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Abstract—We report that human walk patterns closely follow
Levy walk patterns commonly observed in animals such as mon-
keys, birds and jackals. Our study is based on about one thousand
hours of GPS traces involving 44 volunteers in various outdoor
settings including two different college campuses, a metropolitan
area, a theme park and a state fair. Important implications of
this finding include that many statistical features of human walks
are scale-invariant and bursty, and do not conform to the central
limit theorem. None of commonly used mobility models for mobile
networks captures these properties. Levy walks are more diffusive
than Brownian motion (BM) while less diffusive than random way
point (RWP). Based on these findings, we construct a simple Levy
walk mobility model that emulates human walk patterns expected
in outdoor mobile network environments. We demonstrate that
the Levy walk model can be used to recreate the statistical
patterns commonly observed in previous mobility studies such as
the power-law distributions of human inter-contact times and that
the simulation performance of mobile network routing protocols
under the Levy walk model exhibits distinctive performance
features unexplored under existing mobility models.

I. INTRODUCTION

Do humans walk like monkeys? It is not about upright
walks with two hind legs that are similar, but about the
statistical patterns of their mobility. Why are they important?
Although they may answer important biological and social
scientific questions about human activities, our purpose of
studying human mobility patterns is their use in simulating
mobile networks formed by wireless devices carried by people.
Mobile networks are inherently cooperative as mobile devices
rely on nearby nodes to maintain network connectivity or
relay messages. Therefore, the underlying mobility patterns
of mobiles strongly influence the performance of mobile
network protocols. As wireless devices are often attached to
humans, understanding their mobility patterns leads to more
realistic network simulation and more accurate understanding
of the performance of the protocols therein. Commonly used
mobility models are random way point (RWP) or random
walk models such as i.i.d. mobility, Brownian motion, and
Markovian mobility. These models are simple enough to be
theoretically tractable and at the same time, to be emulated in
network simulators in a scalable manner. However, there has
been little statistical validation of such models for the accuracy
in describing human mobility.

Now, back to the first question. Does human mobility
have similar statistical patterns as monkeys? This paper pro-
vides statistical evidence that humans in outdoor settings pro-
duce similar mobility patterns as spider monkey, albatrosses
(seabirds), jackals or even highly charged electron particles.
What all these have in common is that their mobility patterns

are shown to resemble what physicists have long called Levy
Walks. The term Levy walks was first coined by Schlesinger
et al. [1] to explain atypical particle diffusion not governed by
Brownian motion (BM). BM characterizes the diffusion of tiny
particles with a mean free path (or flight) and a mean pause
time between flights. A flight is defined to be a longest straight
line trip from one location to another that a particle makes
without a directional change or pause. Einstein [2] first showed
that the probability that such a particle is at a distance r from
the initial position after time t has a Gaussian distribution and
thus is proportional to

√
t, i.e., the width or standard deviation

of a Gaussian distribution. The mean squared displacement
(MSD), which is defined to be the variance of the probability
distribution, is proportional to t. It is a manifestation of the
central limit theorem (CLT) as the sum of flight lengths follows
a Gaussian distribution. (This work by Einstein later led to the
discovery of atoms and Avogadro’s numbers.)

However, when flight lengths do not have a characteristic
scale - in other words, their second moment is not finite, the
particles are making Levy walks and may undergo atypical
diffusion. This implies that the mean squared displacement of
particles making Levy walks is proportional to tγ where γ > 1
– thus CLT does not hold. Intuitively, Levy walks consist of
many short flights and exceptionally long flights that eliminate
the effect of such short flights. Sample trajectories of an object
undergoing BM, Levy walks and RWP are presented in Fig.
1. We can clearly see the differences in the mobility patterns.

Levy walks are also found in animal foraging patterns.
Viswanathan et al. [3] show that the foraging patterns of alba-
trosses can be described by Levy walks. The similar patterns
are also discovered in jackals [4] and spider monkeys [5]. The
authors conjecture that the Levy walk patterns of these animals
are caused by the power-law distribution of prey and food
sources. It is also known that Levy walks are an optimal way
to find randomly dispersed objects [6]. Thus, these animals
perform Levy walks for survival!

In this paper, we statistically establish that the mobility
patterns of humans strongly resemble (truncated) Levy walks.
We use mobility track logs obtained from 44 participants
carrying GPS receivers from September 2006 to January
2007. The sample settings where traces are obtained are two
university campuses (one in Asia and one in the US), one
metropolitan area (New York city), one State fair and one
theme park (Disney World). The participants walk most of
times in these locations and may also occasionally travel by
bus, trolley, cars, or subway trains. These settings are selected
because they are conducive to collecting GPS readings as they
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Fig. 1. Sample trajectories of (a) Brownian motion, (b) Levy walk and (c)
Random way point

are outdoor. GPS receivers require line of sights with satellites
to obtain position information.

Our analysis of the obtained traces reveals that the mobility
patterns of the participants in these outdoor settings closely
resemble those of Levy walks; their flight distributions and
pause time distributions closely follow (truncated) power-law
distributions. Their mean squared displacement shows the
strong influence of these mobility patterns. We also confirm
several other scale-free features of human mobility from these
traces. To the best of our knowledge, this is the first study that
proves the Levy walk nature of human walk mobility through
real walk trace data, and none of the existing mobility models
used for mobile network simulations captures the Levy walk
characteristics of human walk mobility. Based on the statistical
patterns obtained from the traces, we construct a simple Levy-
walk model for use in mobile network simulations and show
that the model can be used to create the power law inter-
contact time distributions of human walks observed in [7].
We apply the Levy walk models to mobile ad hoc network
(MANET) and delay-tolerant network (DTN) simulation and
study the performance impact of Levy walks on routing perfor-
mance in MANETs and DTNs. Our study reveals distinctive
routing performance features manifested by Levy walks.

This paper is organized as follows. Section 2 provides
preliminary background on Levy walks, Section 3 discusses
our data collection and analysis techniques, Section 4 presents
our main result – the statistical analysis of mobility traces to
establish that human walks exhibit Levy walk characteristics,
Section 5 presents a simple Levy walk model that can be used
for mobile network simulations, and Section 6 contains our
study on routing performance using the Levy walk model.
Sections 7 and 8 contain related work and conclusion.

II. PRELIMINARY

Consider a 2-dimensional random walk defined by a se-
quence of steps that a walker makes. A step is represented by
a tuple S = (l, θ, ∆tf , ∆tp) in which a walker makes a flight
followed by a pause: θ is the direction of that flight, l > 0
is the length of the flight, ∆tf > 0 is the time duration of
the flight or flight time, ∆tp ≥ 0 is the time duration of the
pause or pause time. At the beginning of each step, a walker
chooses a direction randomly from a uniform distribution of
angle within [0, 360], a finite flight time randomly based on
some distribution, and its flight length and pause time from
probability distributions p(l) and ψ(∆tp), respectively. During
a pause, a walker does not move from the location where the

current flight ends. The time elapsed during a step is called a
step time ∆ts, which is the summation of its flight time and
pause time. The walker starts its first step at the origin at time
t = 0.

After some time t, the distance dis(t) of the random walker
from the origin follows a Gaussian distribution with its width
proportional to

√
t if the variance of flight lengths and the

mean of step times are both finite. To see this, consider a one
dimensional random walk where p(l) has a finite variance σ2

and the step time distribution has a finite mean τ . The position
x of a random walker after N steps can be described as a total
sum of each flight. According to CLT, the scaled position y
after making N steps, x/

√
N , obtains a Gaussian probability

density function, fY (y,N), in the limit N →∞.

lim
N→∞

fY (y, N) = fY (y) =
1√

2πσ2
e−y2/2σ2

(1)

From Eq. 1, we know that the position x of the random walker
also follows a scaled Gaussian distribution. Translating N into
t using N ≈ t/τ , we can see without much manipulation that
the probability density function fX(x, t) of position x after
time t has also a Gaussian form known as a diffusion equation:

fX(x, t) ∼ 1√
4πDt

e−
x2
4Dt (2)

where D = σ2/2τ , known as a diffusion constant. Since the
walker starts its walk from the origin, dis(t) = x. This type
of diffusion is called normal diffusion.

Eq. 2, indicates that the MSD of normal diffusion, i.e., the
variance of dis(t), grows linearly with time t. However, CLT
is no longer valid if the variance of flight lengths is infinite
[8], [9]. One distribution for which the variance diverges is
an inverse power-law distribution: p(l) ∼ 1

l1+α , 0 < α < 2.
The positions of the random walker with such a distribution
of flight lengths converge to another distribution, called Levy
stable distribution with a coefficient α [9]. Such random walks
are named as Levy walks [1]. The scale-free distribution of
flight lengths leads to super-diffusion where MSD is propor-
tional to tγ , γ > 1.

Levy walks are often accompanied by power law pause
times. Such a random walk is called Levy walk with trapping
where the motion can be either super-diffusive (i.e., γ > 1)
or sub-diffusive (i.e., γ < 1), depending on the distributions
of flight lengths and pause times. We denote a power law
distribution of pause times by ψ(∆tp) ∼ 1/∆tp

1+β .

III. MEASUREMENT METHODOLOGY

A. Data collection

Five sites are chosen for collecting human mobility traces.
These are two university campuses (Campus I in the US and
Campus II in Asia), New York City, Disney World, and one
state fair (in the US). The total number of traces from these
sites is over 150 daily traces. Garmin GPS 60CSx handheld
receivers are used for data collection which are WAAS (Wide
Area Augmentation System) capable with a position accuracy
of better than three meters 95 percent of the time, in North



Fig. 2. Sample GPS traces from the Disney World scenario.

Site (# of # of Duration (hour) Radius (km)
participants) traces min avg max min avg max
Campus I (20) 35 1.71 10.19 21.69 0.46 1.82 5.84
Campus II (4) 46 4.21 10.62 22.37 0.43 1.26 4.16
NYC (8) 30 1.23 9.34 22.66 0.37 4.18 6.98
DW (4) 15 4.43 8.68 13.20 0.39 1.67 4.43
SF (8) 8 1.81 2.57 3.12 0.22 0.28 0.34

TABLE I
STATISTICS OF COLLECTED MOBILITY TRACES FROM FIVE SITES.

America [10]. Occasionally, track information has disconti-
nuity mainly when bearers move indoor where GPS signals
cannot be received. The GPS receivers take reading of their
current positions at every 10 seconds and record them into a
daily track log. The summary of daily traces is shown in Table
I. The radius of each trace is a half of the maximum distance
that a participant travels during a day. Fig. 2 shows sample
GPS traces from the Disney World scenario.

The participants in Campus I were randomly selected stu-
dents who took a course in the computer science department.
Every week, 2 or 3 randomly chosen students carried the GPS
receivers for their daily regular activities. The Campus II traces
are taken by 4 students who live in a campus dormitory. Since
the participants in Campuses I and II occasionally moved
outside their campuses, we use only those logs recorded within
a radius of 10 km from the center of each campus. The New
York City traces were obtained from 8 volunteers living in
Manhattan or its vicinity. Most of the participants have offices
in Manhattan. Their track logs contain relatively long distance
travels because of their long commuting paths. Their means of
travel include subway trains, buses and mostly walking. The
State fair track logs were collected from 8 volunteers who
visited a local state fair that includes many street arcades, small
street food stands and showcases. The event was very popular
and attended by more than one thousand people daily for two
weeks. The site is completely outdoor and is smallest among
all the sites. Each participant in the State fair scenario spent
less than three hours in the site. The Disney World traces were
obtained from four volunteers who spent their thanksgiving
or Christmas holidays in Disney World, Florida, USA. For
our study, we use only the track logs from the inside of the
theme parks. The participants mainly walked in the parks and
occasionally rode trolleys.

B. Trace analysis

From the traces, we extract the following data: flight length,
pause time, direction, and velocity. To get these data from the
traces, we map the traces into a two dimensional area (note
that the GPS receivers produce three-dimensional positions),
and to account for GPS errors, we clean the data as follows.
We recompute a position at every 30 seconds by averaging
three samples over that 30 second period (note GPS samples
are taken at every 10 seconds). All the position information
discussed below is based on the 30-second average positions.

As participants may move outside a line of sight from
satellites or run out of battery, daily traces may contain
discontinuities in time. For instance, if a participant disappears
at time t (in seconds) at a position p from a trace and reappears
at time t+∆t at another position p′, we use a similar method
used in [11] to remove the discontinuity. If the next position
recorded after the discontinuity is within a radius of 20 meters
and the time to the next position is within a day boundary, then
we assume that the participant walks to the next position from
position p at a walking speed of 1 m/s from time t + ∆t− k
(k is the distance between p and p′ in meters) just before he
shows up again at position p′ in the trace and the remaining
time (∆t− k) is recorded as a pause at the location where he
disappeared. Otherwise, it is assumed that the trace has ended
at time t and a new trace starts at time t + ∆t.

We consider that a participant has a pause if the distance that
he has moved during a 30 second period is less than r meters.
To extract flights in a trace of one participant, we use three
different methods, namely rectangular, angle and pause-based
models. In the rectangular model, given two sampled positions
xs and xe taken at times t and t + ∆t (∆t > 0) in the trace,
we define the straight line between xs and xe to be a flight if
and only if the following conditions are met. (a) the distance
between any two consecutively sampled positions between xs

and xe is larger than r meters (i.e., no pause during a flight),
(b) when we draw a straight line from xs to xe, the sampled
positions between these two end points are at a distance less
than w meters from the line. The distance between the line
and a position is the length of a perpendicular line from
that position to the line, (c) for the next sampled position
x′e after xe, positions and the straight line between xs and
x′e does not satisfy conditions (a) and (b). An example of the
rectangular model is shown in Fig. 3. In that figure, the straight
line movement between positions sampled at times t(1) and
t(4) is regarded as one single flight between the two positions
because all the sampled positions between them are inside of
the rectangle formed by the two end points. In this example,
the flight time is 90 seconds because each sample is taken at
every 30 seconds. By controlling w, we can obtain very “tight”
flight information. Both r and w are model parameters.

The angle model allows more flexibility in defining flights.
In the rectangular model, a trip can be broken into small flights
even though consecutive flights have similar directions. This
implies even a small curvature on the road may cause multiple
short flights. To remedy this, the angle model merges multiple
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Fig. 3. The rectangular model used to extract flight information from traces.

successive flights acquired from the rectangular model into a
single long flight if the following two conditions are satisfied:
(a) no pause occurs between consecutive flights and (b)
the relative angle (θ as shown in Fig. 3) between any two
consecutive flights is less than aθ degree. A merged flight is
considered to be a straight line from the starting position of
the first flight to the ending position of the last flight and its
flight length is the length of that line. aθ is a model parameter.

The pause-based model can be viewed as an extreme case
of the angle model. The pause-based model merges all the
successive flights from the rectangular model into a single
flight if there is no pause between the flights. A merged flight
is defined in the same way as in the angle model. This model
produces significantly different trajectories from the actual
GPS trajectories, due to the abstraction. However, it represents
more faithfully human intentions to travel from one position
to another without much deviation caused by geographical
features such as roads, buildings and traffic.

The rectangular and pause-based models can be viewed as
special cases of the angle model with aθ = 0 and aθ = 360,
respectively. Fig. 4 presents sample traces produced by the
above three flight models. The trajectories become more
simplified as the flight model changes from the rectangular
model to the pause-based model.

IV. HUMAN MOBILITY

In this section, we statistically establish that human walks
resemble Levy walks. Below, we first examine the distributions
of flight lengths and pause times, and their impact on the mean
squared displacement and show that these features exhibit
scale-free characteristics.

A. Flight length distribution

A power-law distribution of flight lengths is a hallmark of
Levy walks. In this section, we study the distributions of flight
lengths from our traces to verify that they follow a power-law
distribution. In generating its distribution for each scenario,
flight length samples from all the traces of the same site,
regardless of their participants, are aggregated together and
used in the same distribution. If we can accept that every
participant in the same site has the same statistical mobility
tendency, this “aggregation” is reasonable because every trace
obtained from the same site is subject to the same or similar
geographical constraints (i.e., roads, obstacles, traffic, and
buildings). The same technique is used in other studies of
Levy walks (e.g., [5]).

Fig. 5 shows the log-log distribution plots of flight lengths
sampled according to the three different flight models (r =
w = 5, and aθ = 30) from the KAIST traces. Fig. 6 shows
the same for the other scenarios under the angle model with
aθ = 30. We perform line fitting on all the distributions using
least squares matching and the figure shows their slopes. To
see the effect of flight model parameters on the distribution
patterns, we vary the values of r, w and aθ from 2.5 meters
to 10 meters and from 15 degrees to 90 degrees, respectively.
We fit lines on the resulting log-log plots of flight length
distributions over two ranges: (a) from the median to 99.9%
quantile and (b) from the median to 99.99% quantile. Table II
presents the average slope of the lines and their standard
deviation of the fitted lines. All the scenarios have power law
slopes as their slopes are larger than -3 (so α < 2). With
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Fig. 4. Traces from Campus I (a)-(c), Campus II (d)-(f), New York City (g)-
(i), Disney World (j)-(l) and State fair (m)-(o). The first column represents
the rectangular model with r = w = 5, the second column the angle model
with aθ = 30, and the third column the pause-based model.
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Fig. 5. The flight length distribution of KAIST in a log-log scale with
logarithmic bin sizes. (a) rectangular model (r = w = 5), (b) angle model
(aθ = 30) and (c) pause-based model.

Rectangular Angle Pause-based
NCSU -1.81 (0.19) -1.84 (0.05) -1.59 (0.08)
KAIST -2.31 (0.13) -2.10 (0.10) -1.67 (0.09)
NYC -1.75 (0.10) -1.66 (0.06) -1.35 (0.09)

Disney World -2.31 (0.07) -2.15 (0.10) -1.82 (0.06)
State fair -2.40 (0.34) -1.93 (0.21) -1.58 (0.27)

TABLE II
THE AVERAGE SLOPE OF THE LINE (WITH STANDARD DEVIATION) FITTED

TO THE LOG-LOG PDF OF FLIGHT LENGTHS OBTAINED BY VARYING
FLIGHT PARAMETERS: r AND w FROM 2.5 METERS TO 10 METERS AND aθ

FROM 15 DEGREES TO 90 DEGREES. NOTE THAT α IS ONE LESS THAN THE
ABSOLUTE VALUE OF THE SLOPE.

exception of State fair, all distributions have a heavy tail up
to a few kilometers. Furthermore, varying the flight models
does not alter significantly the power-law tendency of these
distributions. With State fair, although the slopes indicate a
power-law tendency, the distributions show a sign of excessive
truncations because of the small area of the site and also heavy
people traffic in the area. We discuss this more later.

We find that the slope of the fitted line also decreases as
the flight definition changes from the rectangular model to the
pause-based model, indicating the heaviest tails for the pause-
based model. This is a natural consequence of truncations
due to geographical constraints. As the rectangular model is
most sensitive to changes in moving directions, its flights
contain a smaller number of long flights – in most cases, the
truncation occurs around a few hundred meters to 1 km. On
the other hand, the pause-based model is least affected by
these constraints since any directional changes without pauses
are considered as part of a single flight. Therefore, when
truncations have less impact on flight lengths, the mobility of
our participants has a stronger power-law tendency. It implies
that human intentions and activities for mobility, independent
of geographical constraints, are still scale-free. This point is
important for mobility simulation since it is human inten-
tions, not geographical obstacles, that have likely caused the
power-law tendency. Thus although geographical constraints
may vary in different scenarios, this power-law tendency is
invariant. For network simulations involving human-assisted
mobile networks, while human navigation around obstacles
and road shapes is relatively easy to program, the power-law
tendency of human intentions must be built in the mobility
generation model to accurately depict human walk patterns.

To further confirm the power-law tendency of the measured
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Fig. 6. The flight length distributions of human walks in a log-log scale
with logarithmic bin sizes, using the angle model (aθ = 30).
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Fig. 7. The CCDF of flight lengths. Various known distributions are fitted
to the measured data distribution using maximum likelihood estimation.

flight length distributions, we use Maximum Likelihood Esti-
mation (MLE) to fit three known distributions, exponential,
log-normal, and truncated Pareto distributions [12] to the
CCDF (complementary cumulative density function) of the
measured flight lengths. Fig. 7 shows the result of MLE
according to the angle model. The MLE of the truncated Pareto
is performed over the x-axis range between 50 meter and the
99.9% quantile of each distribution to isolate only the tail
behavior. We observe that truncated Pareto has the best fit
among the three distributions in all cases. Table II shows that
the power-law slopes from the MLE of truncated Pareto are
within the error ranges of those obtained directly from their
PDFs. (Note that the slopes of CCDF and PDF naturally differ
by one).
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Fig. 8. The CCDF of flight lengths from the State fare traces. We use the
angle model with aθ = 30 in (a) and the pause-based model in (b).
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Fig. 9. The CCDF of flight lengths obtained from Levy walk simulations in
two squares: one with width 200 meters and the other with 2 km. The Levy
walk in the smaller area appears like Brownian motion.

The flight length distribution of State fair in Fig.8 appears
close even to a short-tailed distribution such as exponential or
lognormal distributions We conjecture the followings for this.
The State fair traces are obtained from a highly confined area
of less than 350 meter radius (it is smallest among the five
sites). Thus, it is subject to more truncations. Furthermore,
as the area is highly crowded, people have to make frequent
changes of direction during their walks. These factors induce
short flights and discourage long flights. Even in the pause-
based model (Fig. 8(b)), truncated Pareto appears to have only
slightly better fitting than the other distributions. To verify that
Levy walks may appear like BM in a small confined area of
square, we simulate two instances of Levy walks, one with
width 200 meters and the other with 2 km. Fig. 9 shows
that the Levy walk in the small area has the same truncation
problem as State fair and the flight length distribution can fit
well even to a short-tailed distribution. But when we increase
the area, the same Levy walk has a heavy tail.

B. Pause time distribution

The definition of Levy walks does not require a power-law
distribution of pause times. But we find from our traces that the
pause times of our walkers have scale-free characteristics. Fig.
10 shows the CCDF of the pause-time distributions extracted
from our traces. The flight definitions do not make impact
on the shape of pause time distributions because they differ
mostly in the number of zero pause time. Even when we vary
r in the pause time definition, we do not see much difference
in the pause time distribution patterns. In the plots, we use the
pause-based models. All the pause time distributions, except
that from State fair, show the best fit with truncated Pareto. In
most scenarios, truncations for pause times are less emphatic
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Fig. 10. The pause time CCDF of human walkers in various scenarios along
with the MLE of various known distributions.

than for flight lengths. However, State fair does not follow this
and its distribution shows a good fit even with an exponential
distribution. We conjecture that this is because of the setting
that consists of many small shopping and game arcades close
to each other. In this setting, participants tend to make many
short stops, and furthermore, big crowds and many showcases
in the setting prevented them from staying at one location for
a long time.

Power-law pause time distributions affect the MSD of walk-
ers as shown in [13], [14] – long trapping caused by heavy-
tail pause-time distributions makes the mobility less diffusive,
sometimes causing sub-diffusion. We have more details on this
next section.

C. Mean Squared Displacement

Scale-free mobility leads to abnormal diffusion where MSD
does not grow linearly with time. Measuring MSD from real
mobility traces is not straightforward because it is hard to
define the “origin” from the traces. A common technique to
handle this is to take average of MSD values measured by
varying the origin among all locations that the walker has been
at [15], [16]. Specifically, for each scenario, we compute the
following. Given each trace T from that scenario that consists
of an ordered sequence of location samples (t0, posT (t0))
where posT (t0) is the two dimensional position of the walker
at time t0 in trace T , the MSD(t) of that scenario in terms of
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Fig. 11. MSD from various settings.

time interval t is:

MSD(t) =

∑
T

∑
t0
|posT (t + t0)− posT (t0)|2

N
(3)

posT (t + t0)− posT (t0) is a vector subtraction and | · | is the
norm operator. N =

∑
T n(T ) where n(T ) is the total number

of eligible samples t0 from trace T . A sample taken at time
t0 is eligible if t0 + t < tTe where tTe is the time that the last
sample of trace T is taken. If t + t0 > tTe , the contribution of
t0 to MSD(t) is zero. We compute MSD(t) directly from the
GPS traces mapped to the two dimensional space.

Fig. 11 plots the MSD(t) for all settings. The shape of
MSD(t) in a log-log scale can be fitted by two lines using least
squares matching. From the plots, we can see that up to about
30 minutes, our participants make super-diffusion (γ > 1.2)
and after that, they make sub-diffusion (γ < 0.9). We can
explain this behavior as follows. As we increase time t, we
are increasing the scale of aggregation (note that posT (t+t0)−
posT (t0) is a result of summing all the displacement vectors
over the trace segment between the two positions). When the
scale is small, the effect of truncations does not appear so
the flight lengths follow a power-law distribution very well.
However, as we increase the scale, the truncation takes effect
and the flights become close to Gaussian. As we look at
flights from a far distance, the number of long flights visible

Rectangle Angle Pause-based
NCSU 1.32 (0.002) 1.39 (0.043) 1.58 (0.032)
KAIST 1.31 (0.002) 1.36 (0.037) 1.60 (0.040)
NYC 1.52 (0.001) 1.59 (0.041) 1.77 (0.019)

Disney World 1.24 (0.003) 1.31 (0.047) 1.61 (0.047)
State fair 1.10 (0.008) 1.15 (0.047) 1.34 (0.081)

TABLE III
THE AVERAGE VALUE OF γ (WITH STANDARD DEVIATION) OBTAINED BY

VARYING FLIGHT PARAMETERS (r AND w FROM 2.5 METERS TO 10
METERS, RESPECTIVELY, AND aθ FROM 15 TO 90).

at that distance decreases very fast because of truncations.
Thus, when t is small (in our case, less than 30 minutes), the
effect of heavy tailed distributions shows up and the mobility
appears super-diffusive. But when t is large, the flight lengths
follow Gaussian and the mobility is close to that of BM. This
point was observed in [16]. When Gaussian flight lengths are
combined with power-law pause times, it is shown in [13]
that the mobility appears sub-diffusive. Another significant
factor causing the sub-diffusion is the human tendency to
return to the original starting points. Humans are not truly
making random walks and they come home in the end of day
or come back to one point (like entrance and exit in Disney
world). This “homecoming” tendency slows down diffusion
excessively, resulting in sub-diffusion.

We also find that when flight lengths and pause times are
close to Gaussian, γ is close to one. This is observed in the
State fair traces.

[13], [14] show a theoretical relation between the shapes of
flight length and pause-time distributions (i.e., α and β) and
MSD (i.e., γ). With some manipulation of MLE fitting ranges,
we are able to verify the relation with our trace statistics.
However, it is not clear whether that result has any significance
because (a) it is hard to measure α and β accurately due to
various factors including truncations, the range of power-law
fitting, and differing flight length definitions, and (b) the theo-
retical relation assumes constant velocity which is not the case
with our traces. So we do not present the result here. Instead,
we verify further that for the period before the inflection point
all traces exhibit a super-diffusive characteristic, by measuring
MSD for that super-diffusive regime while varying the flight
definitions on our traces. Table III presents the average MSD
with standard deviation. In this table, we can also see a clear
tendency that human mobility is more super-diffusive as we
reduce the effect of geographical constraints: in the pause-
based model, γ tends to be higher.

D. Mean squared fluctuation of displacement

The scale free behaviors of animal mobility can also be
explained by long range correlations in the movement time
series data such as the number of times per hour a jackal
moves its position [4], and the number of intervals per hour
albatrosses are stationary [3]. This metric is called the root
mean squared fluctuation of displacement (RMS). RMS is
computed as follows. u(i) is defined to be the number of flights
per the i-th unit interval. The unit interval is arbitrary chosen to
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Fig. 12. RMS on the number of flights.

include some number of flights. The total displacement w(n)
is defined by a running sum w(n) =

∑n
i=1 u(i). Then, RMS

F (n) is calculated as follows.

F (n) =
√
〈(∆w(n))2〉 − 〈∆w(n)〉2 (4)

where ∆w(n) = w(n0+n)−w(n0), and 〈·〉 denotes averaging
over all possible n0’s.

F (n) is significant because only in the presence of long
range correlations with no characteristic time scales, F (n) ∼
nd, d 6= 1/2 holds [3]. Uncorrelated or short-term correlated
data gives d = 1/2 because of CLT. In this paper, we measure
u(i) as the number of flights per 10 minutes, and analyze
whether the long range correlation exists in the time series of
flight samples.

Fig. 12 shows the RMS on the number of flights (defined
based on the angle model with aθ = 30) from NCSU and NYC
traces. They show RMS coefficient d larger than 0.7 except
State fair. State fair does not show much long-term correlation
in the bursty nature of flights mainly due to truncations. These
results (except that of State fair) indicate that like albatrosses
and jackals, human mobility is very bursty and contains a
similar type of scale-freedom as those animals.
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Fig. 13. Direction distribution from human walk traces.

E. Directions, velocity and auto-correlation

We also study other statistics that are relevant to generating
human mobility models. Fig. 13-15 shows statistics on direc-
tion, velocity and correlation of flight lengths and directions
over time series. These statistics are not explicitly specified
in Levy walk models, but are useful in generating human
mobility tracks for simulation.

From our data, we find that while most scenarios produce
close to a uniform distribution of turning angles similar to
Disney world’s, the New York City traces have more bias in
particular directions mostly in 90 and 270 degrees. This pattern
is related to geographical artifacts since Manhattan tends to
induce more perpendicular directional changes.) Fig. 13 shows
the turning angle distributions from all traces produced based
on the angle model with aθ = 30.The angle distributions show
the effect of the shapes of geographical constraints. The speed
of human mobility has high correlation with flight lengths:
velocity increases as flight lengths increase. Constant velocity
is a common assumption in Levy walks. Fig. 14 depicts
the correlation between flight lengths and velocity. We also
measure auto-correlation of flight lengths and turning angles
over the time series of flight length and turning angle samples.
We find some auto-correlation of flight lengths over up to 10
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Fig. 14. Velocity distribution from human walk traces.

sample lags while almost no auto-correlation of turning angles
(in some cases, we find some negative correlation around one
or two lags). We did not find any significant difference of these
statistics over different scenarios. Fig. 15 shows representative
auto-covariance coefficients. The significant auto-correlation
of flight lengths indicate that when small flights are made,
there are non-zero preference for similar sizes near future.
This pattern cannot be described by random walks (including
Levy walks) as they produce flights randomly without any
dependency on the past history of flights.

V. LEVY-WALK MOBILITY MODEL

In this section, we discuss a simple Levy-walk mobility
model for simulating human carried mobile networks that
generates synthetic mobility tracks reflecting the statistical
patterns of human mobility that we find in our study. We use
the same random walk model discussed in the section 2. A
step is represented by four variables, flight length (l), direction
(θ), flight time (∆tf ), and pause time (∆tp). Our model picks
flight lengths and pause times randomly from their PDFs p(l)
and ψ(∆tp) which are Levy distributions with coefficients α
and β, respectively. The following defines a Levy distribution
with a scale factor c and exponent α in terms of a fourier
transformation,

fX(x) =
1
2π

∫ +∞

−∞
e−itx−|ct|αdt (5)

For α = 1, it reduces to a Cauchy distribution and for α = 2,
a Gaussian with σ =

√
2c. Asymptotically, for α < 2, fX(x)
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Fig. 15. Flight and direction autocorrelations over a time series

can be approximately by 1
|x|1+α . We allow c, α and β to be

simulation parameters.
Remaining parameters to complete the step definition are

flight directions and times. Fig. 16 shows the angle distribution
of directions, and velocity in terms of flight lengths, both
extracted from all the five scenarios. The angle distribution
is close to a uniform distribution which our model adopts.
Unlike flight directions, flight times and lengths are highly
correlated. From Fig. 16(b), we verify that the average velocity
is not constant, but increases as flight lengths increase because
long flights are usually generated when participants use a
transportation rather than walking. To reflect this tendency,
our model uses the following relation between flight times
and flight lengths: ∆tf = kl1−ρ, 0 ≤ ρ ≤ 1 where k and
ρ are constants. In one extreme, when ρ is 0, flight times
are proportional to flight lengths and it models the constant
velocity movement. In another extreme, when ρ is 1, flight
times are constant and flight velocity is linearly proportional
to flight lengths. In our measurement data, the relation is best
fitted with k = 18.72 and ρ = 0.79 when l < 500m, and with
k = 1.37 and ρ = 0.36 when l ≥ 500m.

Based on the above model, we generate synthetic Levy-
walk mobility tracks with truncation factors τl and τp for
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flight lengths and pause times respectively in a confined
area as follows. First, the initial location of a walker is
picked randomly from a uniform distribution in the area. At
every step, an instance of tuple (l, θ, ∆tf ,∆tp) is generated
randomly from their corresponding distributions. If l and ∆tp
are negative or l > τl or ∆tp > τp, then we discard the step
and regenerate another step. We repeat this process after the
step time ∆tf + ∆tp. Until the end of the simulation, we
generate the tuples repeatedly.

Using the above model, we can generate various types of
Levy walk models. When α and β are 2, then the model
becomes Brownian motion. Furthermore by adjusting these
parameters between 0 and 2, we can control the diffusive
nature of mobility. For instance, Fig. 17 shows the CDF of the
distance that a mobile is away from its initial position after the
first 10 minute travel. The data are extracted from MATLAB
simulation of the mobility models. The simulation area is set
to 2 km by 2 km. The Levy walk models are constructed by
setting the pause time factor (β) 0.5 but varying the flight
length factor (α) from 0.5 to 1.5. We set the truncation points
τl = 1 km and τp = 1000 seconds and set the scale factors
(c) of flight length and pause time distributions to 10 and 1,
respectively. The BM model uses the same simulation setup
and parameter setting as the Levy walk model but sets α = 2
and β = 2. We use a typical setup for RWP: (a) for each step, it
chooses a random destination uniformly within the simulation
area, thus implicitly selecting a flight length by choosing the
next destination and (b) the pause time is uniformly distributed
between 0 and 60 seconds. All models use the same velocity
model discussed above and 100 nodes are simulated at the
same time. The figure shows that RWP is most diffusive while

BM is least diffusive. The diffusion rates of the Levy walk
models are in-between these two extremes. As we reduce α,
the mobility becomes more diffusive. This disparate diffusion
rate of mobility in each model has distinctive effects on the
performance of routing in mobile networks. We will discuss
these effects in the ensuing sections.

A. Model verification

In this section, we verify whether LW can synthetically
generate the statistical features we have observed in our traces.
Figs. 19 (a) and (b) show statistical distributions of flights
and pause-time matching each scenario (we do not show the
matching of NCSU data as it is similar to that of KAIST).
To produce these traces, we set the simulation area by the
same size of each corresponding scenario. We then vary the
values of α and β to find synthetic traces that have similar
flight length and pause-time distributions of each scenario.
We do not add any geographical constraints other than the
simulation area (i.e., we set τl to infinity) and any flight
that goes outside the area is truncated to that boundary and
flights at the boundary are always set toward the inside of
the area. We set the truncation of pause time (τp) using the
same values we obtained from the traces. Our synthetic traces
show strikingly similar flight and pause time distributions seen
from our real traces. This show the versatility of our model.
Our model does not exactly mimic human walk patterns.
This can be seen from the MSD values measured from the
synthetic traces. Figs. 19 (c) and (d) show the MSD values
from the synthetic traces that matches the New York city
and the Disney World trace, respectively. While it shows a
similar pattern of super and then sub-diffusion, we cannot
match MSD values (while simultaneously matching flight and
pause time distributions). This is because human walks are
not truly random as our model is and contains various factors
that only humans control including context, home-coming
tendency, flight auto-correlation, etc. Furthermore, since we do
not model the geographical constraints, they can also make a
difference. These are weaknesses of our mobility model that
requires more refinements.

VI. ROUTING PERFORMANCE

In this section, we apply the mobility model developed
in Section V to the simulation of DTN and MANETs and
measure routing performance in these networks and compare
resulting routing patterns with those generated from existing
models such as RWP and BM.

A. Routing in Delay Tolerant Networks

In delay tolerant networks (DTN), mobile nodes may es-
tablish on and off connectivity with their neighbors and the
rest of the network. Therefore, store-and-forward is the main
paradigm of routing in such networks where communication
transpires only when two devices are in a radio range. We
call the time period that two nodes are in a radio range the
contact time of the two nodes. One of the most widely studied
routing algorithms in DTN is two-hop relay routing [17] where
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Fig. 18. Our Levy walk model can generate synthetic traces that match the
flight and pause time distributions seen from real human walk traces. However,
it also shows some discrepancy in the MSD values although its overall shape
is similar.

a source node sends a message (or a sequence of data packets)
to the first node it contacts and then that first node acts as a
relay and delivers the message when it contacts the destination
node of the message. Here the period between the time that
the message has originated and the time that the message is
delivered to the relay node is called first contact time (FCT)
and the period after that to the time the message is delivered to
the destination is called remaining inter-contact time (RICT).
In a dense network, FCT is typically negligible and RICT
dominates the message delay. One way to characterize RICT
is to measure the inter-contact time (ICT), the time period
between two successive contact times of the same two nodes.
Since it is difficult to measure RICT from real mobility traces,
ICT has been used to characterize RICT [7].

It is known that the ICT of human mobility exhibits a strong
power-law tendency [7]. The result is interesting because
[18] showed by simulation that RWP produces exponentially
decaying ICT, implying human mobility cannot be modeled
by RWP. What’s not obvious is the type of mobility patterns
that gives rise to the power-law tendency of ICT distributions.
In this section, we explore this problem using the mobility
model from Section V.

The earlier measurement studies on ICT (e.g., [7]) report
power-law distributions of ICT with human mobility with
slopes in the range of [0.3,0.4]. By varying the parameters
of α and β of our mobility model, we are able to generate
ICT distributions with the similar characteristics as in [7] by
MATLAB simulation. [7] reports power-law slopes of 0.3 from
the INFOCOM trace [19] and 0.4 from the UCSD trace [20].
Fig. 19(a) shows the result. In the UCSD simulation, we fix
the simulation area to 3.5 km by 3.5 km, τl to 3 km and
τp to 28 hours. These values are chosen based on the data
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Fig. 19. The ICT distributions of mobility models. Levy walks recreate the
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from [20]. The remaining parameters are the same as in the
experiment for Fig. 17. The transmission range of each node
is set to 250 meter radius (which is typical for IEEE 802.11b).
For the INFOCOM simulation, we set the area to 1.5 km by
1.5 km, τl to 200 m, τp to 1 hour and the transmission range
of each node to 100 m – the maximum transmission range for
the Bluetooth devices used for taking the original traces. 40
nodes are simulated in both scenarios for 300 hours. For all
the simulations, we assume infinite buffer and that message
transfers occur instantaneously. These assumptions are used
to isolate the effect of mobility patterns on the performance
of DTN routing.

We also simulate RWP and BM in the same setup as
the UCSD environment to compare the results. BM’s ICT
distribution shows 0.45 power-law slope while RWP’s shows
an exponential decay. Although there could be other types
of mobility patterns that could generate the same ICT distri-
butions as INFOCOM’s and UCSD’s, this result allows us
to conjecture that the actual mobility that generates these
characteristics in these settings might have been Levy walks.
Furthermore, the ICT distribution patterns of various mobility
models are closely related to their diffusion rates examined in
Fig. 17. The more diffusive the mobility is, the shorter tail
its ICT distribution becomes. To confirm this pattern, we run
Levy walks with different values of α while fixing β to one.
Fig. 19(b) shows that as α gets smaller, the tail distribution of
ICT becomes shorter.

ICT directly impacts routing delays in DTN. To see their
relation, we measure the ICT and routing delays from simula-
tion setups that mimic the environments of our five scenarios.
In this simulation, we set α and β to the average values
extracted from the angle model (with aθ = 30 and r = 5),
set the scale factors for flight lengths and pause times to
10 and 1, respectively, and match the simulation areas to
the same as those of the five sites and the flight length and
pause time truncation points are set to those measured from
the traces. The routing delays of RWP which uses the same
environment as Campus II are also measured for comparison.
In all scenarios, we simulate 40 nodes. The resulting routing
delay distributions along with their ICT’s are shown in Fig. 20.
The figure shows that all the ICT distributions from our
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Fig. 20. ICT and DTN routing delays under various models including those
constructed based on the statistics from our traces.

models, except that from State fair, follow strong power-
law for the duration up to several hours. The truncations in
the ICT distributions occur because the simulation is cut off
around 300 hours and we consider only those contacts made
within the simulation time. The ICT distribution from State
fair exhibits exponential decay. This is because the area of
State fair (a radius of 340 m) is much smaller than the others,
and given the transmission range of 250 m, nodes can make
contacts with each other without traveling a long distance. The
routing delays of the corresponding Levy walk models tend to
have high delays because, among many factors influencing the
delays, the simulation area of our models is particularly large:
on average, our models have at least four times larger an area
than the UCSD simulation area. However, the routing delays
of RWP still show a short tail distribution. To see the effect of
flight length distributions on routing delays more clearly, we
measure routing delays in the simulation runs used for Fig. 19
(b). Figure 21 (a) shows the result from which the following
can be observed. BM tends to have much larger delays than
any other models while RWP, as expected, shows the smallest
delays because its probability of long flights is highest. The
Levy walk models show their patterns in between the two
extremes: as we increase α, their delays get closer to BM’s
and as we reduce α, they get closer to RWP.

The heavy tail distribution of routing delays may intuitively
imply that many nodes experience similar long routing delays
and that use of more relays (or copies of messages) may not
necessarily improve the performance drastically. In a general-
ized relaying algorithm, the source distributes the message to
the first m relays that it contacts. The routing delay is the time
till any copy of the message is delivered to the destination.
Fig. 21 (a) shows the DTN routing delays of various models
when one relay is used, and Fig. 21 (b) shows the 99% quantile
delays of the same models normalized by their corresponding
one-relay delays as we add more relays. As expected, BM
hardly achieves this goal; the delay does not improve so much
as the number of relays increases, since every relay takes long
time to meet the destination. However, we are surprised to
find that all our Levy walk models including the one with
α = 1.5 which shows fairly similar delay patterns as BM for
one relay case, show almost the same improvement ratio as
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Fig. 21. The DTN delay distributions of various mobility models and
normalized 99% quantile delay with multiple relays. The numbers in the
parenthesis represent the actual delays in minutes at the 99% quantile of the
distributions.

RWP as we add more relays. This implies that while in RWP,
most nodes travel long distances frequently, in Levy walks,
although not all nodes make such long trips, there exist with
high probability some nodes within the mobility range of the
source nodes that make such long trips. This contributes to
the great reduction of the delays even with a small number of
relays.

B. Routing in MANETs

In this section, we examine the impact of Levy walks on the
performance of MANET routings. There exist many MANET
protocols in the literature. It is impractical to evaluate all the
protocols, but instead, we first focus on the features of mobility
that affects the performance of MANET routing such as hop
counts and path durations. These features strongly influence
the routing performance of MANETs. For instance, [21]
shows that data throughput is proportional to path durations
within the limit of link capacity in the network.

Fig. 22 shows the hop count distributions of the shortest
path between two randomly picked nodes in the simulation of
various mobility models, and the CCDF of their corresponding
path durations. We use the same simulation setup as discussed
in Section V. The radio range of each mobile is set to 250
meter. We run the simulation for 3000 seconds. 400 pairs of
nodes are selected and the hop count of each pair is measured
and sampled once at each time they establish a new path. Most
of RWP hop counts are less than 15 hops and their distribution
is peaked around 7 hops. This occurs because RWP nodes tend
to cluster around the center of the simulation area [22]. The
hop count samples of RWP are also much larger than those of
the other models because as we can see in Fig. 22(b), RWP
tends to maintain much shorter routing paths than the other
models because of its high mobility. On the other hand, Levy
walks tend to have longer paths than RWP. Because of the
less diffusive nature of Levy walks, Levy walk nodes tend
to stay longer in one location than RWP. Therefore, nodes
are more spread out in the simulation area than RWP. Since
the path durations of Levy walks are longer than those of
RWP, the numbers of hop count samples of these models are
much smaller. BM shows an extreme case of inactivity as its
average hop count is longest. However, its path duration is
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Fig. 22. (a) The hop count distributions of the shortest path between two
randomly selected nodes undergoing various mobility patterns. The numbers
inside the parenthesis represent the average hop counts. (b) the CCDF of their
corresponding path durations.

the second longest to the Levy walks model with α = 1.5.
This is because most paths with long durations are from short
paths, and BM nodes are more spread out and tend to have
less chance of short paths as we can see from Fig. 22(a). In
addition, because BM has β = 2, it has more occurrences of
short pause times than the Levy walk models. These factors
collectively contribute to reducing the path durations of BM
below that of the Levy walk model with α = 1.5 although
BM is slightly less diffusive than the Levy walk model.

To see the effects of the above-discussed factors on routing
performance, we simulate DSR [23], a source-based MANET
routing, in the same simulation setup as the above using
GloMoSim [24]. In this simulation, we measure the data
throughput of FTP connections over 300 node pairs randomly
selected. The link bandwidth in these simulations is set to 2
Mbps. Figs. 23 (a) and (b) show the CCDF of throughput
measured in low and high node density network environments
for various mobility models. For the high density environment,
we use 100 nodes in 1 km by 1 km area with τl = 500 m and
for the low density environment, 2 km by 2 km area with τl

= 1 km. We use the same values for the other parameters as
in the simulation run for Fig. 22.

In general, both hop counts and path durations have sig-
nificant impact on routing throughput. Typically, the influence
of hop counts itself on data throughput gets less emphatic
as hop counts increase because each simulation run contains
one connection so there is only self-interference, and self-
interference is limited only within a few hops. However, it
is clear that as the number of hops of a path increases, its
path duration is likely to reduce. Path durations seem to be a
significant determinant of data throughput in our simulation.
This can be seen from the similarity of Figs. 22(b) and 23(a).

In the low density simulation, the node pairs with the
best throughput around the tail of the throughput CCDF
tend to have long path durations. In the simulation BM and
Levy walks have an order of magnitude higher maximum
throughput than RWP. However, around the top of the CCDF
in the figure, BM and Levy walks show a significantly
less number of node pairs. This is because the number of
successful path connections is much less for BM and Levy

walks. In Fig. 23(c), we plot the connection probability of
node pairs, the probability that two randomly selected nodes
successfully establish a routing path between them, in our
simulation runs. The connection probabilities of BM and Levy
walks are around 30% and 60%, respectively. This is because
the difference in the diffusion rates of mobility has influenced
their clustering behavior. As mentioned above, BM and Levy
walk nodes tend to be more spread out, likely incurring more
disconnected islands. On the other hand, while RWP nodes
do not have any connectivity problem, their throughput tends
to be much lower than that of BM and Levy walks. These
factors collectively cause BM and Levy walks to have heavier
tail throughput distributions while causing RWP to have a
short tail. Thus, when examining network performance under
realistic mobility models, we need to examine the entire
distribution of performance instead of single numbers such
as average or median values which are much less meaningful
under power-law distributions of performance metrics of
interest. Under the high density network simulation, all
mobility models achieve 100% connection probability. Even
in this environment, the data throughput under BM and Levy
walks is much higher than that of RWP because of their
longer path durations.

VII. RELATED WORK

Recently, measurement studies of detailed human mobil-
ity patterns have been conducted. At Dartmouth [11] and
UCSD [20], mobility traces of users are collected based on
the association information of mobile handheld devices (e.g.,
PDAs and VoIP phones) that access wireless LAN access
points (APs). However, these traces are inherently restricted
by the locations of the deployed APs and thus, estimated
movements in between access points might be incorrect be-
cause of relatively long distance among APs. Due to the coarse
granularity of the measurement methodology, these traces are
not adequate to describe detailed human mobility trajectories.
In other groups, human contact patterns are studied by using
iMotes [7] or information of class schedules and class ros-
ters [25], but they do not generate detailed or accurate mobility
trajectories suitable for our study. Recently, Brockmann et
al. [26] analyze human traveling patterns from the circulation
patterns of bank notes, in the scale of several hundred to
thousand kilometers, and prove that human long-distance
traveling patterns at a macro scale show Levy walk patterns.
However, considering real mobile network deployments, the
mobility patterns over several hundred kilometers are too
large to apply to the mobility modeling for mobile network
simulations. However, combined with our results that show the
same result but within a much smaller scale, we can confirm
the self-similar nature of human mobility. Regarding the scale-
free nature of human activity, Barabasi [27] reports that various
human-initiated activities including communications and work
patterns are better approximated by a heavy tailed distribution,
but his work does not include human mobility.
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Fig. 23. (a) CCDF of FTP throughput in a low node density simulation (b) CCDF of FTP throughput in a high node density simulation (c) the probability
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VIII. CONCLUSION

In summary, this paper establishes statistically that human
mobility at outdoor settings within a scale of less than 10
km resembles Levy walks. This is shown by the power-
law tendency of flight lengths and its impact on MSD. We
find that MSD shows both super-diffusive and sub-diffusive
characteristics because of the power-law tendency of flight
lengths and pause times. Combined with the result from [26],
our result shows a self-similar nature of human mobility
even beyond the scale of a few thousand kilometers. Using
a simple Levy walk model we constructed, we are able
to recreate the power-law distribution of inter-contact times
which earlier studies have observed from human mobility.
Routing performance in a mobile network undergoing Levy
walks has distinctive features. In DTN, while its routing delay
distribution is heavy tailed, use of multiple relays for two-hop
relay routing results in drastic performance improvement. This
is because there exist, with high probability, some nodes within
the mobility range of a source node that make long trips. The
performance of MANET routing is a complicated function of
various parameters such as hop counts, connection probability
and path durations. Levy walks tend to have more hop counts
and longer path durations (or path survivability) than RWP.
However, with Levy walks, the network is more likely to
be disconnected. Again, we observe a heavy tail distribution
of throughput so the performance of MANET routing cannot
be easily characterized by single numbers such as average or
median.

Because of space constraints, there are many research
issues that are not addressed in this paper. In particular, it
is interesting to further explore the cause of scale-free human
mobility. From our study, we find human intentions instead of
geographical artifacts play a major role. Barabasi’s result [27]
supports this argument. We also conjecture that this is also
caused by the power law tendency of human interests or pop-
ularity of locations people visit. More studies to confirm this
conjecture are required. Our treatment on the impact of Levy
walks (or mobility) on network performance is limited because
of space constraints. Some omitted results include the impact
of α and β on routing performance, and a study on delay and
throughput tradeoffs caused by Levy walks, both of which are
very interesting. Characterizing inter-contact time analytically

using Levy parameters is also intriguing. In addition, our
mobility characteristics ignore the inter-dependency of humans
(or nodes) such as grouping. Thus, it would be interesting to
explore techniques to characterize this property and develop a
model that captures it.

REFERENCES

[1] M. F. Shlesinger, J. Klafter, and Y. M. Wong, “Random walks with
infinite spatial and temporal moments,” J. Stat. Phys., vol. 27, pp. 499–
512, 1982.

[2] A. Einstein, “On the motion, required by the molecular-kinetic theory
of heat, of particles suspended in a fluid at rest,” Ann. Phys., vol. 17,
pp. 549–560, 1905.

[3] G. M. Viswanathan, V. Afanasyev, S. V. Buldyrev, E. J. Murphy, P. A.
Prince, and H. E. Stanley, “Levy flights search patterns of wandering
albatrosses,” Nature, vol. 381, pp. 413–415, 1996.

[4] R. P. D. Atkinson, C. J. Rhodes, D. W. Macdonald, and R. M. Anderson,
“Scale-free dynamics in the movement patterns of jackals,” OIKOS,
vol. 98, no. 1, pp. 134–140, 2002.

[5] G. Ramos-Fernandez, J. L. Morales, O. Miramontes, G. Cocho, H. Lar-
ralde, and B. Ayala-Orozco, “Levy walk patterns in the foraging move-
ments of spider monkeys (ateles geoffroyi),” Behavioural Ecology and
Sociobiology, vol. 55, pp. 223–230, 2004.

[6] G. M. Viswanathan, S. V. Buldyrev, S. Havlin, M. G. E. da Luz, E. P.
Raposo, and H. E. Stanley, “Optimizing the success of random searches,”
Nature, vol. 401, pp. 911–914, October 1999.

[7] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott,
“Impact of human mobility on the design of opportunistic forwarding
algorithms,” in Proc. of IEEE INFOCOM 2006, Barcelona, Spain, April
2006.

[8] M. F. Shlesinger, G. M. Zaslavsky, and J. Klafter, “Strange kinetics,”
Nature, vol. 363, pp. 31–37, May 1993.

[9] M. F. Shlesinger, G. M. Zaslavsky, and U. Frisch, Levy Flights and
Related Topics in Physics. In Lecture Notes in Physics. Berlin: Springer
Verlag, 1995, no. 450.

[10] “Garmin GPSMAP 60CSx User’s manual,”
http://www.garmin.com/products/gpsmap60csx/.

[11] M. Kim, D. Kotz, and S. Kim, “Extracting a mobility model from real
user traces,” in Proc. of IEEE INFOCOM 2006, Spain, April 2006.

[12] I. B. Aban, M. M. Meerschaert, and A. K. Panorska, “Parameter
estimation for the truncated pareto distribution,” Journal of the American
Statistical Assoc., vol. 101, no. 473, pp. 270–277, March 2006.

[13] A. Vazquez, O. Sotolongo-costa, and F. Brouers, “Diffusion regimes in
levy flights with trapping,” Physica A, vol. 264, pp. 424–431, 1999.

[14] G. Zumofen and J. Klafter, “Laminar localized phase coexistence in
dynamical systems,” Physical Review E, vol. 51, no. 3, pp. 1818–1821,
March 1995.

[15] P. A. DiMilla, J. A. Stone, J. A. Quinn, S. M. Albelda, and D. A.
Lauffenberger, “Maximal migration of human smooth muscle cells on
fibronectin and type iv collagen occurs at an intermediate attachment
strength,” J Cell Biol, vol. 122, pp. 729–737, 1993.

[16] Y. Maruyama and J. Murakami, “Truncated levy walk of a nanocluster
bound weakly to an atomically flat surface: Crossover from superdiffu-
sion to normal diffusion,” Physical Review B, vol. 67, no. 8, pp. 085 406–
085 410, February 2003.



[17] M. Grossglauser and D. N. C. Tse, “Mobility increases the capacity of
ad hoc wireless networks,” IEEE/ACM Trans. on Networking, vol. 10,
no. 4, pp. 477–486, 2002.

[18] G. Sharma and R. R. Mazumdar, “Scaling laws for capacity and delay
in wireless ad hoc networks with random mobility,” in Proc. of IEEE
ICC 2004, Paris, France, June 2004.

[19] P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft, and C. Diot,
“Pocket switched networks and human mobility in conference environ-
ments,” in Proc. of ACM WDTN ’05, Philadelphia, PA, August 2005,
pp. 244–251.

[20] M. McNett and G. M. Voelker, “Access and mobility of wireless pda
users,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 9, no. 2, pp.
40–55, 2005.

[21] N. Sadagopan, F. Bai, B. Krishnamachari, and A. Helmy, “Paths:
analysis of path duration statistics and their impact on reactive manet
routing protocols,” in Proc. of ACM MobiHoc ’03, June 2003, pp. 245–
256.

[22] C. Bettstetter, G. Resta, and P. Santi, “The node distribution of the
random waypoint mobility model for wireless ad hoc networks,” IEEE
Trans. Mobile Computing, vol. 2, no. 3, pp. 257–269, July 2003.

[23] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc
wireless networks,” in Mobile Computing, Imielinski and Korth, Eds.
Kluwer Academic Publishers, 1996, vol. 353.

[24] “Glomosim from UCLA homepage,”
http://pcl.cs.ucla.edu/projects/glomosim/.

[25] V. Srinivasan, M. Motani, and W. T. Ooi, “Analysis and implications
of student contact patterns derived from campus schedules,” in Proc. of
ACM MobiCom 2006, Sept. 2006, pp. 86–97.

[26] D. Brockmann, L. Hufnagel, and T. Geisel, “The scaling laws of human
travel,” Nature, vol. 439, pp. 462–465, January 2006.

[27] A.-L. Barabasi, “The origin of bursts and heavy tails in human dynam-
ics,” Nature, vol. 435, pp. 207–211, May 2005.


