
UQ-Guided Hyperparameter Optimization

Jiesong Liu∗, Jiawei Guan+, Feng Zhang+, Xipeng Shen∗

∗ North Carolina State University
+ Renmin University

May 2024

NCSU TR-2024-2

Abstract

Hyperparameter Optimization (HPO) plays a pivotal role in unleashing the potential of machine
learning models. This paper addresses a crucial aspect that has largely been overlooked in HPO: the
impact of uncertainty in ML model training. The paper introduces the concept of uncertainty-aware
HPO and presents a novel approach called the UQ-guided scheme for quantifying uncertainty. This
scheme offers a principled and versatile method to empower HPO techniques in handling model
uncertainty during their exploration of the candidate space. By constructing a probabilistic model
and implementing probability-driven candidate selection and budget allocation, this approach
enhances the quality of the resulting model hyperparameters. It achieves a notable performance
improvement of over 50% in terms of accuracy regret and exploration time.

1 Introduction

Hyperparameter optimization (HPO) is essential for unleashing the power of machine learning
models [17, 34, 4]. Hyperparameters include traditional parameters like learning rates and more
complex ones like neural architectures and data augmentation policies. The main goal of HPO is to
explore a vast candidate space to find candidates that lead to optimal model performance.

There are many designs in the literature to solve the HPO problem. Successive Halving (SH) [18],
for example, terminates training of candidate configurations with poor performance early so as to
save computing resources for more well-behaved candidates. Bayesian optimization [16, 29], another
optimization method, uses a surrogate model to guide the selection of candidate configurations for
assessment.

There is however a lack of systematic treatment to an important factor in HPO designs, the
uncertainty inherent in the dynamics of the training process of machine learning applications.
Because of the uncertainty, a model with a candidate hyperparameter configuration (or candidate
in short) performing poorly in an early stage of its training could turn out to be the best model
after convergence. Such candidates are however likely to be stopped from proceeding further or
be completely discarded by existing HPO methods in the early stages, because their selections of
candidates are mostly based on the currently observed performance, for lack of a way to treat the
uncertainty properly. In 100 experiments of Successive Halving, for instance, the actually best
candidates were discarded in the first 8–22 steps of the exploration, causing 48% performance regrets
in validation loss (details in Section 3.1 Figure 2 and Section 4 Figure 4).

This paper introduces model uncertainty into the design of HPO methods and establishes the
concept of uncertainty-aware HPO. At the core of uncertainty-aware HPO is a novel uncertainty
quantization (UQ) guided scheme, named UQ-guided scheme, which unifies the selection of candidates
and the scheduling of training budget—two most important operations in HPO—into a single UQ-
based formal decision process. The UQ-guided scheme builds on a probabilistic uncertainty-based
model, designed to approximate the statistical effects of discarding a set of candidates at the end of
a step in HPO. It uses a lightweight method to efficiently quantify model uncertainty on the fly. It
offers a principled, efficient way for HPO to treat model training uncertainty.

As a general scheme, the UQ-guided scheme can be integrated into a variety of HPO methods.
This paper demonstrates its usefulness and generality by integrating it into four existing HPO
methods. Experiments on two widely used HPO benchmarks, NAS-BENCH-201 [9] and LCBench [36],
show that the enhanced methods produce models that have 21–55% regret reduction over the models
from the original methods at the same exploration cost. And those enhanced methods need only
30–75% time to produce models with accuracy comparable to those by the original HPO methods.
The paper further gives a theoretical analysis of the impact of the UQ-guided scheme for HPO.

2 Background and Related Work

Many studies are committed to solving the HPO problem efficiently [25, 19, 27, 33, 35]. Bayesian
optimization, early stop-based mechanisms, and multi-fidelity optimizations are some important
approaches.

Bayesian Optimization (BO). BO is a sequential design strategy used to optimize black-box
functions [29, 16, 11]. In HPO scenarios, it can be used as a surrogate model to sample high-quality
candidates.

Early Stop Mechanisms. Early stop-based approaches can be effective since they evaluate
different candidates during training and make adaptive selections accordingly [30, 8, 2]. The early

1

stopping mechanism, which stops the training of poorly-performed candidates early, has been widely
employed in the HPO community including Successive Halving (SH) [18] and Hyperband (HB) [24];
BOHB [11] combines both BO and HB methods to take advantage of both the BO surrogate model
and the early stopping mechanism.

Multi-fidelity Optimizations. Multi-fidelity evaluation focuses on using low-fidelity results
trained with small resources to accelerate the evaluation of candidates [30, 8, 2, 21, 22, 32, 3,
20, 31, 13, 25]. Sub-sampling (SS) [14] is proposed mainly using multi-fidelity methods to collect
high-quality data to select good configurations without early stopping.

Model Uncertainty in HPO. Various optimization methods in HPO scenarios focus on
specific training metrics to assess candidate performance. However, these methods typically overlook
the uncertainty in the candidate selection process. Machine learning models inherently have
approximation uncertainties [5, 12, 23, 10, 26, 6]. Some HPO designs sample the candidate space
based on distributions on the effect of each hyperparameter dimension on the quality of the
candidates, but without considering the uncertainty in the model training process. For example,
one of the studies [28] separates candidates into “good” or “bad” groups in order to build the
distributions. The separation is based on the same deterministic metrics as other HPO methods
use, giving no consideration of the uncertainty in model trainings.

3 Uncertainty Quantification (UQ)-Guided Hyperparameter Opti-
mization

This section gives an exploration of model uncertainty, introduces UQ-guided scheme for incorporating
UQ into the design of HPO, discusses examples of ways to use the UQ-guided scheme to enhance
existing HPO methods, and theoretically analyzes its effects.

3.1 Different Forms of Uncertainty

Uncertainty in machine learning originates mainly from two factors: inherent noise in the data and
the variability of model predictions due to restricted knowledge [15, 1]. Since data uncertainty is
constant, it is the variability in model predictions, referred to as model uncertainty, that primarily
influences decisions on HPO.

Consider an observed value yo = f(x) + ϵ for a given x ∈ Rd, where ϵ follows a Gaussian
distribution N (0, σ2

1). This implies yo ∼ N (f(x), σ2
1), with f(x) being the true target. The

prediction distribution, denoted by yp ∼ N(ŷ, σ2
2), centers around the mean ŷ = Ef̂(x), representing

the predicted value of f(x). The noise term σ2
1, arising from data, is irreducible and signifies data

uncertainty. On the other hand, the squared bias term ([Ef̂(x)− f(x)]2) indicates the difference
between estimated and true values, reflecting cognitive limitations due to model properties like
hyperparameters and algorithms. The variance term, E[f̂(x) − Ef̂(x)]2, relates to the model’s
sensitivity to training samples. Here, bias together with variance constitutes the model uncertainty.
Figure 1 illustrates these concepts. By analyzing model uncertainty and its relation to error
components (as shown in Figure 1), appropriate uncertainty quantification methods can be selected
to enhance model performance.

Figure 2 shows how the model uncertainty affects the quality of the returned candidate. In a
given SH run, half of the candidates are eliminated at each checkpoint marked by a vertical red
dashed line. The solid blue line represents the best validation loss up to the current point, while the
orange dashed line signifies the true quality (in terms of validation loss after convergence) of the
candidates SH retains at that specific juncture. From the figure, we see that in every round, SH

2

!(#)

%&
&'~)(%&, +,,)&- ~) ! # , +1,

Noise Bias VarianceData
Uncertainty Model stabilityModel cognition

= = Model
Uncertainty

Figure 1: Decomposition of uncertainty.

0

1

2

3

4

5

0 20 40 60 80 100

Va
lid
at
io
n
Lo
ss

Iteration

Current Best

Final Best

Ground Truth

Last halving
3rd halving

2nd halving

1st halving
Regret

Figure 2: Demonstration of the negative impact from uncertainty on HPO; Successive Halving (SH)
is used; the benchmark is NAS-BENCH-2.0 [9]. Due to its overlooking at model uncertainty, at
each halving point, SH discards the actual best candidates, causing an increase in the regret.

discards the actually best candidates, causing a continuous increase of the regret. The reason is that
the discarding decision of SH is solely based on the current validation loss, but model uncertainty,
particularly pronounced in the early stages, disguises the true model potential.

3

3.2 Quantifying Model Uncertainty

Quantifying model uncertainty is the first step in treating it. High efficiency is essential here as
the UQ happens during the HPO process. We employ a lightweight approach to conduct the UQ
efficiently on the fly, as explained next.

Let γ1, γ2, · · · , γK ∈ Γ be K candidates drawn from the hyperparameter space Γ. Consider a
supervised learning setting, where a machine learning model M is trained on some training set
DT = {(x1, y1), (x2, y2), · · · , (xnt , ynt)}. Let M t

γ denote the model with hyperparameter γ trained
on DT after t epochs, and M∗

γ the converged model. M t
γ(x) gives the prediction on a certain input

x ∈ Rd.
We next define ℓ(·, ·) to be the metric that evaluates the performance of a candidate. During

training, a current validation loss for candidate γc, ℓ(y,M
t
γc(X)), and model uncertainty are used

by our UQ-based scheme in estimating the model converged loss, where t denotes the current epoch.
Following prior practice [18], the modeling assumes the following.

Assumption 3.1 (Converged model metric evaluation limit). ℓ(y,M∗
γc(X)) = lim

t→∞
ℓ(y,M t

γc(X))

exists for γc ∈ Γ.

Remark 3.2. Assumption 3.1 says that the machine learning model will eventually converge after
enough epochs. Note that the model makes no assumption between ℓ(y,M1

γc(X)), ℓ(y,M2
γc(X)), · · · , ℓ(y,M t

γc(X)).

Assumption 3.3 (Independent Gaussian distributions). Given a hyperparameter configuration
γc, the converged loss of a model instance, ℓ(y,M∗

γc(X)), can be affected by training data and
other hyperparameters. We assume that the loss of a certain instance from these model variants,
after convergence, follows Gaussian distribution: ℓ(y,M∗

γc(X)) ∼ N (µc, σ
2
c). Also, assume that

ℓ(y,M∗
γ1(X)), · · · , ℓ(y,M∗

γm(X)) are mutually independent.

In our method, at epoch t, we approximate µc by ℓ(y,M t
γc(X)) and model uncertainty σc by

ℓ(y,M b
γc(X))b∈Dt=[t−δ,t]:

σ̂2
c =

1

δ

∑
b∈Dt

(µc − EDt [µc])
2

≈ 1

δ

∑
b∈Dt

(ℓ(y,M b
γc(X))− EDt [ℓ(y,M

b
γc(X))])2

(1)

We use this approximation because of its simplicity and efficiency. What it needs for the UQ and
approximation are only ℓ(y,M t

γb
(X)) in the previous several training epochs before t. All the info is

already available in the default HPO process; everything can hence be done on the fly with virtually
zero overhead. We had considered some more sophisticated designs (e.g., offline training-based
modeling of the relations between intermediate validation loss and the converged loss), but they
add extra burden and overhead and hence barriers to adoption. Section 4 will show that this simple
method goes a long way in enhancing HPO.

Definition 3.4 (UQ-guided comparison of candidates). UQ-guided comparison of candidates
compares two candidates based on the probability that the validation loss of the converged model
γc1 is lower than that of γc2 , represented as follows based on the approximation from the current
validation losses and uncertainty of the two candidates:

P = Pr(ℓ(y,M∗
γc1

(X)) > ℓ(y,M∗
γc2

(X))∣∣∣ℓ(y,M t
γc1

(X)), σ̂c1 , ℓ(y,M
t
γc2

(X)), σ̂c2).
(2)

4

K

Round Start

Choose
discard

Budget
Endsk

Round 1 Round 2

…
Round 3 Round r

Probabilistic
Model

Discarding
Mechanism

P
Confidence Curve

k

Configs

Uncertainty Quantification

f ((µi, σi2)#$%& , k)
Sweet Point

k

Determine the number of k
models to keep

k↓

k↑µ1

'(()

(µ2µK

l: probability
distribution of loss
after convergence

li ~ N (µi, σi2)

l1

l2
lK

Figure 3: Illustration of using UQ-guided scheme to enhance Successive Halving. The goal is to
select an optimal hyperparameter configuration from K candidates. It involves multiple rounds. R
is the predefined budget resources (e.g., training epochs) for each round. For the first round, K
candidates each get trained for R

K epochs. Based on the observed validation loss and the quantified
uncertainty for each candidate, the UQ-guided HPO represents each candidate’s converged loss with
a probability distribution. From that, it constructs a confidence curve, capturing the probability
that the best configuration is among the current top k candidates for 1 ≤ k ≤ K. From the curve, it
then calculates f((µi, σ

2
i)

K
i=1, k), which captures the effects of keeping k top candidates (1 ≤ k ≤ K)

for the next round, by considering the tradeoff between the risks of discarding the best candidate and
the training budget each top candidate can get. From that, it identifies the best k value, discards
the least promising K − k candidates, and enters the next round. The process continues until the
total budget is used up.

The main idea of Definition 3.4 is to use the current validation loss and quantified uncertainty
to approximate the converged validation loss, so that we compare two candidates – more precisely,
we compute the probability that one candidate is better than the other – based on the probability
distribution of their converged validation loss. For example, if the current validation loss and
uncertainty of two candidates γj and γk, at epoch t, are (µj , σj) and (µk, σk), using converged

validation loss as the metric, we have Pr(ℓ(y,M t
γj (X)) > ℓ(y,M t

γk
(X)))= Φ

(
µk−µj√
σ2
j+σ2

k

)
, where Φ

denotes the cumulative distribution function (CDF) of the standard normal distribution. We next
present UQ-guided scheme, a principled way to use UQ to guide HPO.

3.3 UQ-Guided Scheme

Figure 3 illustrates how UQ-guided scheme works in HPO. For the purpose of clarity, we base our
explanation of the scheme on HPO that uses early stop mechanisms, but will show in Section 3.5
that the scheme is general, applicable to other HPO methods as well.

The original HPO has several working rounds and drops some candidates regarded as unpromising
at the end of each round. With our UQ-guided scheme, at the end of each round, the scheme derives
a confidence curve from the current probabilistic model, and uses a discarding mechanism to drop
candidates that are unlikely to perform well after convergence. In contrast to the original HPO that

5

drops a fixed amount (or fraction) of candidates in each round, the UQ-guided scheme carefully
calculates the number of candidates to drop in a round based on the probabilistic model such that
the expected quality of the HPO outcomes can be maximized, as explained later.

The UQ-guided scheme respects the HPO budget—that is, the total amount of time usable by
the HPO for identifying the best candidate. By default, it works around the given budget constraint:
the budget for each round (R) equals the total budget divided by the number of rounds. We next
discuss each step.

3.3.1 Confidence Curve Derived from Uncertainty Quantification

The concept of confidence curve is central in UQ-guided HPO. Define [n] = {1, 2, · · · , n}.

Definition 3.5 (Confidence curve). At epoch t, we evaluate each candidate’s performance and
sort them based on validation loss. A confidence curve C is a trajectory of a series of probabilities,
{Pk|k ∈ [n]}, that depicts the probability that the optimal configuration (with the lowest loss after
convergence) is among the first k configurations. For k ∈ [n], Pk can be expressed as

Pk = Pr(min(ℓ(y,M∗
γ1(X)), · · · , ℓ(y,M∗

γk
(X)))

≤ min(ℓ(y,M∗
γk+1

(X)), · · · , ℓ(y,M∗
γn(X)))).

The confidence curve is derived based on joint probability distribution in the following way.
Suppose there are n candidates. At the end of a certain round, the probabilistic model returns n pairs
of (µ1, σ1), (µ2, σ2), · · · , (µn, σn) as estimations for ℓ(y,M∗

γ1(X)), ℓ(y,M∗
γ2(X)), · · · , ℓ(y,M∗

γn(X)).
For simplicity, assume that µ1 < µ2 < · · · < µn, and σ1 = σ2 = · · · = σ.

Let Φ and ϕ be the CDF and PDF of the standard normal distribution. For k = m, we can
calculate Pm as

Pm =

∫ ∞

−∞

1

σ

m∑
i=1

ϕ(y+µi

σ)

Φ(y+µi

σ)
·

n∏
i=1

Φ(
y + µi

σ
)dy. (3)

The details of obtaining Equation 3 are in Appendix A.1.

3.3.2 Discarding Mechanism

The next step is to decide, at the end of each round, the appropriate value of k, which determines
how many (n− k) lowest-ranked candidates will be discarded in this round. Our scheme decides k
based on the confidence curve: choosing the smallest k that satisfies Pk ≥ τ , where τ is a parameter
determined by our scheme adaptively as follows.

Choosing τ . At the end of round i, we have the confidence curve Ci(P i
1, P

i
2, · · · , P i

n) that is the
trajectory of a series of probabilities. We quantify how τ influences the probability for the HPO to
select the best candidate.

Let τi be the value of τ for round i, ki be min{k : Ci(Pk) ≥ τi}. As the scheme discards the worst
n−ki candidates and further trains the best ki candidates in round i+1, we can derive the confidence
curve of round i+ 1 as Ci+1(P

i+1
1 , P i+1

2 , · · · , P i+1
ki

) based on those selected ki candidates. Since we
want to quantify the effect of τ on the probability that the scheme returns the best candidate (that
is, to suppose round i+ 1 is our final round), P i+1

1 is the target we desire to maximize. Define ξi to
be the current condition (µi, σi)

n
i=1. Let f(·, ·) be a mapping such that f(ξi, τi) = P i+1

1 . We want
to use a selector function Ψ : D → [0, 1] where D = ([0,∞)× [0,∞))n × [0, 1]. Ψ takes ξi as input
and returns an optimal τi:

Ψ(ξi) = arg max
τi∈[0,1]

{f(ξi, τi)}. (4)

6

The effect of τi on f manifests through its influence on the number of candidates ki retained
in the subsequent round, and can be ultimately broken down into the influence of (1) exploration,
meaning keeping more candidates in the next round can reduce this round’s discarding error, and
(2) exploitation, meaning keeping fewer candidates in the next round can allow each candidate to
receive more training time (recall that the training time budget is fixed for each round) and hence
will increase the reliability of the validation at the end of the next round.

Exploration. If ki drops by 1 to k′i, according to the definition of the confidence curve, the
probability that the final optimal configuration is among the remaining candidates we keep drops
by ∆c↓ = Pki − Pk′i

:

∆c↓ =

∫ ∞

−∞

1

σ
·
ϕ(

y+µki
σ)

Φ(
y+µki

σ)
·

n∏
i=1

Φ(
y + µi

σ
)dy. (5)

Exploitation. At the same time, a drop in ki leads to an increase in the individual training
budget b. Let ζ be the coefficient that relates the increase in the number of training epochs to its
corresponding effect on confidence. Using an approach similar to that employed in formulating the
confidence curve, we have

ζ =

∫ ∞

−∞

1

σ −∆tσ
ϕ(

y + µ1

σ −∆tσ
) ·

ki∏
i=2

Φ(
y + µi

σ −∆tσ
)dy

−
∫ ∞

−∞

1

σ
ϕ(

y + µ1

σ
) ·

ki∏
i=2

Φ(
y + µi

σ
)dy

(6)

where t represents the current total number of epochs and ∆tσ represents the reduction in the
uncertainty σ that would result from training each candidate for one additional epoch. The specifics
for Equations 5 and 6 can be found in Appendix A.2. Given that b increases by R

k′i
− R

ki
, the overall

influence of exploitation on the probability of selecting an optimal candidate is ∆c↑ =
R

ki(ki−1)ζ.

Let ζ(ki, ξi) be the confidence increase, given condition ξi, when each of the ki candidates gets
a unit extra training budget. Ci(Pk), k ∈ [n] are the confidence curves. Balancing exploration and
exploitation leads to a sweet point where ∆c↓ = ∆c↑. That gives the way to derive the appropriate
value for τ , which just needs to make the following hold:

Pki − Pki−1 =
R

ki(ki − 1)
ζ(ki, ξi). (7)

3.4 Theoretical Analysis

We consider how the method performs in terms of identifying the best candidate. For all i ∈ [n], k ≥ 1,
let ℓi,k ∈ R be an i.i.d. sample from the Gaussian distribution N . For each i, assume νi = limτ→∞ ℓi,τ
exists. The goal is to identify argmini νi. Without loss of generality, assume that ν1 < ν2 ≤ · · · ≤ νn.
The assumption that limτ→∞ ℓi,τ exists implies that as τ grows, the overall gap between ℓi,τ and νi
decreases. Let σt = f(t) be the model uncertainty at epoch t. We then introduce a random variable
that characterizes the approximation error of ℓi,t relative to νi, modeling it as a distribution that
incorporates t as a parameter:

Xt = |ℓi,t − νi|, Xt ∼ N (0, σ2
t) ∀t.

7

By applying Chebyshev inequality, we have

Pr(|ℓi,t − νi| >
νi − ν1

2
) ≤ 4σ2

t

(νi − ν1)2

=
4f(t)2

(νi − ν1)2
i = 2, · · · , n.

(8)

Let A denote the event ℓi,t > ℓ1,t, then by Equation 8

Pr(A) = Pr((ℓi,t − νi) + (ν1 − ℓ1,t) + 2 · (νi − ν1
2

) > 0)

≥ 1−
(4f(t)2

(νi − ν1)2

)2

.
(9)

Equation 9 tells us that ℓi,t > ℓ1,t has a high probability with respect to t if f(t) ∈ O(t−1/4) (see
Lemma in Appendix B). That is, comparing the intermediate values at a certain time t is likely to
establish an order similar to the order of the final values of νi and ν1.

The following theorem is stated in terms of the abovementioned quantities with proofs in
Appendix B.1.

Theorem 3.6. Let n be the number of total candidates, and νi = lim
τ→∞

ℓi,τ . For a given c > 0,

there exists a T > 0 s.t.
n∏

i=2
(1− (4f(T)2

(νi−ν1)2
)2) > 1− c . If the round budget R > T · n, then the best

candidate is returned with probability P > (1− ⌊BR⌋c)(1− c), where B is the total budget.

In comparison, the bound in the UQ-oblivious approach is as follows:

Theorem 3.7. Let δ > 0, νi = lim
τ→∞

ℓi,τ and assume ν1 ≤ ν2 ≤ · · · ≤ νn. Let γ−1(ϵ, δ) = min{t ∈

N : f(t)
ϵ ≤ δ

1
4 }, and

zob = 2⌈log2(n)⌉ max
i=2,...,n

i
(
1 + γ−1(νi−ν1

2 , δ)
)

≤ 2⌈log2(n)⌉(n+
∑

i=1,...,n

γ−1(νi−ν1
2 , δ)).

If the UQ-oblivious early stopping method is run with any budget Bob > zob then the best candidate
is returned with probability Pob > 1− nδ.

Example 3.8. Consider f(t) = 1
t . According to Theorem 3.7, if Bob > 2⌈log2(n)⌉(n+

∑
i=1,...,n γ

−1(νi−ν1
2 , δ)),

the UQ-oblivious method can return the best candidate with probability over 1 − nδ. But if
BUQ ≃ γ−1(ν2−ν1

2 , δ) · n 1, the UQ method can return the best candidate with probability over
1 − nδ. As shown in Appendix B.2, Theorems 3.6 and 3.7 together show that the UQ approach
guarantees the same probability of identifying the optimal candidate as the UQ-oblivious counterpart
with a smaller budget lowerbound B (see Corollary B.2).

We have been concerned with identifying the best candidate, while in practice, it is often
sufficient to consider a situation where the difference between the result of candidate iϵ (νiϵ) and
the result of the best candidate (ν1) is less than or equal to a small value ϵ. We obtain the following
theorem with proofs in Appendix B.3.

1f ≃ g if there are constants c, c′ s.t. cg(x) ≤ f(x) ≤ c′g(x).

8

Theorem 3.9. For a budget B > R and a set of n candidates, let î be the output of the UQ-guided
approach. Then

Pr(νî − ν1 > ϵ) ≤
2⌊BR⌋f(R)2

ϵ
.

In comparison, îD, the output of the UQ-oblivious counterpart, satisfies

Pr(νîD − ν1 ≥ ϵ) ≤
2⌈log2(n)⌉f

(
⌊ B
n⌈log2(n)⌉

⌋
)2

ϵ
.

Example 3.10. Consider f(t) = 1
t . Substitution of f(t) in Theorem 3.9 can clearly show a smaller

upperbound of the UQ-guided approach than that of the UQ-oblivious counterpart (see Appendix B.3
for details).

The theorems provide some insights into the theoretical benefits of the UQ-guided scheme.
But it is worth noting that neither this bound comparison nor the budget bound comparison in
Example 3.8 is sufficient to prove that the UQ-guided approach definitely would outperform the
UQ-oblivious approach, a reason for the empirical comparisons in Section 4.

[tb] Input: Total budget B, the set of K configurations Γ = {γ1, γ2, · · · , γK}, minimum round
budget R Output: The configuration with the best performance b = ⌊RK ⌋ i = 1 to K Evaluate
M ti

γi with budget b and get M ti+b
γi ti+ = b Rank according to performance and obtain new M t1

γ1 ,
M t2

γ2 , · · · ,M
tK
γK

K = OracleModel(M t1
γ1 ,M

t2
γ2 , · · · ,M

tK
γK

) Keep top K candidates total budget B runs
out

[tb] Input: K instances of Machine Learning models M t1
γ1 , M

t2
γ2 , · · · ,M

tK
γK

Output: A new K
that tells the model how many candidates to keep Get a τ from the probabilistic model Construct the
confidence curve C(P1, P2, · · · , PK) based on ℓ(y,M t1

γ1(X)), ℓ(y,M t2
γ2(X)), · · · , ℓ(y,M tK

γK
(X)) return

min{k : Pk > τ}

3.5 UQ-Guided HPO Family

The UQ-guided scheme is a general approach to enhancing HPO with uncertainty awareness. We next
explain how it is integrated into several existing HPO methods to transform them into UQ-guided
ones, yielding a UQ-guided HPO family. In the following, we use the suffix “plus (+)” to indicate
the UQ-guided HPO methods.

Successive Halving plus (SH+) is derived from the early stop-based HPO design Successive
Halving (SH) [18]. Algorithms 3.4 and 3.4 show the pseudo-code. Given total budget B and
round budget R and an initial K, SH+ first trains K candidates each with the initial b = ⌊RK ⌋
units of budget, and ranks them by the evaluation performance. Then SH+ updates K based on
Section 3.3.2 and keeps the top K configurations according to the UQ-guided scheme (OracleModel
in Algorithms 3.4 and 3.4), and continues the process until the budget runs out.

Hyperband plus (HB+) originates from the popular HPO design Hyperband (HB). HB is an
HPO method trying to better balance exploration and exploitation than SH does [24] by adding an
outer loop for grid search of the value of K. HB+ simply extends HB by using SH+ rather than SH
as its inner loop, changing the target of the grid search to the initial value of K.

Bayesian Optimization and Hyperband plus (BOHB+) is developed from BOHB [11].
BOHB is similar to HB except that it replaces the random sampling from the uniform distribution
with BO-based sampling. BOHB+ makes the corresponding changes from HB+ by adopting
BO-based sampling for its outer loop.

Sub-sampling plus (SS+) is derived from the Sub-sampling (SS) algorithm [14]. It showcases
the applicability of the UQ-guided scheme to non-early stop–based methods. Similar to other

9

methods, in each round, SS also chooses candidates for further training based on its assessment
of the potential of those candidates. But unlike the other methods, SS does not discard any
candidates, but keeps all in play throughout the entire HPO process. In each round, the candidates
it chooses are those that show smaller validation loss than the most trained candidate shows. If
there is none, it trains only the most trained candidate in that round. SS+ integrates the UQ-
guided scheme into the candidate selection process of SS. When SS+ compares a candidate (ci)
against the most trained candidate (cm), rather than checking their validation losses, it uses the
UQ-guided scheme to compute the probability for the convergence loss of ci to be smaller than that
of cm and checks whether the probability is over a threshold τ (0.9 in our experiments), that is,
Pr(ℓ(y,M∗

γcm
(x)) ≥ ℓ(y,M∗

γci
(x))) ≥ τ .

4 Experiments

We conduct a series of experiments on the four UQ-guided HPO methods to validate the efficacy of
the UQ-guided scheme for HPO.

4.1 Experimental Setup

Methodology. To check the benefits of the UQ-guided scheme for HPO, we apply the proposed
UQ-guided HPO family to different HPO benchmarks, including NAS-BENCH-201 and LCBench,
to measure the performance for different hyperparameter optimization tasks, and compared those
with their original UQ-oblivious versions.

Workloads. We evaluate the UQ-guided methods on two real-world benchmarks. Nas-Bench-
201 [9] encompasses three heavyweight neural architecture search tasks (NAS) on CIFAR-10, CIFAR-
100, and ImageNet-16-120 datasets. In addition, we investigate the performance of optimizing
traditional ML pipelines, hyperparameters, and neural architecture in LCBench [36]. For example,
we optimized 7 parameters for the Fashion-MNIST dataset [7], where the resource type is determined
by the number of iterations. Additional information regarding these benchmarks can be found in
Appendix D. In this context, one unit of budget equates to a single training epoch, and by default,
the total HPO budget (B) allocated for each method is 4 hours.

4.2 Experimental Results

Figure 4 illustrates the results of NAS-BENCH-2.0 trained on ImageNet16-120.
It shows the results of four UQ-guided methods compared to their original ones. For each

comparison, we show three metrics, namely top-1 rank on different trials, top-1 rank on different
fractions of budgets, and regret on different fractions of budgets. Top-1 rank refers to the real ranking
of the candidate ultimately chosen by the method. Regret (%) refers to the accuracy difference
between the returned candidate and the real best candidate. The benefits of the UQ-guided scheme
are obvious, both for individual trials and across different fractions of budgets. It brings a 21-55%
regret reduction. Similar results are observed on other benchmarks (LCBench results shown in
Appendix E).

Table 1 provides the fraction of the total exploration time needed for the UQ-guided methods
to achieve comparable model accuracy as the original methods do. The UQ-guided methods need
much less time than their counterparts to obtain a similar performance. For instance, SH+ achieves
the same average regret of 5% on NAS with only half of the budgets required by SH. These results
indicate that the UQ technique can conduct HPO efficiently and effectively.

10

1

3

5

7

9

0.3 0.6 0.9
Fraction of Budgets

SS

SS+

0

2

4

6

8

0.3 0.6 0.9
Fraction of Budgets

SS

SS+

1

3

5

7

9

0.3 0.6 0.9
Fraction of Budgets

BOHB
BOHB+

0

2

4

6

8

0.3 0.6 0.9
Fraction of Budgets

BOHB
BOHB+

1

3

5

7

9

0.3 0.6 0.9
Fraction of Budgets

HB
HB+

1

5

9

13

1
Different Trials

Top 1 Rank

SH

SH+

1

3

5

7

9

0.3 0.6 0.9
Fraction of Budgets

Top 1 Rank

SH

SH+

1

5

9

13

1
Different Trials

HB
HB+

0

2

4

6

8

0.3 0.6 0.9
Fraction of Budgets

HB
HB+

0

2

4

6

8

0.3 0.6 0.9
Fraction of Budgets

Regret

SH

SH+

1

5

9

13

1 Different Trials

BOHB
BOHB+

1

5

9

13

1 Different Trials

SS

SS+

Figure 4: Experimental results of UQ-oblivious HPO methods and their UQ-guided enhancements
on NAS-BENCH-2.0.

5 Conclusion

This paper points out the importance of systematic treatment to the uncertainty in model trainings
for HPO. It introduces a novel scheme named UQ-guided scheme, which offers a general way to
enhance HPO methods with uncertainty-awareness. Experiments demonstrate that the UQ-guided
scheme can be easily integrated into various HPO methods. The enhanced methods achieve 21–55%
reduction of regret over their original versions, and requires only 30–75% time to identify a candidate
with a matching performance as the original methods do. The paper in addition provides theoretical
analysis of the effects of the UQ-guided scheme for HPO.

Overall, this study concludes that UQ is important for HPO to consider, simple on-the-fly UQ
goes a long way for HPO, and the UQ-guided scheme can serve as a general effective scheme for
enhancing HPO designs.

11

Table 1: Fraction of time (%) required for the UQ-guided methods to achieve comparable model
performance as the original HPO methods do.

Methods NAS-BENCH-
201

LCBench

SH+ 50.78 43
HB+ 75 60
BOHB+ 68.4 53.34
SS+ 47.84 30.93

References

References

[1] Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mohammad
Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Rajendra Acharya, et al. A
review of uncertainty quantification in deep learning: Techniques, applications and challenges.
Information fusion, 76:243–297, 2021.

[2] Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. Accelerating neural architecture
search using performance prediction. arXiv preprint arXiv:1705.10823, 2017.

[3] Hadrien Bertrand, Roberto Ardon, Matthieu Perrot, and Isabelle Bloch. Hyperparameter
optimization of deep neural networks: Combining hyperband with bayesian model selection. In
Conférence sur l’Apprentissage Automatique, 2017.

[4] Bernd Bischl, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter, Stefan Coors, Janek
Thomas, Theresa Ullmann, Marc Becker, Anne-Laure Boulesteix, et al. Hyperparameter opti-
mization: Foundations, algorithms, best practices, and open challenges. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 13(2):e1484, 2023.

[5] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty
in neural network. In International conference on machine learning, pages 1613–1622. PMLR,
2015.

[6] Danruo Deng, Guangyong Chen, Yang Yu, Furui Liu, and Pheng-Ann Heng. Uncertainty
estimation by fisher information-based evidential deep learning. In International conference on
machine learning. PMLR, 2023.

[7] Li Deng. The mnist database of handwritten digit images for machine learning research [best
of the web]. IEEE signal processing magazine, 29(6):141–142, 2012.

[8] Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up automatic hy-
perparameter optimization of deep neural networks by extrapolation of learning curves. In
Twenty-fourth international joint conference on artificial intelligence, 2015.

12

[9] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural
architecture search. arXiv preprint arXiv:2001.00326, 2020.

[10] Vincent Dumont, Casey Garner, Anuradha Trivedi, Chelsea Jones, Vidya Ganapati, Juliane
Mueller, Talita Perciano, Mariam Kiran, and Marc Day. Hyppo: A surrogate-based multi-level
parallelism tool for hyperparameter optimization. In 2021 IEEE/ACM Workshop on Machine
Learning in High Performance Computing Environments (MLHPC), pages 81–93. IEEE, 2021.

[11] Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust and efficient hyperparameter
optimization at scale. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 1437–1446. PMLR, 10–15 Jul 2018.

[12] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In Maria Florina Balcan and Kilian Q. Weinberger,
editors, Proceedings of The 33rd International Conference on Machine Learning, volume 48
of Proceedings of Machine Learning Research, pages 1050–1059, New York, New York, USA,
20–22 Jun 2016. PMLR.

[13] Yi-Qi Hu, Yang Yu, Wei-Wei Tu, Qiang Yang, Yuqiang Chen, and Wenyuan Dai. Multi-fidelity
automatic hyper-parameter tuning via transfer series expansion. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 3846–3853, 2019.

[14] Yimin Huang, Yujun Li, Hanrong Ye, Zhenguo Li, and Zhihua Zhang. Improving model training
with multi-fidelity hyperparameter evaluation. In D. Marculescu, Y. Chi, and C. Wu, editors,
Proceedings of Machine Learning and Systems, volume 4, pages 485–502, 2022.

[15] Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in machine
learning: An introduction to concepts and methods. Machine Learning, 110:457–506, 2021.

[16] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimization
for general algorithm configuration. In Carlos A. Coello Coello, editor, Learning and Intelligent
Optimization, pages 507–523, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[17] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated machine learning: methods,
systems, challenges. Springer Nature, 2019.

[18] Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and hyperparam-
eter optimization. In Arthur Gretton and Christian C. Robert, editors, Proceedings of the 19th
International Conference on Artificial Intelligence and Statistics, volume 51 of Proceedings of
Machine Learning Research, pages 240–248, Cadiz, Spain, 09–11 May 2016. PMLR.

[19] Jie Jiang, Jiawei Jiang, Bin Cui, and Ce Zhang. Tencentboost: A gradient boosting tree system
with parameter server. In 2017 IEEE 33rd International Conference on Data Engineering
(ICDE), pages 281–284. IEEE, 2017.

[20] Kirthevasan Kandasamy, Gautam Dasarathy, Jeff Schneider, and Barnabás Póczos. Multi-
fidelity bayesian optimisation with continuous approximations. In International Conference on
Machine Learning, pages 1799–1808. PMLR, 2017.

[21] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter. Fast bayesian
optimization of machine learning hyperparameters on large datasets. In Artificial intelligence
and statistics, pages 528–536. PMLR, 2017.

13

[22] Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. Learning curve pre-
diction with bayesian neural networks. In International Conference on Learning Representations,
2016.

[23] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. Advances in neural information
processing systems, 30, 2017.

[24] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyper-
band: A novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res.,
18(1):6765–6816, jan 2017.

[25] Yang Li, Yu Shen, Jiawei Jiang, Jinyang Gao, Ce Zhang, and Bin Cui. Mfes-hb: Efficient
hyperband with multi-fidelity quality measurements. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 8491–8500, 2021.

[26] Siyan Liu, Pei Zhang, Dan Lu, and Guannan Zhang. PI3NN: Out-of-distribution-aware
prediction intervals from three neural networks. In International Conference on Learning
Representations, 2022.

[27] Jingwei Ma, Jiahui Wen, Mingyang Zhong, Weitong Chen, and Xue Li. Mmm: multi-source
multi-net micro-video recommendation with clustered hidden item representation learning.
Data Science and Engineering, 4:240–253, 2019.

[28] Alejandro Morales-Hernández, Inneke Van Nieuwenhuyse, and Gonzalo Nápoles. Multi-objective
hyperparameter optimization with performance uncertainty. Communications in Computer
and Information Science, 1684:37–46, 2022.

[29] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger, editors,
Advances in Neural Information Processing Systems, volume 25. Curran Associates, Inc., 2012.

[30] Kevin Swersky, Jasper Snoek, and Ryan P Adams. Multi-task bayesian optimization. Advances
in neural information processing systems, 26, 2013.

[31] Shion Takeno, Hitoshi Fukuoka, Yuhki Tsukada, Toshiyuki Koyama, Motoki Shiga, Ichiro
Takeuchi, and Masayuki Karasuyama. Multi-fidelity bayesian optimization with max-value
entropy search and its parallelization. In International Conference on Machine Learning, pages
9334–9345. PMLR, 2020.

[32] Jiazhuo Wang, Jason Xu, and Xuejun Wang. Combination of hyperband and bayesian opti-
mization for hyperparameter optimization in deep learning. arXiv preprint arXiv:1801.01596,
2018.

[33] Shiwen Wu, Yuanxing Zhang, Chengliang Gao, Kaigui Bian, and Bin Cui. Garg: anonymous
recommendation of point-of-interest in mobile networks by graph convolution network. Data
Science and Engineering, 5:433–447, 2020.

[34] Quanming Yao, Mengshuo Wang, Yuqiang Chen, Wenyuan Dai, Yu-Feng Li, Wei-Wei Tu,
Qiang Yang, and Yang Yu. Taking human out of learning applications: A survey on automated
machine learning. arXiv preprint arXiv:1810.13306, 2018.

14

[35] Wentao Zhang, Jiawei Jiang, Yingxia Shao, and Bin Cui. Snapshot boosting: a fast ensemble
framework for deep neural networks. Science China Information Sciences, 63:1–12, 2020.

[36] Lucas Zimmer, Marius Lindauer, and Frank Hutter. Auto-pytorch: Multi-fidelity metalearning
for efficient and robust autodl. IEEE Transactions on Pattern Analysis and Machine Intelligence,
43(9):3079–3090, 2021.

15

A Method Details

A.1 Formulation of Confidence Curve

The following contents detail how to compute the confidence curve C(P1, P2, · · · , Pn) based on
current validation loss and quantified uncertainty of the n candidates.

Let Y be the random variable denoting the negation of the lowest converged validation loss:

Y = max(−ℓ(y,M∗
γ1(X)),−ℓ(y,M∗

γ2(X)), · · · ,−ℓ(y,M∗
γn(X))).

Since ℓ(y,M∗
γi(X)) ∼ N (µi, σ

2
i), the cumulative distribution function (CDF) of Y , FY (y), is

FY (y) = Pr(Y ≤ y) = Pr(−ℓ(y,M∗
γ1(X)) ≤ y,−ℓ(y,M∗

γ2(X)) ≤ y, · · · ,−ℓ(y,M∗
γn(X)) ≤ y)

=

n∏
i=1

Φ(
y + µi

σ
) = exp(

n∑
i=1

lnΦ(
y + µi

σ
)).

Accordingly, the probability density function (PDF) of Y , fY (y), is

fY (y) =
dFY (y)

dy
=

1

σ

n∑
i=1

ϕ(y+µi

σ)

Φ(y+µi

σ)
·

n∏
i=1

Φ(
y + µi

σ
).

Now we can construct the confidence curve by calculating each Pk (k ∈ [n]). For k = m, Pk can
be expressed as

Pm = Pr(min(ℓ(y,M∗
γ1(X)), · · · , ℓ(y,M∗

γm(X))) ≤ min(ℓ(y,M∗
γm+1

(X)), · · · , ℓ(y,M∗
γn(X)))).

According to Assumption 3.3, ℓ(y,M∗
γ1(X)), · · · , ℓ(y,M∗

γn(X)) are mutually independent, thus

Pm =

∫ ∞

−∞
fY (y) Pr(−N (µm+1, σm+1) ≤ y, · · · ,−N (µn, σn) ≤ y)dy

=

∫ ∞

−∞
fY (y)Φ(

y + µm+1

σ
)× · · · × Φ(

y + µn

σ
)dy

=

∫ ∞

−∞

1

σ

m∑
i=1

ϕ(y+µi

σ)

Φ(y+µi

σ)
·

n∏
i=1

Φ(
y + µi

σ
)dy.

(10)

A.2 Computing ζ

Equation 5 can be calculated by directly subtracting Pki by Pki−1:

∆c↓ =

∫ ∞

−∞

1

σ

ki∑
i=1

ϕ(y+µi

σ)

Φ(y+µi

σ)
·

n∏
i=1

Φ(
y + µi

σ
)dy −

∫ ∞

−∞

1

σ

ki−1∑
i=1

ϕ(y+µi

σ)

Φ(y+µi

σ)
·

n∏
i=1

Φ(
y + µi

σ
)dy

=

∫ ∞

−∞

1

σ
·
ϕ(

y+µki
σ)

Φ(
y+µki

σ)
·

n∏
i=1

Φ(
y + µi

σ
)dy.

ζ is the coefficient that relates the increase in the number of training epochs to its corresponding
effect on confidence. Consider a working round that starts with k candidates. We have approxi-
mations at the end of the round for the converged loss ℓ(y,M∗

γi(x)) ∼ N (µi, σ
2) for i ∈ [k]. Here,

16

t denotes the epochs. Letting each candidate train one extra unit of resource results in lower
uncertainty, thus increasing the f score. First compute f(ξ, τ) at epoch t:

f(ξ, τ)t =

∫ ∞

−∞

1

σ
ϕ(

y + µ1

σ
) ·

k∏
i=2

Φ(
y + µi

σ
)dy. (11)

If each configuration is trained with one extra unit of resource (a total of t+ 1 epochs), model
uncertainty would be reduced. We use the same µi to approximate the converged validation loss for
t+ 1 epochs, and use σ −∆tσ as an approximation for model uncertainty. Here ∆tσ is the decrease
in model uncertainty that is determined through offline profiling with details in Section C. This
approximation leads us to f(ξ, τ) at epoch t+ 1 as

f(ξ, τ)t+1 =

∫ ∞

−∞

1

σ −∆tσ
ϕ(

y + µ1

σ −∆tσ
) ·

k∏
i=2

Φ(
y + µi

σ −∆tσ
)dy. (12)

Subtracting Equation 12 by Equation 11 gives us the result in Equation 6:

ζ = f(ξ, τ)t+1 − f(ξ, τ)t =

∫ ∞

−∞

1

σ −∆tσ
ϕ(

y + µ1

σ −∆tσ
) ·

k∏
i=2

Φ(
y + µi

σ −∆tσ
)dy

−
∫ ∞

−∞

1

σ
ϕ(

y + µ1

σ
) ·

k∏
i=2

Φ(
y + µi

σ
)dy.

B Proofs

In this section, we provide proofs for the theorems presented in Section 3.4. At the end of the proof,
we let f(t) = 1

t and obtained the results in Example 3.8 and Example 3.10.
The Lemma stated next will prove to be useful.

Lemma B.1. For i > 1, if min{t1, ti} > t, then we have a high probability that ℓi,ti > ℓ1,t1 with
respect to t if f(t) ∈ O(t−1/4).

Proof. In Section 3.4, we come to the conclusion that

Pr(ℓi,t > ℓ1,t) ≥ 1− (
4f(t)2

(νi − ν1)2
)2 = 1− (

2

νi − ν1
)4 · f(t)4 > 1−O

(
1

t

)
.

This shows that the event ℓi,t > ℓ1,t happens with high probability with respect to t.
Now consider a more general setting, where each ℓi has its own ti:

Pr(|ℓi,ti − νi| >
νi − ν1

2
) ≤ 4f(ti)

2

(νi − ν1)2
i = 1, · · · , n.

Comparing ℓi,ti and ℓ1,t1 for a particular i ∈ [n] gives us the following:

Pr(ℓi,ti > ℓ1,t1) = Pr((ℓi,ti − νi) + (ν1 − ℓ1,t1) + 2 · νi − ν1
2

> 0) ≥ 1− 4f(t1)
2

(νi − ν1)2
· 4f(ti)

2

(νi − ν1)2
. (13)

Since t1 > t and ti > t,

(13) > 1−O

(
1

t

)
.

17

B.1 Proof of Theorem 3.6

Proof. Let Si be the set of candidates the UQ scheme evaluates at the beginning of the i-th round.
We assume that the n infinitely long loss sequences [ℓi,t] with limits {νi}ni=1 satisfy Assumption 3.1
and 3.3.

We compute the probability that the algorithm includes the best candidate in the last round,
namely, 1 ∈ S⌊B

R
⌋, and the probability that the UQ scheme returns the best candidate in S⌊B

R
⌋.

Let rk be the round budget for each candidate in Sk. Rk =
∑k

j=0 rk. The probability that the
best candidate is among the final kept candidate set is

Pr(1 ∈ S⌊B
R
⌋) = 1−

r=⌊B
R
⌋∑

k=1

Pr(1 /∈ Sk, 1 ∈ Sk−1)

= 1−
r=⌊B

R
⌋−1∑

k=0

(Pr(1 ∈ Sk−1)− Pr(1 ∈ Sk, 1 ∈ Sk−1))

≥ 1−
r=⌊B

R
⌋−1∑

k=0

1− Pr
(∧

i∈Sk\{1}

ℓi,Rk
> ℓ1,Rk

) .

(14)

Since the probability that ℓ1,t is the smallest among all ℓk,t (k ∈ [n]) is greater than

n∏
i=2

Pr(ℓi,t > ℓ1,t) ≥
n∏

i=2

(1−
(4f(t)2

(νi − ν1)2

)2

),

we have

(14) ≥ 1−
⌊B
R
⌋−1∑

k=0

(1−
n∏

i=2

(1− (
4f(Rk)

2

(νi − ν1)2
)2))

= 1−
⌊B
R
⌋−1∑

k=0

(1−
n∏

i=2

(1− (
4f

(∑k
j=0

R
|Sj |

)2
(νi − ν1)2

)2))

≥ 1− ⌊B
R
⌋c.

Therefore, the probability that the scheme returns the best candidate is no less than

Pr(1 ∈ S⌊B
R
⌋) · Pr

(∧
i∈S⌊B

R
⌋

ℓi,R⌊B
R

⌋
> ℓ1,R⌊B

R
⌋

)
≥ (1− ⌊B

R
⌋c)(1− c).

(15)

That is to say, for a given confidence threshold c, there exists a T such that as long as
min{t1, t2, ..., tn} > T , then Pr(∧i=2,...,n(ℓi,ti > ℓ1,t1)) > 1− c. Recall that in the UQ scheme design,
the goal is to select an optimal hyperparameter configuration from n candidates, and each round is
allocated for R resources. This means that if choose R ≥ T · n, then the best candidate is returned
from the algorithm with probability P > (1− ⌊BR⌋c)(1− c).

18

B.2 Proof of Theorem 3.7

Proof. First we show that, given budget z = zob, round budget for round k satisfies

rk ≥
z

|Sk|⌈log2 n⌉
− 1

=
2

|Sk|
max

i=2,...,n
i
(
1 + γ−1(νi−ν1

2 , δ)
)
− 1

≥ 2

|Sk|
(⌊|Sk|/2⌋+ 1)

(
1 + γ−1(

ν⌊|Sk|/2⌋+1−ν1
2 , δ)

)
− 1

≥ γ−1(
ν⌊|Sk|/2⌋+1−ν1

2 , δ).

The last inequality is derived because ⌊|Sk|/2⌋ ≥ |Sk|/2− 1.
Let τi := γ−1(νi−ν1

2 , δ). We then show that, for a time t:

t ≥ τi ⇒ t ≥ γ−1(νi−ν1
2 , δ)

⇔ 1−
(4f(t)2

(νi − ν1)2

)2
≥ 1− δ

⇒ Pr(ℓi,t > ℓ1,t) ≥ 1− δ.

The second line follows by the definition of γ−1(ϵ, δ). Since rk ≥ τ⌊|Sk|/2⌋+1, we can compute the
following probability

Pr(1 ∈ Sk+1|1 ∈ Sk) = Pr
(∑

i∈Sk

1{ℓi,Rk
> ℓ1,Rk

} ≥ ⌊|Sk|/2⌋
)

≥ Pr(

|Sk|∑
i=⌊|Sk|/2⌋+1

1{ℓi,Rk
> ℓ1,Rk

} ≥ ⌊|Sk|/2⌋)

≥ (1− δ)⌊
|Sk|
2

⌋

where the first line follows by the definition of the early stopping algorithm (Successive Halving),
the second by τi being non-increasing. Namely, for all i > ⌊|Sk|/2⌋+ 1, we have τi ≤ τ⌈|Sk|/2⌉+1 and
consequently, Pr(ℓi,Rk

> ℓ1,Rk
) ≥ Pr(ℓ⌊|Sk|/2⌋,Rk

> ℓ1,Rk
) ≥ 1− δ.

Consequently, the probability that the UQ-oblivious approach returns the optimal candidate is

Pob ≥ Pr
(∧

i=0,...,⌈log2 n⌉−1

(1 ∈ Sk+1|1 ∈ Sk)
)

≥
⌈log2 n⌉−1∏

k=0

(1− δ)⌊
|Sk|
2

⌋

≥ 1− nδ.

We show in the next Corollary that, for c = n·δ
2 , the probability P obtained in Theorem 3.6 is

no less than 1− nδ.

Corollary B.2. For the threshold c in Theorem 3.6 and δ in Theorem 3.7, let c = n·δ
2 and

β−1(ϵ2, ϵ3, · · · , ϵn, c) = min{T :
n∏

i=2
(1− (f(T)

ϵi
)4) ≥ 1− c} . Then by Theorem 3.6 the UQ approach

returns the best candidate with probability over 1− nδ if B ≃ γ−1(ν2−ν1
2 , δ) · n.

19

Proof. Let T > 4
√
2 · γ−1(ν2−ν1

2 , δ), we have

n∏
i=2

(1− (
4f(T)2

(νi − ν1)2
)2) > (1− δ

2
)n ≥ 1− nδ

2
= 1− c.

This shows us that T > β−1(ν2−ν1
2 , ..., νn−ν1

2 , c). Consequently, according to Theorem 3.6, for
B = R > T · n, the UQ approach returns the best candidate with probability

(1− c)2 ≥ 1− 2c = 1− nδ.

The UQ-oblivious approach returns the optimal candidate with probability over 1−nδ if the budget
Bob > zob. But the UQ approach achieves the guarantee with budget B > 4

√
2 · γ−1(ν2−ν1

2 , δ) · n,
which can be empirically substantially smaller than the budget required in Theorem 3.7.

B.3 Proof of Theorem 3.9

Proof. Let Rk =
∑k

j=0 rk, namely, the total number of epochs allocated for each candidate in Sk.

We can guarantee that, for the UQ-oblivious approach, the output candidate îD satisfies

Pr(νîD − ν1 > ϵ) = Pr
(

min
i∈S⌈log2(n)⌉

νi − ν1 > ϵ
)

= Pr
(⌈log2(n)⌉−1∑

k=0

min
i∈Sk+1

νi −min
i∈Sk

νi > ϵ
)

≤ Pr
(⌈log2(n)⌉−1∑

k=0

2|νi − ℓi,Rk
|+ min

i∈Sk+1

ℓi,Rk
−min

i∈Sk

ℓi,Rk
> ϵ

)

= Pr
(⌈log2(n)⌉−1∑

k=0

2|νi − ℓi,Rk
| > ϵ

)

≤
2⌈log2(n)⌉f

(
⌊ B
n⌈log2(n)⌉

⌋
)2

ϵ
=

2n2⌈log2(n)⌉3

B2ϵ
.

by inspecting how the approach eliminates candidates and plugging in an upper bound for Pr(2|νi−
ℓi,Rk
| > ϵ) for all k in the last inequality. We can calculate the bound for the UQ-guided method in

20

a similar way:

Pr(νî − ν1 > ϵ) = Pr
(

min
i∈S⌊B

R
⌋

νi − ν1 > ϵ
)

= Pr
(⌊B

R
⌋−1∑

k=0

min
i∈Sk+1

νi −min
i∈Sk

νi > ϵ
)

≤ Pr
(⌊B

R
⌋−1∑

k=0

min
i∈Sk+1

(νi − ℓi,Rk+1
+ ℓi,Rk+1

)−min
i∈Sk

(νi − ℓi,Rk
+ ℓi,Rk

) > ϵ
)

≤ Pr
(⌊B

R
⌋−1∑

k=0

2|νi − ℓi,Rk
|+ min

i∈Sk+1

ℓi,Rk+1
−min

i∈Sk

ℓi,Rk
> ϵ

)

≤ Pr
(⌊B

R
⌋−1∑

k=0

2|νi − ℓi,Rk
|+ (min

i∈Sk+1

ℓi,Rk+1
− min

i∈Sk+1

ℓi,Rk
) + (min

i∈Sk+1

ℓi,Rk
−min

i∈Sk

ℓi,Rk
) > ϵ

)

≤ Pr
(⌊B

R
⌋−1∑

k=0

2|νi − ℓi,Rk
| > ϵ

)
≤

2⌊BR⌋f(R)2

ϵ
=

2⌊BR⌋
R2ϵ

.

The smaller upperbound of the UQ-guided approach than that of the UQ-oblivious
counterpart in Theorem 3.9.

A simple calculation reveals that

2⌊BR⌋
R2ϵ

<
2n2⌈log2(n)⌉3

B2ϵ

by diving the first term by the second:

2⌊BR⌋
R2ϵ

/2n2⌈log2(n)⌉3

B2ϵ
= ⌊B

R
⌋B

2

R2
· 1

n⌈log2(n)⌉3
< 1.

The last inequality holds because both B
R and n⌈log2(n)⌉ are the number of rounds and are

considered the same.

C Computational Details

Approximating ∆σ for Candidates. In our probabilistic model, ℓ(y,M∗
γc(X)) is approximated

by a Gaussian distribution parameterized by µc and σc. To compute the uncertainty reduction that
would result from training each candidate for one additional epoch, we consider the uncertainty as
a time series in the form of (σc(t))

T
t=1. Following Equation 1, we examine the uncertainty trendings

in NAS-BENCH-201 [9]. Figure 5 shows a certain pattern of uncertainty behavior as t increases,
both individually and aggregately, for different candidates.

We then model (σc(t))
T
t=1 according to different phases in the following way:

1. For t ∈ (0, 6), σ(t) increases. We use linear regression to fit the σ(t), namely, σ(t) = a1t+ b1.

21

0

0.01

0.02

0.03

0.04

0.05

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1 x

σ

(a) Uncertainty scope for different candidates.

0

0.01

0.02

0.03

0.04

0.05

1 11 21 31 41 51 61 71 81 91 10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1 x

Average σ

(b) Average uncertainty for different candi-
dates.

Figure 5: Landscape of the uncertainty scope for different epochs.

2. For t ∈ (6, 50), σ(t) drops quickly. We use the exponential model to fit σ(t), namely,
σ(t) = a1e

−b1x.

3. For t ∈ (50, 180), σ(t) increases steadily. We use another linear regression to fit σ(t).

4. For t ∈ (180, 200), σ(t) reverses the trend and decreases again. We use linear regression.

For each launch, we sample a few candidates and train each one fully till convergence. We then
use the abovementioned way to model the uncertainty behavior for the whole dataset. This makes
the approximation for ∆tσ = σ(t)− σ(t+ 1) effective and efficient.

An alternative way to approximate ∆tσ is to use

1

δ

∑
b∈Dt−1

(ℓ(y,M b
γc(X))− EDt−1 [ℓ(y,M

b
γc(X))])2 − 1

δ

∑
b∈Dt

(ℓ(y,M b
γc(X))− EDt [ℓ(y,M

b
γc(X))])2.

Building Probabilistic Model. At any given time t, the approximation of converged validation
loss follows the Gaussian distribution: ℓ(y,M∗

γc(X)) ∼ N (µc, σ
2
c). In our experiments, δ = 10, µc is

the current accuracy ℓ(y,M t
γc(X)), and σc is the unbiased estimation of the standard deviation of

ℓ(y,M i
γc(X))ti=t−10.

22

Confidence

Candidates

Threshold τ

k1k3 k2

round 1r2r3r4

(a) Confidence curves in different rounds.

Threshold τ

Confidence

Candidateski

ri for round i

ri+1

ki’

∆𝑐

(b) Analysis of the choice of τ .

Figure 6: Illustration for confidence curve and discarding mechanisms. After obtaining the confidence
curve, a threshold τ determines the number of candidates we will keep (k1 for round 1, k2 for round
2, and k3 for round 3). We choose the smallest k such that Pk ≥ τ for each round, proceed training
with the best performed k candidates, and discard the rest configurations.

D Benchmark and Dataset Information

Table 2 consolidates information on the datasets, hyperparameters, fidelity, and dataset sizes for
Nas-Bench-201 and LCBench. The datasets for LCBench are drawn from various sources openml,
open.

Table 2: Benchmark and Dataset information.

Tasks Datasets Hyperparameters Fidelity # Training set # Validation set # Test set

N
as
-B

en
ch
-2
01 CIFAR-10 1←− 0

2←− {0, 1}∗

3←− {0, 1, 2}∗

Range: {none, skip connect, nor conv 1x1,

nor conv 3x3, avg pool 3x3}

1-200

25K images 25K images 10K images

CIFAR-100 50K images 5K images 5K images

ImageNet-16-120 151.7K images 3K images 3K images

L
C
B
en

ch

Fashion-MNIST Batch size: [16, 512], log-scale

Learning rate: [1e−4, 1e−1], log-scale

Momentum: [0.1, 0.99]

Weight decay: [1e−5, 1e−1]

Number of layers: [1, 5]

Maximum number of units per layer: [64, 1024], log-scale

Dropout: [0.0, 1.0]

1-50

“Whenever possible, we use the given
test split with a 33% test split and ad-
ditionally use fixed 33% of the training
data as validation split. In case there is
no such OpenML task with a 33% split
available for a dataset, we create a 33%
test split and fix it across the configura-
tions.” zimmer2021auto

adult

higgs

jasmine

vehicle

volkert

E More Results on Experiments

We include more results on NAS-Bench-201 and LCBench. For example, Figure 11 and 12 show
the results on LCBench, where we proved the consistently better performance of the UQ-guided
approaches than the UQ-oblivious methods on Fashion-MNIST. Figure 11 shows the results of the
validation loss while Figure 12 demonstrates the results of regret. UQ-guided approaches obtained
an average of over 50% improvement over the UQ-oblivious counterparts.

23

88

88.5

89

89.5

90

1e-2 1e-1 1e0
Fraction of Budgets

SH

SH+

88

88.5

89

89.5

90

1e-2 1e-1 1e0
Fraction of Budget

HB

HB+

88

88.5

89

89.5

90

1e-2 1e-1 1e0
Fraction of Budget

SS

SS +

80

82

84

86

88

90

1e-2 1e-1 1e0
Fraction of Budget

BOHB

BOHB+

Figure 7: Results of test accuracy when optimizing on CIFAR-10.

0

0.5

1

1.5

2

1e-2 1e-1 1e0
Fraction of Budget

HB

HB+

0

0.5

1

1.5

2

1e-2 1e-1 1e0
Fraction of Budget

SH

SH+

0

2

4

6

8

1e-2 1e-1 1e0
Fraction of Budget

BOHB

BOHB+

0

0.5

1

1.5

2

1e-2 1e-1 1e0
Fraction of Budget

SS

SS+

Figure 8: Results of regret (%) when optimizing on CIFAR-10.

24

64

65

66

67

68

69

70

1e-2 1e-1 1e0
Fraction of Budgets

SH

SH+

64

65

66

67

68

69

70

1e-2 1e-1 1e0
Fraction of Budget

HB

HB+

60

62

64

66

68

70

1e-2 1e-1 1e0
Fraction of Budget

BOHB

BOHB+

60

62

64

66

68

70

1e-2 1e-1 1e0
Fraction of Budget

SS

SS +

Figure 9: Results of test accuracy when optimizing on CIFAR-100.

0

1

2

3

4

5

6

1e-2 1e-1 1e0
Fraction of Budget

SH

SH+

0

1

2

3

4

5

6

1e-2 1e-1 1e0
Fraction of Budget

HB

HB+

0
1
2
3
4
5
6
7
8

1e-2 1e-1 1e0
Fraction of Budget

BOHB

BOHB+

0
1
2
3
4
5
6
7
8

1e-2 1e-1 1e0
Fraction of Budget

SS

SS+

Figure 10: Results of test accuracy when optimizing on CIFAR-100.

25

12

13

14

15

16

0.3 0.6 0.9
Fraction of Budget

SS
SS+

12

13

14

15

16

0.3 0.6 0.9
Fraction of Budget

HB
HB+

12

13

14

15

16

0.3 0.6 0.9
Fraction of Budgets

SH
SH+

12

14

16

18

0.3 0.6 0.9
Fraction of Budget

BOHB
BOHB+

Figure 11: Results of validation error for optimizing on Fashion-MNIST.

0

2

4

0.3 0.6 0.9
Fraction of Budget

SS
SS+

0

2

4

0.3 0.6 0.9
Fraction of Budget

HB
HB+

0

2

4

0.3 0.6 0.9
Fraction of Budget

BOHB
BOHB+

0

2

4

0.3 0.6 0.9
Fraction of Budget

SH
SH+

Figure 12: Results of regret (%) on test accuracy for optimizing on Fashion-MNIST.

26

	Introduction
	Background and Related Work
	Uncertainty Quantification (UQ)-Guided Hyperparameter Optimization
	Different Forms of Uncertainty
	Quantifying Model Uncertainty
	UQ-Guided Scheme
	Confidence Curve Derived from Uncertainty Quantification
	Discarding Mechanism

	Theoretical Analysis
	UQ-Guided HPO Family

	Experiments
	Experimental Setup
	Experimental Results

	Conclusion
	Method Details
	Formulation of Confidence Curve
	Computing

	Proofs
	Proof of Theorem 3.6
	Proof of Theorem 3.7
	Proof of Theorem 3.9

	Computational Details
	Benchmark and Dataset Information
	 More Results on Experiments

