulation that simulates the propagation of seismic waves from
hypocenters is important for minimizing the damage by natural disasters. Earth-



quake wave propagation is often formulated as wave equation, which is approx-
imated by Finite Difference Method (FDM) or Finite Element Method (FEM).
The precise simulation usually requires huge calculation time, studies of earth-
quake simulation have been trying parallelization of the program. Akcelik et al.[1]
proposed an FEM earthquake simulation method parallelized by MPI. Their par-
allelized Simulator using 3000 processor cores showed 80% parallel efficiency in
weak scaling on the AlphaServer SC at the Pittsburgh Supercomputing Center
(PSC). Aoi et al.[4] proposed the Ground Motion Simulator (GMS) and paral-
lelized the GMS with GPGPU. They showed the parallelized GMS using 1024
nodes obtained 1028 times speed-up compared to 1 node in weak scaling on the
TSUBAME2.0 in Tokyo Institute of Technology. Tiankai et al.[3] proposed the
parallel octree meshing tool Octor and showed the evaluations of the parallel
Partial Differential Equation (PDE) solver using octree mesh by the Octor on
the AlphaServer SC at the PSC. They showed the solver using 2000 processor
cores could speed-up earthquake simulation 13 times faster than that of using
128 processor cores in strong scaling. Those works achieve high parallel efficiency
by hand parallelization. The hand parallelization needs deep knowledge of par-
allelization and long development periods and costs. Moreover, most existing
studies achieve high parallel efficiency with weak scaling, but high parallel ef-
ficiency with strong scaling is more desirable than that with weak scaling. In
these days, cache coherent Non Uniform Memory Architecture (cc-NUMA) is
common architecture, this architecture requires additional tuning compared to
Uniform Memory Architecture. Therefore, parallelization that is efficient on cc-
NUMA by an automatic parallelizing compiler is expected for productivity and
performance.

This paper proposes a parallelization method that includes modifying of a se-
quential earthquake simulation program into a compiler friendly sequential pro-
gram to assist automatic parallelization of the OSCAR multigrain parallelizing
compiler[5][6]. Unlike the OSCAR multigrain parallelizing compiler, commercial
compilers such as Intel Compiler and IBM XL compiler can utilize only loop par-
allelism. Slight sequential parts prevent us from achieving scalable speed-up in
many core architecture. Therefore, multigrain parallelism offered by the OSCAR
compiler is important.

In this paper, the proposed method parallelizes the earthquake simulator
GMS, coarse grain task parallelism, as well as loop parallelism, is used. A lo-
cality optimization considering the boundary calculations of FDM, a locality
optimization considering First Touch all over the program and an efficient task
scheduling on servers using First Touch policy help to us get strong scaling
speed-up.

The remainder of this paper is organized as follows. Section 2 introduces the
earthquake wave propagation simulator GMS. Section 3 shows the proposed par-
allelization method. Section 4 gives speed-ups on five different cc-NUMA servers.
The servers consist of the SR16000 VM1 (henceforth SR16000), the BS2000, the
HA8000/RS440 (henceforth RS440), the SPARC Enterprise M9000 (henceforth



M9000) and the IBM Power System S812L (henceforth S812L). Finally, section
5 provides the conclusion.

2 The Ground Motion Simulator GMS

For effective disaster prevention planning, the importance of precise earthquake
simulations is increasing. The Ground Motion Simulator (GMS) is the earth-
quake simulator developed by Aoi, Fujiwara in the NIED, and the GMS can
precisely simulate for Japanese ground structure that we can download at J-
SHIS[2]. The GMS consists of parameter generation tools, computation visual-
ization tools and a wave equation solver, and we can download it from the URL
in [7].

The GMS solves the wave equations in 3-D heterogeneous structure, and it
uses Finite Difference Method to approximate the wave equations. One of the
characteristics of the GMS solver is the use of staggered grids. For computation
accuracy, grid points for displacement are shifted from grid points for stress a
half grid in staggered grids. In staggered grids, second order difference operator
is (1).

f ‘i ≃
fi+1/2 − fi−1/2

∆x
(1)

Fourth order difference operator that is higher accuracy than second order
difference operator is (2).

f ‘i ≃
(

−1/24fi+3/2 + 9/8fi+1/2

−9/8fi−1/2 + 1/24fi−3/2

)

/∆x (2)

Besides, the GMS solver uses discontinuous grids to accelerate the simulation.
In discontinuous grid, as shown in Fig.1, grids of near the earth’s surface or
Region I is three times smaller than that of a deeper region or Region II. It
is because the grid spacing has to be smaller for precisely simulating waves of
shorter wavelength. In the grids near the surface, the wavelength is shorter than
that of the deeper region. By using discontinuous grid replace of uniform grid,
the GMS solver reduces calculation for the deeper region.

In brief, the GMS solver is to calculate velocity and stress of each grid and
each step by using external force as inputs.

In the GMS solver, external force can be added as velocity or stress and
second order difference operator or fourth order difference operator can be used.
This paper deals with the GMS solver in which external force is added as stress
and fourth difference operator is used.
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Fig. 2. Macro task graph of the GMS main
loop

3 Coarse grain task parallelization of the GMS

This section proposes a parallelization method for the GMS. Before paralleliza-
tion, the sequential GMS solver written in Fortran 90 is changed into a sequential
FORTRAN 77 program. It is because the OSCAR compiler just supports FOR-
TRAN 77 and the GMS uses Fortran 90 to use the I/O library HDF[8] though
main parts are written in FORTRAN 77.

3.1 Coarse grain task parallelization

This section shows how the OSCAR compiler[5][6] exploits parallelism in a pro-
gram. The OSCAR compiler can exploit multigrain parallelism that uses loop
parallelism, coarse grain task parallelism and statement level fine grain paral-
lelism considering its parallelism. Coarse grain task parallelism in the OSCAR
compiler means parallelism among three kinds of coarse grain tasks, namely
Basic Blocks (BBs), Repetition Blocks (RBs) and Subroutine Blocks (SBs).

First, the OSCAR compiler decomposes a sequential source program to macro
tasks in each nested level hierarchically. Then it makes macroflow graphs which
represent data dependency and control flow among the macro tasks. Next, it
analyzes and detects parallelism in the macroflow graphs by using Earliest Exe-
cutable Condition analysis[5] that analyzes the simplest forms of conditions the
macro tasks may start their execution considering control dependencies and data
dependencies, and then generates macro task graphs. Next, it analyzes and de-
tects parallelism in the macroflow graphs by using Earliest Executable Condition
analysis[5] and then generates macro task graphs. Earliest Executable Condition
analysis is to analyze the simplest forms of conditions the macro tasks may start
their execution considering control dependencies and data dependencies. Macro
task graphs represent parallelism among macro tasks. If the macro task graph



has only data dependency edge, the macro tasks are assigned by static schedul-
ing to processors or processor groups that are grouped logically by the compiler
for hierarchical coarse grain task parallelization. If the macro task graph has
any control dependency edges, the macro tasks are assigned to processors or
processor groups at runtime by a dynamic scheduler. The dynamic scheduler is
generated by the OSCAR compiler exclusively for the program[5] and embedded
into the parallelized program automatically. Finally, the OSCAR compiler gen-
erates a parallelized Fortran program using the OSCAR API Ver2.0[11], which
the ordinary product OpenMP compilers provided for the target machines can
compile.

3.2 Modification of the GMS

Fig.2 shows the macro task graph in the main loop of the GMS. The macro
task graph was generated by the OSCAR compiler and has 18 macro tasks
and one exit task representing the end of the macro task graph. Solid edges in
macro task graph represent data dependencies among macro tasks and broken
edges in macro task graph represent control dependencies. There is parallelism
among coarse grain tasks such as parallelism between SB3 and SB4 in Fig.2.
It is because of discontinuous grids of the GMS. In discontinuous grids, We
can execute velocity calculation of the near surface grids or SB3 and velocity
calculation of the grids in the deeper area or SB4 in parallel. After that, the
boundary of the near surface grids and the grids in the deeper area is executed
in SB5. There is similar parallelism for stress calculations. We can execute stress
calculation of the near surface grids or SB11 and stress calculation of the grids
in deeper area or SB12 in parallel.

Next, to increase coarse grain task parallelism, inline expansion is applied
to all subroutines, or SBs in Fig.2, in the main loop. Fig.3 is the macro task
graph with 131 macro tasks for the main loop after the inline expansion of all
subroutines. We extract very large coarse grain task parallelism as shown in
Fig.3. It is because coarse grain task parallelism inside the subroutines are taken
out to the main loop level. By the inline expansion, task parallelism among the
tasks in the SBs with dependency can be used. LOOP3 in Fig.3 is originally in
SB1 in Fig.2, and DOALL10 in Fig.3 is originally in SB3 in Fig.2. Though SB1
and SB3 in Fig.2 have dependency among them, LOOP3 and DOALL10 in Fig.3
have no dependency among them. 60 macro tasks are analyzed to be DOALL
or parallel loop in in Fig.3. Since we can split each DOALL loop into parallel
macro tasks, much larger coarse grain task parallelism can be exploited.

Besides, to enhance loop parallelism and spatial locality, loop interchange
and array dimension interchange are applied.

3.3 Data distribution to distributed shared memories using First

Touch

In cc-NUMA machines, how to distribute variables to memories is important to
get good performance. Usually, cc-NUMA machines use first touch policy[12].
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Fig. 3. Macro task graph after inline expansion

On first touch policy, a page is allocated to the memory nearest to the processor
that first touched the page.

The GMS solver uses the Hierarchical Data Format (HDF) library[8] for file
access. The HDF library is to allow us to manage large and complex data collec-
tions. The master thread executing the library first touches all input arrays of
the original GMS solver. It forces cc-NUMA machines to assign those arrays to
the distributed shared memory near the processor core that execute the master
thread. It means that all processor cores access to the distributed shared mem-
ory near the processor core executing the main thread, and the heavy memory
contention occurs.

To fully utilize distributed shared memories on cc-NUMA machines, in the
proposed method, the input arrays are copied to new arrays with interchanged
indexes to be first touched by each processor element. Fig.4 shows an exam-
ple of the modification. Originally, an array A is first touched in a subroutine
external library array init and is used in a subroutine main loop. Because the
OSCAR compiler can’t parallelize external library, a new array A COPY is cre-
ated and values of the array A are copied to the array A COPY . Then, the
subroutine main loop uses the array A COPY in place of the array A. In the
GMS, 33 arrays are copied to be first touched by each processor element.



program sample

integer A(1000)
integer A_COPY(1000)
{copied array}

call external_library_array_init(A)
{a array is originally first touched here}

do i=1,1000
A_COPY(i)=A(i)

enddo

{copying the original array to a new array}
call main_loop(A_COPY)

{in main loop, the new array is used}
do i=1,1000

A(i)=A_COPY(i)
enddo
{copying the new array to the original array}

call output_A(A)
end

Fig. 4. Example of the array copy for first touch

3.4 Task Scheduling on cc-NUMA

The control dependencies in the macro task graph are represented as broken
edges between tasks. There is no control dependency edge in Fig.3. Therefore,
the OSCAR compiler chooses static scheduling to schedule the macro tasks to
processor elements.

On cc-NUMA machines, access to a remote distributed shared memory is
slower than that of a local distributed shared memory. So to improve the ef-
ficiency of parallel processing of the program, a scheduler that takes accounts
of the first touch information was developed. By first touching the copied new
arrays mentioned above, the arrays used for the main loop are first touched at
the each copy loop, so the scheduler can know which processor element first
touched the array. The static scheduler decides optimal processors to execute
for each task using the first touch information, and then schedule ready tasks
to its optimal processors in order of critical path length. Critical path length is
the length of the longest path from any node to the exit node on a macro task
graph.

Fig.5 is an example of the scheduling. Fig5(a) is a macro task graph and
(b) shows how PEs first touch variables. Fig5(c) represents the range of arrays
used by each task and the optimal PEs to which each task should be assigned
considering the information of the first touch showed in (b). Finally Fig5(d)
shows processing steps of the scheduling. In the third step of (d), the task T3
is assigned to PE1. The task T3 is not dependent on T4, so if the task T3 is
assigned to PE0, the task T3 may start soon after the task T2 ended. But if
the task T3 is assigned to PE0, access to a remote distributed shared memory
would occur, so the scheduler assigns the task T3 to PE1. The scheduler restricts
the tasks to be assigned to the optimal PE considering the first touch to reduce
memory access overheads.
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Fig. 5. An example of the scheduling

3.5 Locality optimization of boundary calculations in FDM

Fig.6 is a source code of velocity calculation of the center grids or DOALL10 in
Fig.3 and that of boundary grids or DOALL11 in Fig.3. The GMS use fourth
order difference operator for FDM calculations. But the fourth order difference
operator can’t be used at the boundary of the grids in the GMS. Therefore,
second order difference operator is used at the boundary. The DOALL10 and the
DOALL11 have no dependency among them, but both loops access the almost
same ranges of the arrays taking account of cache lines. Though cache reuse is
expected by executing the both loops continuously[9][10], the arrays used by the
both loops are too large to be fully stored in L2 or L3 caches.

In this section, the loop fusion is applied to the both loops to optimize the
locality. To focus on ux in Fig.6, the DOALL10 uses ux( 2 : nk-2, 2 : nj-1, 2 : ni-1
), and the DOALL11 uses ux( 1, 2 : nj-1, 2 : ni-1 ) and ux( nk-1, 2 : nj-1, 2 : ni-1
). Though the ranges of the array ux of the first loop don’t overlap with that of
the second loops, it is expected that ux( 1,j,i ) and ux( 2, j, i ) are allocated in
the same cache line. The same is true of ux( nk-2, j, i ) and ux(nk-1, j, i ). By
the loop fusion taking account of cache lines, memory access of the boundary
calculation in FDM is expected to be sharply optimized.

Fig.7 is the macro task graph of the main loop after loop fusion. The proposed
method fuses 12 loops into the four loops.

3.6 Generated compiler friendly sequential program and its parallel

compilation

The proposed method applies above-mentioned modifications to the sequential
GMS program. The modified sequential program is compiled by the OSCAR
compiler and changed into parallelized Fortran program using the OSCAR API
Ver2.0[11]. The OSCAR API is compatible with OpenMP. Therefore, compilers



{calculation of the center area}
do i=2,ni-1

do j=2,nj-1
do k=2,nk-2

ux(k,j,i)=(ux(k,j,i)+bbx*(
+dtdx*(c0*(sxx(k,j,i+1)-sxx(k,j,i))

- c1*(sxx(k,j,i+2)-sxx(k,j,i-1)))

+dtdy*(c0*(sxy(k,j,i)-sxy(k,j-1,i))
- c1*(sxy(k,j+1,i)-sxy(k,j-2,i)))

+dtdz*(c0*(sxz(k,j,i)-sxz(k-1,j,i))
- c1*(sxz(k+1,j,i)-sxz(k-2,j,i))))

)*aaqq
enddo

enddo

enddo
{calculation of the boundary}

do i=2,ni-1
do j=2,nj-1
do k=1,nk-1,nk-2

ux(i,j,k)=( ux(i,j,k)+bbx*(
+dtdx*(c0*(sxx(k,j,i+1)-sxx(k,j,i))

- c1*(sxx(k,j,i+2)-sxx(k,j,i-1)))
+dtdy*(c0*(sxy(k,j,i)-sxy(k,j-1,i))

- c1*(sxy(k,j+1,i)-sxy(k,j-2,i)))
+dtdz*(sxz(k,j,i)-sxz(k-1,j,i)) )
)*aaqq

enddo
enddo

enddo

Fig. 6. Example of center and boundary calculations

provided for target cc-NUMA machines can compile the program with the OS-
CAR API to the executable binary. In this paper, IBM XL Fortran compiler,
Intel Fortran compiler and Sun Studio Fortran compiler compile the generated
parallel programs.

4 Performance of the parallelized GMS

This section evaluates speed-up of the parallelized GMS on five different cc-
NUMA machines.

4.1 Evaluation Environments

The authors use the SR16000, the BS2000, the RS440, the M9000 and the S812L
for the evaluations. Table 1 summarizes the specifications of the five servers.

The SR16000 is a POWER7 based 128 cores cc-NUMAmachine. The SR16000
consists of four boards and the fully-connected network connects the four boards.
Each board has four processors and the fully-connected network connects the
four processors. The evaluations in Section.4.2,4.3, 4.4 use the SR16000. The
authors bind the paralelized programs to the processor cores by the compact
manner. The compact manner is to use processor cores in core number order.

The BS2000 is a Xeon E7-8830 based 64 cores cc-NUMA machine. The spe-
cial feature of BS2000 is that it consists of four ordinary blade servers, however,
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Fig. 7. Macro task graph after loop fusion

just attaching the inter-blade coherent control module connecting the blades, the
blades is changed into a cc-NUMA server. Because each processor can use three
QPIs for inter-processor connection, some pairs of the processor are connected
directly and the other pairs are connected with one hop or two hops. The eval-
uations in Section.4.3 use the BS2000. The authors bind parallelized programs
to the processor cores by the compact manner.

The RS440 is a Xeon X7560 based 32 cores cc-NUMA machine. The RS440
consists of four processors each of which has eight cores, and QPIs fully connect
each processor. The evaluations in Section.4.3 use the RS440. The authors bind
parallelized programs to the processor cores by the compact manner.

The M9000 is a SPARC64 VII based 256 cores cc-NUMA machine. The
M9000 consists of 16 boards each of which has 16 cores. Two crossbar switches
connect eight boards to make a cluster, and then two clusters are connected to
compose the M9000. The evaluations in Section.4.3 use the M9000. The evalu-
ations use up to 128 cores of 256 cores for the OSCAR compiler can cope with
up to 128 cores at present. The authors bind parallelized programs to the every
other processor core to utilize L2 cache memory and main memory fully.

The S812L is a POWER8 based 12 cores cc-NUMA machine. The S812L
has a Dual Chip Module ( DCM ) and a Dual Chip Module includes two chip
each of which has six cores[13]. The evaluations in Section.4.3 use the S812L.
Though S812L has eight slots for DIMM modules, the authors equipped four
16GB DIMM modules to S812L.

The evaluations use three data sets such as Unit00420, Unit01680 and Unit06720.
Table 2 summarizes the number of grids in the data sets. The Unit01680 is
medium size among them and used for Section.4.2,4.3. The Unit00420 is the
smallest data set among them and used for Section.4.4. The Unit06720 is the
biggest data set among them and used for Section.4.4.



Table 1. Server Specifications

SR16000 BS2000 RS400
CPU POWER7 Xeon E7-8830 Xeon X7560

Frequency 4GHz 2.13GHz 2.27GHz
cores per 1 processor 8 8 8

L2 cache 256KB(1core) 256KB(1core) 256KB(1core)
L3 cache 32MB(1processor) 24MB(1processor) 24MB(1processor)
Processors 16 8 4
CPU cores 128 64 32
Memory 1TB 256GB 128GB

OS RedHat Linux RedHat Linux Ubuntu
Version 6.4 6.1 14.04.1

Linux kernel version 2.6.32 2.6.32 3.13.0
Compiler XL Fortran Intel Fortran compiler Intel Fortran compiler
Version 13.1 12.1.5 12.1.5

M9000 S812L
CPU SPARC64 VII POWER8

Frequency 2.88GHz 3.026GHz
cores per 1 processor 4 12(1 DCM),6(1 chip)

L2 cache 6144KB(1processor) 512KB(1core)
L3 cache none 96MB(1DCM),48MB(1chip)
Processors 64 1(DCM),2(chip)
CPU cores 256 12
Memory 512GB 64GB

OS Solaris RedHat Linux
Version 10 7.1

Linux kernel version 3.10.1
Compiler Sun Studio Fortran compiler XL Fortran
Version 12.1 15.1.1

Table 2. Number of grids in Datasets

Unit00420 Unit01680 Unit06720
Number of Grids in RegionI 420 × 420 × 100 1680 × 1680 × 100 6720 × 6720 × 100
Number of Grids in RegionII 140 × 140 × 200 560 × 560 × 200 2240 × 2240 × 200

Total Memory 0.8GB 12.2GB 195.2GB

4.2 Comparison of Commercial Compilers and the Proposed

Method

The comparisons among the original GMS parallelized by commercial compil-
ers provided for the servers, such as IBM XL Fortran compiler, Intel Fortran
compiler and Sun Studio and the GMS parallelized by the proposed method are
shown.

Fig.8 shows a summary of the comparison between XL Fortran compiler and
the proposed method on the SR16000. On a one processor core, the sequential
execution time by the proposed method is 1.65 times faster than the original
sequential program. Speed-ups of the original GMS parallelized by XL Fortran
compiler were 15.3 times using 32 cores, 10.3 times using 64 cores and 11.8
times using 128 cores. It means that XL Fortran compiler can find loop paral-
lelism in the GMS, but it can’t give us scalable speed-up for the GMS on 64PEs
and 128PEs in the SR16000. Speed-up of the GMS parallelized by the proposed
method using 128 cores was 156.3 times against the original sequential execu-
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Fig. 8. XL Fortran compiler vs the pro-
posed method on the SR16000 (Unit01680)
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Fig. 9. Intel Fortran compiler vs the pro-
posed method on the RS440 (Unit01680)

tion. Higher speed-up by the proposed method using 128 PEs is obtained. The
first reason is that the parallelization by XL Fortran compiler can only utilize
loop parallelism, besides the proposed method can utilize multigrain parallelism.
The second reason is that the master thread first touches the most of arrays and
those arrays are assigned to distributed shared memory near processor core that
execute the master thread. Therefore, remote memory accesses of parallel ex-
ecution by XL Fortran compiler occur frequently and the execution time gets
long.

Fig.9 shows a summary of the comparison between Intel Fortran compiler
and the proposed method on the RS440. The proposed method works 1.3 times
faster than the original sequential execution. The speed-up ratio of Intel Fortran
compiler using 32PEs is 17.8 times, it means that Intel Fortran compiler can
also find loop parallelism in the GMS. On the RS440, loop parallelization works
well. But on cc-NUMA with the bigger number of cores like the SR16000 and the
M9000, the distance between the core and the remote memory becomes farther.
The parallelization of the initialization of the arrays and the coarse grain task
parallelization which consider First Touch is thought to be indispensable on
cc-NUMA with the big number of cores.

Fig.10 shows a summary of the comparison between Sun Studio and the
proposed method on the M9000. The proposed method gives us 2.1 times faster
execution than the original sequential execution. Moreover, the proposed method
using 128PEs gets 211 times speed-up from the original sequential execution.

In Fig.8, Fig.9, Fig.10, the sequential executions of the proposed method get
speed-up from the original sequential executions. This is because the locality
optimization by the loop fusion described in Sectuion.3.5.

4.3 Performance on the five different cc-NUMA servers

Speed-ups of the GMS parallelized by the proposed method from the sequential
execution of the proposed method on the five different cc-NUMA servers are
shown in Fig.11. Speed-ups of the GMS on the SR16000 was 94.9 times using



 0

 50

 100

 150

 200

 250

1pe 32pe 64pe 128pe

original(sun studio)

proposed method

1.0 2.1

114.2

211.0

S
p
e
e
d
-u

p
 r

a
ti
o
 a

g
a
in

s
t

o
ri
g
in

a
l 
s
e
q
u
e
n
ti
a
l 
e
x
e
c
u
ti
o
n

1.0

54.2

1.0 0.9

Fig. 10. Sun studio vs the proposed
method on the M9000(Unit01680)

 0

 20

 40

 60

 80

 100

 120

12pe 32pe 64pe 128pe

S
p

e
e

d
-u

p
 r

a
ti
o

 a
g

a
in

s
t 

th
e

 s
e

q
u

e
n

ti
a

l
e

x
e

c
u

ti
o

n
 o

f 
th

e
 p

ro
p

o
s
e

d
 m

e
th

o
d

SR16000(Power7:128core)

BS2000(Xeon E7-8830:64core)

RS440(Xeon X7560:32core)

M9000(SPARC64 VII:256core)

S812L(Power8:12core)

9.42

28

19.6
19.8

25.5

53

37.2

53.8

94.9 99.3

Fig. 11. SR16000 vs BS2000 vs RS440 vs
M9000 vs S812L(Unit01680)

128 cores, that with 64 cores on the BS2000 was 37.2 times, that with 32 cores
on the RS440 was 19.8 times, that with 128 cores on the M9000 was 99.3 times,
and that with 12 cores on the S812L was 9.42 times.

The BS2000 and the RS440 are relatively inexpensive servers compared to
the SR16000 and the M9000, memory bandwidth of the former two servers are
relatively narrow compared to the latter two servers. Therefore, speed-ups by
parallelization on the former two servers tend to be limited by the memory
bandwidth.

The speed-up of S812L is 9.42 times using 12 cores against sequential process-
ing. The parallel efficiency of the S812L using maximum core is 9.42÷12 = 78.5%,
and it is higher than that of the RS440(61%) and that of the BS2000(58%).

On the SR16000 and the M9000, near 100 times speed-up using 128 cores can
be obtained. It means that the proposed method successively utilize cc-NUMA
machines.

4.4 Evaluations with various data sizes

Fig.12 summarizes the results of the evaluation with the various data sizes on
the SR16000. The speed-ups on the Unit00420, a relatively small data set, were
25.0 times using 32 cores, 43.7 times using 64 cores and 75.7 times using 128
cores. Even on the smallest data set, over 64 times speed-up or half number of
the cores used can be obtained. The speed-ups on the Unit06720 or the biggest
data set were 21.7 times using 32 cores, 58.7 times using 64 cores and 110.7
times using 128 cores. Naturally, the results show that the bigger data size give
us better speed-ups because of the smaller ratio of remote memory access in the
whole execution.

5 Conclusions

This paper has proposed a parallelizing optimization method of the earthquake
simulator GMS. We can use earthquake simulations for damage predictions of
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Fig. 12. Speed-up ratios of the proposed method with various data sets on the SR16000

earthquakes. By accelerating the earthquake simulations, it is expected that
more exact damage prediction required for protecting more lives from disaster
become possible. The proposed method modifies an original sequential Fortran
program into parallelizing compiler friendly sequential Fortran program by hand
to increase coarse grain task parallelism and data locality. The modifications by
hand are the loop interchange and the array dimension interchange described in
Section.3.2 and the array duplication described in Section.3.3 and the loop fu-
sion described in Section.3.5. By the simple modifications, the OSCAR compiler
can analyze coarse grain parallelism and data dependency among coarse grain
tasks and generate a portable parallel program. In the proposed method, once
users modify the original program into parallelizing compiler friendly sequential
program, no further work is required to port to another shared memory servers.

The performance evaluations show 110.7 times speed-up using 128 cores
against the sequential execution on the POWER7 based 128 cores cc-NUMA
server Hitachi SR16000 VM1, 37.2 times speed-up using 64 cores against the se-
quential execution on the Xeon E7-8830 based 64 cores cc-NUMA server BS2000,
19.8 times speed-up using 32 cores against the sequential execution on the Xeon
X7560 based 32 cores cc-NUMA server HA8000/RS440, 99.3 times speed-up
using 128 cores against the sequential execution on the SPARC64 VII based
256 cores cc-NUMA server Fujitsu M9000, 9.42 times speed-up using 12 cores
against the sequential execution on the POWER8 based 12 cores cc-NUMA
server Power System S812L. Besides, the performance evaluation shows that the
proposed method succeeded to obtain 13.2 times speed-up against the parallel
execution by XL Fortran compiler using 128 cores on the SR16000 and 1.4 times
speed-up against the parallel execution by Intel Fortran compiler using 32 cores
on the RS440 and 211.0 times speed-up against the parallel execution by Sun
Studio Fortran compiler using 128 cores on the M9000.

The proposed method is effective for programs with simple array access order
like Finite Difference Method. Additional optimizations may improve the perfor-
mance of programs with complex array access order parallelized by the proposed
method. Finite Element Method often uses complex array access order.



This paper has shown the proposed parallelization method of the GMS using
the OSCAR multigrain parallel compiler gives us scalable speed-ups with strong
scaling on five different cc-NUMA servers.
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Abstract. Parallel algorithms can be expressed more concisely in a
functional programming style. This task is made easier through the use of
proper sequence data structures, which allow splitting the data structure
between the processors as easily as concatenating several data structures
together. E�cient update, split and concatenation operations are essen-
tial for declarative-style parallel programs.
This paper shows a functional data structure that can improve the e�-
ciency of parallel programs. The paper introduces two Conc-Tree vari-
ants: the Conc-Tree list, which provides worst-case O(logn) time lookup,
update, split and concatenation operations, and the Conc-Tree rope,
which additionally provides amortized O(1) time append and prepend
operations. The paper demonstrates how Conc-Trees implement e�cient
mutable sequences, evaluates them against similar persistent and mu-
table data structures, and shows up to 3× performance improvements
when applying Conc-Trees to data-parallel operations.

1 Introduction

Balanced trees are good for data-parallelism. They can be easily split between
CPUs, so that their subsets are processed independently. Providing e�cient con-
catenation and retaining these properties is challenging, but essential for e�cient
declarative data-parallel operations. The following data-parallel program maps
numbers in the given range by incrementing them:

(0 until 1000000).toPar.map(x => x + 1)

When the per-element workload is minimal, as is the case with addition, the
overwhelming factor of the data-parallel computation is copying the data. Tree
data structures can avoid the need for copying results from di�erent processors
by providing e�cient concatentation. Another use case for trees is e�cient par-
allelization of task-parallel functional programs. In the following we compare a
cons-list-based functional implemenation of the sum method against the conc-

list-based parallel implementation [16]:

def sum(xs: List[Int]) =1

xs match {2

case head :: tail =>3

head + sum(tail)4

case Nil => 0 }5

def sum(xs: Conc[Int]) =6

xs match {7

case ls <> rs =>8

sum(ls) + sum(rs)9

case Single(x) => x }10



The �rst sum implementation decomposes the data structure xs into the �rst
element head and the remaining elements tail. Sum is computed by recursively
adding head to the sum of tail. This implementation cannot be e�ciently par-
allelized. The second sum implementation splits xs into two subtrees ls and rs,
and recursively computes their partial sums before adding them together. If xs
is a balanced tree, the second sum implementation can be e�ciently parallelized.

In this paper, we describe several variants of the binary tree data-structure
called Conc-Tree, used to store sequences of elements. The basic variant is per-
sistent [11], but we use Conc-Trees to design e�cient mutable data structures.
Traditionally, persistent data structures are perceived as slower and less e�cient
than imperative data structures. This paper shows that Conc-Trees are the ba-
sis for e�cient mutable data structures for parallel computing. Data-parallel
combiners [12] [13] based on Conc-Trees improve performance of data-parallel
operations. Functional task-parallel programming abstractions, such as Fortress
Conc-lists [2], can be implemented using Conc-Trees directly. Concretely, the
paper describes:
� Conc-Tree lists, with worst-case O(log n) time persistent insert, remove and
lookup, and worst-case O(log n) persistent split and concatenation.

� Conc-Tree ropes, which additionally introduce amortized O(1) time ephemeral

append and prepend operations, and have optimal memory usage.
� Mutable bu�ers based on Conc-Trees, used to improve data-parallel opera-
tion performance by up to 3× compared to previous approaches.
In Section 2, we introduce Conc-Tree lists. We discuss Conc-Tree ropes in

Section 3. In Section 4, we apply Conc-Trees to mutable data structures, and
in Section 5, we experimentally validate our Conc-Tree implementation. Finally,
we give an overview of related work in Section 6.

2 Conc-Tree List

Trees with relaxed invariants are typically more e�cient to maintain in terms of
asymptotic running time. Although they provide less guarantees on their balance,
the impact is small in practice � most trees break the perfect balance by at most
a constant factor. Conc-Trees use a classic relaxed invariant seen in red-black
and AVL trees [1] � the longest path from the root to a leaf is never more than
twice as long than the shortest path from the root to a leaf.

The Conc-Tree data structure consists of several node types. We refer to
Conc-Tree nodes with the Conc type. This abstract data type has several con-
crete data types, similar to how the functional List data type is either an empty
list Nil or a :: (pronounced cons) � element and another list. The Conc may
either be an Empty, denoting an empty tree, a Single, denoting a tree with a
single element, or a <> (pronounced conc), denoting two separate subtrees.

We show these basic data types in Figure 1. Any Conc has an associated
level, which denotes the longest path from the root to some leaf in that tree.
The level is de�ned to be 0 for the Empty and Single tree, and 1 plus the
level of the deeper subtree for the <> tree. The size of a Conc denotes the



abstract class Conc[+T] {11

def level: Int12

def size: Int13

def left: Conc[T]14

def right: Conc[T]15

def normalized = this }16

17

abstract class Leaf[T]18

extends Conc[T] {19

def left = error()20

def right = error() }21

22

case object Empty23

extends Leaf[Nothing] {24

def level = 025

def size = 0 }26

case class Single[T](x: T)27

extends Leaf[T] {28

def level = 029

def size = 130

}31

32

case class <>[T](33

left: Conc[T], right: Conc[T]34

) extends Conc[T] {35

val level =36

1 + max(left.level,37

right.level)38

val size =39

left.size + right.size40

}41

42

Fig. 1. Basic Conc-Tree Data Types

total number of elements contained in the Conc-Tree. The size and level are
cached as �elds in the <> type to prevent traversing the tree to compute them
each time they are requested. Conc trees are persistent like cons-lists � they are
never modi�ed after construction. We defer the explanation of the normalized
method until Section 3 � for now normalized just returns the tree.

It is easy to see that the data types described so far can yield imbalanced
trees. We can construct arbitrarily large empty trees by combining the Empty
tree instances with <>. We thus enforce the following invariant � the Empty
tree can never be a part of <>. However, this restriction is still not su�cient �
imbalanced trees can be constructed by iteratively adding elements to the right:

(0 until n).foldLeft(Empty: Conc[Int]) {
(tree, x) => new <>(tree, new Single(x))

}

To ensure that the Conc-Trees are balanced, we require that the di�erence
in levels of the left subtree and the right subtree is less than or equal to 1.
This relaxed invariant imposes bounds on the number of elements. If the tree
is completely balanced, i.e. every <> node has two children with equal levels,
then the subtree size is S(level) = 2level. If we denote the number of elements
as n = S(level), it follows that the level of this tree is level = log2 n.

Next, if the tree is sparse and every <> node at a speci�c level has two
subtrees such that |left.level − right.level| = 1, the size of a node at level is:

S(level) = S(level − 1) + S(level − 2), S(0) = 1 (1)

This is the familiar Fibonacci recurrence with the solution:

S(level) =
1√
5
(
1 +
√
5

2
)level − 1√

5
(
1−
√
5

2
)level (2)



The second addend in the previous equation quickly becomes insigni�cant,
and the level of such a tree is level = log 1+

√
5

2

n+ log 1+
√

5
2

√
5.

From the monotonicity of these recurrences, it follows that O(log n) is both
an upper and a lower bound for the Conc-Tree depth. The bounds also ensure
that Conc-Trees have O(log n) lookup and update operations.

def apply(xs: Conc[T], i: Int) = xs match {43

case Single(x) => x44

case left <> right =>45

if (i < left.size) apply(left, i)46

else apply(right, i - left.size) }47

def update(xs: Conc[T], i: Int, y: T) =48

xs match {49

case Single(x) => Single(y)50

case left <> right if i < left.size =>51

new <>(update(left, i, y), right)52

case left <> right =>53

val ni = i - left.size54

new <>(left, update(right, ni, y)) }55

The update operation produces a new Conc-Tree such that the element at
index i is replaced with a new element y. This operation only allows replacing
existing elements, and we want to insert elements as well. Before showing an
O(log n) insert operation, we show how to concatenate two Conc-Trees.

Conc-Tree concatenation is shown in Figure 2. The <> method allows nicer
concatenation syntax � the expression xs <> ys concatenates two trees to-
gether. Note that this is di�erent than the expression new <>(xs, ys) that
simply links two trees together with one <> node � invoking the constructor di-
rectly can violate the balance invariant. We refer to composing two trees together
with a <> node as linking. Creating a Conc-Tree that respects the invariants and
that is the concatenated sequence of the two input trees we call concatenation.

The bulk of the concatenation logic is in the concat method in Figure 2.
This method assumes that the trees are normalized, i.e. composed from the basic
data types from Figure 1. In explaining the code in Figure 2 we will make an
assumption that concatenating two Conc-Trees can yield a tree whose level is
either equal to the larger input Conc-Tree or greater by exactly 1. In other words,
concatenation never increases the Conc-Tree level by more than 1. We call this
the height-increase assumption. We will inductively show that the height-increase
assumption is correct while explaining the recursive concat method in Figure
2. We skip the trivial base case of merging Single trees.

The trees xs and ys may be in several di�erent relationships with respect to
their levels. First of all, the absolute di�erence between the levels of xs and
ys could di�er by one or less. This is an ideal case � the two trees can be linked
directly by creating a <> node that connects them. Otherwise, one tree has a
greater level than the other one. Without the loss of generality we assume that
the left Conc-Tree xs is higher than the right Conc-Tree ys. To concatenate xs
and ys we need to break xs into parts.



def <>[T](xs: Conc[T], ys: Conc[T]) = {56

if (xs == Empty) ys57

else if (ys == Empty) xs58

else concat(xs.normalized, ys.normalized) }59

def concat[T](xs: Conc[T], ys: Conc[T]) = {60

val diff = ys.level - xs.level61

if (abs(diff) <= 1) new <>(xs, ys)62

else if (diff < -1) {63

if (xs.left.level >= xs.right.level) {64

val nr = concat(xs.right, ys)65

new <>(xs.left, nr)66

} else {67

val nrr = concat(xs.right.right, ys)68

if (nrr.level == xs.level - 3) {69

val nr = new <>(xs.right.left, nrr)70

new <>(xs.left, nr)71

} else {72

val nl = new <>(xs.left, xs.right.left)73

new <>(nl, nrr)74

} }75

} else {76

if (ys.right.level >= ys.left.level) {77

val nl = concat(xs, ys.left)78

new <>(nl, ys.right)79

} else {80

val nll = concat(xs, ys.left.left)81

if (nll.level == ys.level - 3) {82

val nl = new <>(nll, ys.left.right)83

new <>(nl, ys.right)84

} else {85

val nr = new <>(ys.left.right, ys.right)86

new <>(nll, nr)87

} } } }88

Fig. 2. Conc-Tree Concatenation Operation

Assume that xs.left.level >= xs.right.level, in other words, that
xs is left-leaning. The concatenation xs.right <> ys in line 65 increases the
height of the right subtree by at most 1. This means that the di�erence in
levels between xs.left and xs.right <> ys is 1 or less, so we can link
them directly in line 66. Under the height-increase assumption, the resulting tree
increases its height by at most 1, which inductively proves the assumption for
left-leaning trees.

We next assume that xs.left.level < xs.right.level. The subtree
xs.right.right is recursively concatenated with ys in line 68. Its level may
be equal to either xs.level - 2 or xs.level - 3. After concatenation we
obtain a new tree nrr with the level anywhere between xs.level - 3 and
xs.level - 1. Note that, if the nrr.level is equal to xs.level - 3, then



the tree xs.right.left level is xs.level - 2, by the balance invariant.
Depending on the level of nrr we either link it with xs.right.left, or we
link xs.left with xs.right.left, and link the resulting trees once more.
Again, the resulting tree does not increase its height by more than 1. This turns
the height-increase assumption into the following theorem.

Theorem 1 (Height Increase). Concatenating two Conc-Tree lists of heights

h1 and h2 yields a tree with height h such that |h−max(h1, h2)| ≤ 1.

The bound on the concatenation running time follows directly from the pre-
vious theorem and the implementation in Figure 2:

Theorem 2 (Concatenation Time). Concatenation of two Conc-Tree lists

with heights h1 and h2 is an O(|h1 − h2|) asymptotic running time operation.

Proof. Direct linking in the concatenation operation is always an O(1) opera-
tion. Recursively invoking concat occurs at most once on any control path in
concat. Each time concat is called recursively, the height of the higher Conc-
Tree is decreased by 1, 2 or 3. Method concat will not be called recursively
if the absolute di�erence in Conc-Tree heights is less than or equal to 1. Thus,
concat can only be called at most O(|xslevel − yslevel|) times. ut

These theorems will be important in proving the running times of the data
structures shown later. We now turn to the insert operation to show the im-
portance of concatenation on a simple example. The concatenation operation
makes expressing the insert operation straightforward:

def insert[T](xs: Conc[T], i: Int, y: T) =89

xs match {90

case Single(x) =>91

if (i == 0) new <>(Single(y), xs)92

else new <>(xs, Single(y))93

case left <> right if i < left.size =>94

insert(left, i, y) <> right95

case left <> right =>96

left <> insert(right, i - left.size, y) }97

Insert unzips the tree along a certain path by dividing it into two subtrees
and inserting the element into one of the subtrees. That subtree will increase its
height by at most one by Theorem 1, making the height di�erence with its sibling
at most two. Merging the two new siblings is thus O(1) by Theorem 2. Since
the length of the path from the root to any leaf is O(log n), the total amount of
work done becomes O(log n). The split operation is similar to insert, and
has O(log n) complexity by the same argument.

Appending to a Conc-Tree list amounts to merging it with a Single tree:

def <>[T](xs: Conc[T], x: T) = xs <> Single(x)

The downside of appending elements this way is that it takes O(log n) time.
If most of the computation involves appending or prepending elements, this is
not satisfactory. We see how to improve this bound in the next section.



3 Conc-Tree Rope

In this section, we modify the Conc-Tree to support an amortized O(1) time
ephemeral append operation. The reason that append from the last section
takes O(log n) time is that it has to traverse a path from the root to a leaf. Note
that the append position is always the same � the rightmost leaf. Even if we
could expose that rightmost position by de�ning the Conc-Tree as a pair of the
root and the rightmost leaf, updating the path from the leaf to the root would
take O(log n) time. We instead relax the Conc-Tree invariants.

We introduce a new Conc-Tree node called Append, which has a structure
isomorphic to the <> node. The di�erence is that the Append node does not
have the balance invariant � the heights of its left and right subtrees are
not constrained. Instead, we impose the append invariant on Append nodes: the
right subtree of an Append node is never another Append node. Furthermore,
the Append tree cannot contain Empty nodes. Finally, only an Append node
may point to another Append node. The Append tree is thus isomorphic to a
cons-list with the di�erence that the last node is not Nil, but another Conc-Tree.

This data type is transparent to clients and can alternatively be encoded as
a special bit in <> nodes � clients never observe nor can construct Append nodes.

case class Append[T](left: Conc[T], right: Conc[T])98

extends Conc[T] {99

val level = 1 + left.level.max(right.level)100

val size = left.size + right.size101

override def normalized = wrap(left, right)102

}103

def wrap[T](xs: Conc[T], ys: Conc[T]) =104

xs match {105

case Append(ws, zs) => wrap(ws, zs <> ys)106

case xs => xs <> ys107

}108

We implement normalized so that it returns the Conc-Tree that contains
the same sequence of elements as the original Conc-Tree, but is composed only of
the basic Conc-Tree data types in Figure 1. We call this process normalization.
The method normalized in Append calls the recursive method wrap, which
folds the trees in the linked list induced by Append.

We postpone claims about the normalization running time, but note that the
previously de�ned concat method invokes normalized twice and is expected
to run in O(log n) time � normalized should not be worse than O(log n).

We turn to the append operation, which adds a single element at the end of
the Conc-Tree. Recall that by using concat directly this operation has O(log n)
running time. We now implement a more e�cient append operation. The invari-
ant for the Append nodes allows appending as follows:

def append[T](xs: Conc[T], ys: Single[T]) = new Append(xs, ys)
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Fig. 3. Correspondence Between the Binary Number System and Append-Lists

De�ned like this, append is a worst-case constant-time operation, but it
has a negative impact on the normalized method. Appending n elements
results in a long list-like Conc-Tree on which normalized takes O(n log n) time.
This append implementation illustrates that the more time append spends
organizing the relaxed Conc-Tree, the less time a concat spends later.

Before attempting a di�erent append implementation, note the correspon-
dence between a linked list of trees of di�erent levels and the digits of di�erent
weights in a standard binary number representation. This correspondence is in-
duced by linking two Conc-Tree nodes of the same level with a new <> node,
and adding two binary digits of the same weight. With binary numbers, counting
up to n takes O(n) computation steps, where one computation step is rewriting a
single digit in the binary representation. Adding 1 is usually an O(1) operation,
but the carries chain-react and occasionally require up to O(log n) rewrites. It
follows that adding n Single trees in the same way requires O(n) computa-
tion steps, where a computation step is linking two trees with the same level
together � by Theorem 2, an O(1) operation.

We augment the append invariant � if an Append node a has another
Append node b as the left child, then a.right.level < b.right.level.
If we now interpret the Conc-Trees under Append nodes as binary digits with
the weight 2level, we end up with the sparse binary number representation [11].
In this representation, zero digits (missing Conc-Tree levels) are not a part of
the physical structure in memory. This correspondence is illustrated in Figure 3,
where the binary digits are shown above the corresponding Conc-Trees and the
dashed line represents the linked list formed by the Append nodes.

Figure 4 shows the append operation that executes in O(1) amortized time.
The link operation in line 118, which corresponds to adding binary digits, occurs
only for adjacent trees that happen to have the same level. The trees in the
append list are in a form that is friendly to normalization. This list of trees of
increasing size is such that the height of the largest tree is O(log n), and no
two trees have the same height. It follows that there are no more than O(log n)
such trees. Furthermore, the sum of the height di�erences between adjacent trees
is O(log n). By Theorem 1 concatenating any two adjacent trees y and z in the
strictly decreasing sequence t∗xyzs∗ yields a tree with a height no larger than the
height of x. By Theorem 2, the total amount of work required to merge O(log n)
such trees is O(log n). Thus, appending in a way analogous to incrementing
binary numbers ensures O(log n) normalization.



def append[T](xs: Conc[T], ys: Leaf[T]) =109

xs match {110

case Empty => ys111

case xs: Leaf[T] => new <>(xs, ys)112

case _ <> _ => new Append(xs, ys)113

case xs: Append[T] => append(xs, ys) }114

private def append[T](xs: Append[T], ys: Conc[T]) =115

if (xs.right.level > ys.level) new Append(xs, ys)116

else {117

val zs = new <>(xs.right, ys)118

xs.left match {119

case ws @ Append(_, _) =>120

append(ws, zs)121

case ws =>122

if (ws.level <= xs.level) ws <> zs123

else new Append(ws, zs) } }124

Fig. 4. Append Operation

Note that the public appendmethod takes a Leaf node instead of a Single
node. The conc-lists from Section 2 and their variant from this section have a
high memory footprint. Using a separate leaf to represent each element is in-
e�cient. Traversing the elements in such a data structure is also suboptimal.
Conc-Tree travesal (i.e. a foreach) must have the same running time as array
traversal, and memory consumption should correspond to the memory footprint
of an array. We therefore introduce a new type of a Leaf node, called a Chunk,
that packs the elements more tightly together. As we will see in Section 4, this
also ensures an e�cient imperative += operation.

case class Chunk[T](xs: Array[T], size: Int, k: Int)125

extends Leaf[T] { def level = 0 }126

The Chunk node contains an array xs with size elements. The additional
argument k denotes the maximum size that a Chunk can have. The insert
operation from Section 2 must copy the target Chunk when updating the Conc-
Tree, and divides the Chunk into two if size exceeds k. Similarly, a remove
operation fuses two adjacent Chunks if their total size is below a threshold.

The Conc-Tree rope has one limitation. When used persistently, it is possible
that we obtain an instance of the Conc-Tree whose next append triggers a chain
of linking operations. If we repetitively use that instance of the tree for append-
ing, we lose the amortized O(1) running time. Thus, when used persistently, the
Conc-Tree rope has O(log n) appends. This limitation is overcome by another
Conc-Tree variant called a conqueue, described in related work [12]. Conc-Tree
ropes are nonetheless useful, since their simplicity ensures good constant fac-
tors and O(1) ephemeral use. In fact, many applications, such as data-parallel
combiners [13], always use the most recent version of the data structure.



class ConcBuffer[T](val k: Int) {127

private var conc: Conc[T] = Empty128

private var ch: Array[T] = new Array(k)129

private var lastSize: Int = 0130

def +=(elem: T) {131

if (lastSize >= k) expand()132

ch(lastSize) = elem133

lastSize += 1 }134

private def expand() {135

conc = append(conc, new Chunk(ch, lastSize, k))136

ch = new Array(k)137

lastSize = 0 } }138

Fig. 5. Conc-Bu�er Implementation

4 Mutable Conc-Trees

Most of the data structures shown so far were persistent. This persistence comes
at a cost � while adding a single node has an O(1) running time, the constant
factors involved with allocating objects are still large. In Figure 5, we show
the ConcBuffer data structure, which uses Conc-Tree ropes as basic building
blocks. This mutable data structure maintains an array segment to which it
writes appended elements. Once the array segment becomes full, it is pushed
into the Conc-Tree as a Chunk node, and a new array segment is allocated.

Although combiners based on growing arrays have O(1) appends [13], resiz-
ing requires writing an element to memory twice on average. Conc-ropes with
Chunk leaves ensure that every element is written only once. The larger the
maximum chunk size k is, the less often is a Conc operation invoked in the
method expand � this amortizes Conc-rope append cost, while retaining fast
traversal. The ConcBuffer shown above is much faster than Java ArrayList
or C++ vector when appending elements, and at the same time supports ef-
�cient concatenation. The underlying persistent Conc-rope allows an e�cient
copy-on-write snapshot operation.

5 Evaluation

In this section, we compare Conc-Trees against fundamental sequences in the
Scala standard library � functional cons-lists, array bu�ers and Scala Vectors.
In a cons-list, prepending an element is highly e�cient, but indexing, updating
or appending an elements are O(n) time operations. Scala ArrayBuffer is a
resizeable array known as the ArrayList in Java and as vector in C++.
Array bu�ers are mutable random access sequences that can index or update
elements with a simple memory read or write. Appending is amortized O(1),
as it occasionally resizes the array, and rewrites all the elements. An important
limitation is that append takes up to 2 memory writes on average. Scala (and
Clojure) Vectors are e�cient trees that can implement mutable and persistent



sequences. Their de�ning features are low memory consumption and e�cient
prepending and appending. Current implementations do not have concatenation.

We compare di�erent Conc-Tree variants: lists, ropes, mutable Conc-Bu�ers,
as well as conqueues, described in related work [12].

We execute the benchmarks on an Intel i7 3.4 GHz quad-core processor.
We start with traversal � we evaluate the foreach on persistent Conc-Tree
lists from Section 2 and compare it to the foreach on the functional cons-
list in Figure 6A. Traversing the cons-list is tail recursive and does not use the
call stack. Furthermore, Conc-Tree list traversal visits more nodes compared to
cons-lists. Therefore, traversing the basic Conc-Tree list is slower than traversing
a cons-list. On the other hand, the Chunk nodes ensure e�cient traversal, as
shown in Figure 6B. For k = 128, Conc-Tree traversal running time is 2× faster
than that of Scala Vector. In subsequent benchmarks we set k to 128.

Appending is important for data-parallel transformations. While higher con-
stant factors result in 2× slower conqueue appends compared to persistent Vec-
tors, persistent Conc-Tree rope append is faster (Figure 6C). For comparison,
inserting into a red-black tree is approximately 4× slower than appending to a
conqueue. In Figure 6D, we compare Conc-Tree bu�ers against mutable Scala
Vectors. Resizeable array appends are outperformed by all other data structures.

When it comes to prepending elements, cons-lists are very fast � prepending
amounts to creating a single node. Cons-list have the same performance as mu-

table conqueue bu�ers, even though cons-lists are persistent. Both Scala Vectors
and persistent conqueues are an order of magnitude slower.

Concatenation has the same performance for both persistent and mutable
Conc-Tree variants. Concatenating mutable variants requires taking a snapshot,
which can be done lazily in constant-time [14]. We show concatenation perfor-
mance in Figure 6F, where we repeat concatenation 104 times. Concatenating
Conc-ropes is slightly more expensive than conc-list concatenation because of
the normalization, and it varies with size because the number of trees (that is,
non-zeros) in the append list �uctuates. Conqueue concatenation is slower (note
the log axis) due to the longer normalization process. Concatenating lists, array
bu�ers and Scala Vectors is not shown here, as it is a linear time operation, and
thousands of times slower for the same number of elements.

Random access is an operation where Scala Vectors have a clear upper hand
over the other persistent sequences. Although indexing a Scala Vector is faster
than indexing Conc-Trees, both are orders of magnitudes slower than array ran-
dom access. We note that applications that really need random-access perfor-
mance must use arrays for indexing operations, and avoid Vector altogether.

We show memory consumption in Figure 6H. While a Conc-Tree list occupies
twice as much memory as a functional cons-list, using Chunk nodes has a clear
impact on the memory footprint � arrays, Scala Vectors and Conc-Trees with
Chunk nodes occupy an almost optimal amount of memory, where optimal is
the number of elements in the data structure multiplied by the pointer size.
Resizeable arrays waste up to 50% of space due to their resizing policy.
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Fig. 6. Conc-Tree Benchmarks (smaller is better)



Data-parallel operations are the main use-case for Conc-Trees. Scala collec-
tion framework de�nes high-level collection combinators, such as �ltering, group-
ing, mapping and scanning. This API is similar to high-level data-processing
APIs such as FlumeJava and Apache Spark. The example from Section 1 shows
how to map numbers from a parallel range of numbers using the map operation.
This map operation works by parts of the parallel range across di�erent pro-
cessors, and producing parts of the resulting collection in parallel. The lambda
function x => x + 1 is used on each input element to produce an output element.
After independent processors produce intermediate collections, their results must
be merged into a new collection. When the resulting collection is an array, inter-
mediate array chunks cannot be simply linked together � instead, a new array
must be allocated, and intermediate results must be copied into it. The array
cannot be preallocated, because in general the number of output elements is not
known in advance � in most data-parallel operations, a single input element can
map into any number of output elements, determined after the lambda is run.

In the ScalaBlitz parallel collection framework [13] [15], the unifying ab-
straction that allows expressing di�erent parallel operations on Scala collections
generically, is called a combiner. The combiner de�nes three generic operations:
adding a new element to the combiner (invoked every time a new output element
is created), merging two combiners (invoked when combiners from two di�erent
processors are merged), and producing the �nal collection (which is invoked once
at the end of the operation). The arrays created from the parallel ranges in the
map operation use a special array-based combiner, as described above.

We replaced the standard array-based combiner implementation in ScalaBlitz
with Conc-Tree-based combiners, and compared data-parallel map operation per-
formance with and without Conc-Trees in Figure 6I, and data-parallel �lter op-

eration performance in Figure 6J.
With Conc-Trees, performance of the data-parallel mapping is improved by

2− 3×. The reason for this improvement is two-fold. First, array chunks stored
inside Conc-Trees do not need bulk resizes, which array-based combiners periodi-
cally do. This is visible in Figure 6I,J, where the array-based combiner has spikes
at certain input collection sizes. Second, Conc-Tree-based combiners avoid copy-
ing each element twice, since intermediate Conc-Trees from di�erent processors
can be e�ciently merged without copying.

6 Related Work

Standard programming language libraries come with resizeable array implemen-
tations, e.g. the ArrayList in the JDK or the vector in C++ standard tem-
plate library. These are mutable data structures that provide O(1) worst case
time indexing and update operations, with O(1) amortized time append opera-
tion. Although appending is amortized O(1), each append on average requires
two writes to memory, and each memory location is allocated twice. Concatena-
tion is an O(n) operation. Cons-lists have an e�cient push-head and pop-head,
but other operations are O(n).



Ropes are heavily relied upon in the Xerox Cedar environment [5], where bulk
rebalancing is done after the rope becomes particularly skewed. These ropes have
an amortized O(log n) operation complexity. VList [3] is a functional sequence,
with logarithmic time lookup operations. Scala Vector [4] is a persistent sequence
implementation. Its dequeue operation has low constant factors, but requires
O(log n) time. Scala Vector does not support concatentation, since concatenation
support slows down other operations.

The idea of Conc lists was proposed in the Fortress language [2], where par-
allel programs are expressed as recursion and pattern matching on three types
of nodes � empty, single element or conc nodes [16]. All Conc-Tree variants from
this paper provide the same programming model as conc-lists from Fortress.

Relaxing the balancing requirements to allow e�cient updates was �rst pro-
posed by Adelson-Velsky and Landis, in the AVL tree data structure [1]. Okasaki
was one of the �rst to bridge the gap between amortization and persistence
through the use of lazy evaluation [9]. While persistent random access lists rely
on binary number representations to achieve e�cient append operations, they
are composed from complete trees of di�erent heights, and do not support con-
catenation as a consequence [11].

The recursive slowdown techniques were worked on by Kaplan and Tarjan
[7]. Previously, persistent sequence data structures were proposed that achieve
constant time prepend and append operations, and asymptotic constant time
concatenation [8]. Although asymptotic bounds of these data structures are bet-
ter than that of Conc-Trees, their operations have higher constant factors, and
increased implementation complexity. The catenable real-time queues due to
Okasaki allow e�cient concatenation but do not have the balanced tree struc-
ture required for parallelization, nor support logarithmic random access [10].
Hinze and Paterson describe a lazy �nger tree data structure [6] with amortized

constant time deque and concatenation operations.

7 Conclusion

This paper introduces Conc-Tree data structures for functional parallel program-
ming with worst-case O(log n) time splitting and concatenation. The Conc-Tree
list comes with a worst-case O(log n1

n2
) time concatenation with low constant fac-

tors. The Conc-Tree rope provides an amortized O(1) time append and prepend
operations. In terms of absolute performance, persistent Conc-Trees outperform
existing persistent data structures such as AVL trees and red-black trees by a
factor of 3 − 4×, and mutable Conc-Trees outperform mutable sequence data
structures such as mutable Vectors and resizeable arrays by 20− 50%, addition-
ally providing e�cient concatenation. Data-parallel operation running time can
be improved by up to 3×, depending on the workload characteristic.

When choosing between di�erent Conc-Tree variants, we advise the use of
ropes for most applications. Although Conc-Tree ropes achieve amortized bounds,
ephemeral use is typically su�cient.



Besides serving as a catenable data-type for functional task-parallel pro-
grams, and improving the e�ciency of data-parallel operations, the immutable
nature of Conc-Trees makes them amenable to linearizable concurrent snapshot
operations [12]. Ine�ciencies associated with persistent data can be amortized
to a near-optimal degree, so we expect Conc-Trees to �nd their applications in
future concurrent data structures.
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