
Establishing Value Mappings Using Statistical Models and
User Feedback

Jaewoo Kang Tae Sik Han
North Carolina State University

Raleigh, NC, 27695, U.S.A.

{kang,tshan}@csc.ncsu.edu

Dongwon Lee Prasenjit Mitra
The Pennsylvania State University
University Park, PA, 16802, U.S.A.

{dlee,pmitra}@ist.psu.edu

ABSTRACT
A “value mapping” algorithm that does not rely on syn-
tactic similarity or semantic interpretation of the values is
presented. The algorithm first constructs a statistical model
(e.g., co-occurrence frequency or entropy vector) that cap-
tures the unique characteristics of values and their co-occurrence.
It then finds the matching values by computing the distances
between the models while refining the models using user
feedback through iterations. Our experimental results sug-
gest that our approach successfully establishes value map-
pings even in the presence of opaque data values and thus
can be a useful addition to the existing data integration
techniques.

1. INTRODUCTION
Integrating data from multiple heterogeneous sources of-

ten involves two related subtasks: (1) reconciling structural
heterogeneity of data by mapping schema elements across
the data sources – schema matching problem; and (2) re-
solving semantic heterogeneity of data by mapping data in-
stances across the tables – object mapping problem. De-
pending on the granularity of the object, the object map-
ping problem is also known as various names. For instance,
if the object is a record, then it becomes the record linkage
problem. Similarly, for tuple, it becomes the database join
problem. In this paper, in particular, we focus on the ob-
ject mapping problem with the object being “values,” thus
named as the value mapping problem.

Virtually all previous value mapping works assume the
data values in each corresponding columns are drawn from
the same domain or at least they bear some textual similar-
ity. However, this assumption is often challenged in prac-
tice where sources use various different representations for
describing their data. For example, “two-door front wheel
drive” can be represented as “2DR-FWD” or “R2FD”, or
even as “CAR TYPE 3” in different data sources. Some
smart string distance algorithms may be able to suggest cor-
respondences among the first three representations, but they

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Name Gender Title Degree Status
J. Smith M Professor Ph.D. Married
R. Smith F T.A. B.S. Single
B. Jones F T.A. M.S. Married
T. Hanks M Professor Ph.D. Married

(a) Table X

Name Gender Title Degree Status
S. Smith F Emp10 D7 SGL
T. Davis M Emp3 D3 SGL
R. King M Emp10 D7 MRD
A. Jobs F Emp3 D2 MRD

(b) Table Y

Table 1: University employee tables.

will fail to establish any mapping for “CAR TYPE 3” as it
bears no syntactic or semantic clue except the fact that it is
about car type.

This problem poses a substantial challenge to the existing
object mapping techniques. To address this, we present a
novel, semi-automated technique that can be of assistance
in the particularly difficult cases in which the data values
to be matched are “opaque,” or difficult to understand, and
have little syntactic or lexical similarity. To gain insight into
our approach, consider the employee tables in Table 1. The
task of matching values in the Title and Degree columns
is not quite straightforward. For this case, most traditional
techniques that rely on the textual similarity of data, will
likely fail to identify the value mapping.

We propose techniques that use the co-occurrence of val-
ues and statistical methods like entropy that captures the
distributions of co-occurring values to address the value map-
ping problem. For example, suppose we are trying to find
the value in Table Y that maps to “Professor” in Table X
as shown in Table 1. To make the exposition simpler, let us
assume that we know the correspondences between the val-
ues in the Degree columns (e.g., Ph.D. → D7, M.S. → D3,
B.S. → D2). Intuitively, we will see a higher correlation be-
tween “Ph.D.” and “Professor” than between “Ph.D.” and
“T.A.”, as is the case in Table X. If we can measure the
correlation between “D7” (which we know is “Ph.D.”) and
the two values, “EMP10” and “EMP3”, in Table Y , and
can compare the measurements across the tables, we may
be able to find further correspondences. Now, let us assume
that the mappings between the two Degree columns were
not known a priori (i.e., the mappings for both Title and
Degree are unknown.). How can we proceed?

To address this problem, we propose an algorithm that
works as follows: (1) We first construct for each table a
statistical model (e.g., co-occurrence frequency or entropy
vector) that captures the unique characteristics of values

and their co-occurrence within the table; and then (2) finds
the matching values by computing the distances between
the models (not the values themselves) while refining the
models using user feedback through iterations. In this paper
we make the following contributions:

• We present the value mapping problem as a first class
citizen in data integration that is considered as a real
and hindering problem in the industry.

• We propose an interactive and iterative algorithm that
can build the mapping incrementally while incorporat-
ing user feedback through iterations.

• Since the actual tokens representing the values are not
taken into consideration in the matching process, our
algorithm works well in matching even opaque data
values.

• Our algorithm complements many existing algorithms
as it utilizes different types of information that is not
commonly used in the existing algorithms, and hence
can be a useful addition to the existing data integra-
tion techniques.

2. PROBLEM & SOLUTION OVERVIEW
Problem Definition. We have two tables: the source
table, S, with columns, s1, . . . , sn, and its corresponding
target table, T , with columns, t1, . . . , tn. Furthermore, via
column-level schema matching, the matching columns be-
tween S and T have already been identified. Using the
schema match the two tables are pre-processed such that the
schema match is converted from an m:n match to a bijec-
tive match. For example, if the schema match indicates that
S.Name is equivalent to the concatenation of T.F irstname
and T.Lastname, we preprocess the two tables. During the
pre-processing, the columns T.F irstname and T.Lastname
are composed to create a column with the concatenation of
the first name and the last name. In the processed tables,
there is a bijective mapping, say f , from columns in S to
columns in T (after pre-processing). Formally, we consider
the following as the Value Mapping Problem:

For a pair of corresponding columns, si and tj ,
such that f : si → tj , where f is a schema-
mapping function, find a value mapping function
g : vi → vj , where vi is a value in column si and
vj is a value in tj , 1 ≤ i, j ≤ n such that vi and
vj represent the same real-world values.

In general, g can be many-to-many and our algorithm is
capable of finding many-to-many value mappings.

Solution Overview. Our value mapping algorithm finds
a mapping among values using their signature vectors (e.g.,
co-occurrence frequency or entropy vectors; refer to Sec-
tion 3 for more details) without interpreting individual val-
ues. An overview of our solution is illustrated in Algo-
rithm 1, where gi is a value mapping between two values,
gi : vi → vj , and ∆(vi) depicts the incorporation of user
feedback on the value vi. The algorithm works mainly in
two phases: (1) in the first step, Build() takes two ta-
ble instances as input and produces corresponding depen-
dency models (i.e., the signature vectors) for each unique

Input : Value sets, D(s) and R(t)
Output : Value mappings, g : vs → vt‖vs ∈ D(s), vt ∈ R(t)

M(s)←Build(D(s)); M(t)←Build(R(t));
while there is an unfound mapping do

[g1, ..., gn]← Match(M(s), M(t));
User confirms/denounces gi : v(si)→ v(tj);
M(s)←Refine(D(s) + ∆(v(si)));
M(t)←Refine(R(t) + ∆(v(tj)));

end

Algorithm 1: Overview of our approach.

A1 A2 A3 A4 A5 A6 A7 A8 A9
A1 0.5 0 0.5 0 0.5 0 0 0.5 0
A2 0 0.5 0 0.5 0 0.25 0.25 0.25 0.25
A3 0.5 0 0.5 0 0.5 0 0 0.5 0
A4 0 0.5 0 0.5 0 0.25 0.25 0.25 0.25
A5 0.5 0 0.5 0 0.5 0 0 0.5 0
A6 0 0.25 0 0.25 0 0.25 0 0.25 0
A7 0 0.25 0 0.25 0 0 0.25 0 0.25
A8 0.5 0.25 0.5 0.25 0.5 0.25 0 0.75 0
A9 0 0.25 0 0.25 0 0 0.25 0 0.25

Table 2: A co-occurrence matrix for Table 1(a).

value, and (2) in the second step, Match(), using the de-
pendency models, compares the distances among all pairs
of unmapped values, and proposes a ranked list of candi-
date mappings to users. Incorporating the user’s feedback,
the dependency models are improved in the Refine() step.
The matching and refining process repeats until complete
mappings are found (or the user stops it).

3. OUR APPROACH

3.1 Modeling Statistical Dependencies
Now, we describe the Build() phase of Algorithm 1.

Co-occurrence Frequency Vector Model. Let n be
the number of rows in which terms a and b co-occur, and
r be the total number of rows in the table. Then, the co-
occurrence frequency of (a, b) is defined as n/r. For example,
in Figure 1(a), the co-occurrence frequency of (M, Married)
is 2/4 = 0.5, while that of (T.A., Ph.D.) is 0/4 = 0. The
co-occurrence matrix, Ci, captures pair-wise co-occurrence
frequency between all pairs of values in the corresponding
table. Table 2 shows a co-occurrence matrix, C, correspond-
ing to Table 1(a). In the table, A1–A9 refer to values {M,
F, Professor, TA, Ph.D, M.S, B.S, Married, Single}.

One way to improve the accuracy of co-occurrence model
is to weight terms according to their information content .
That is, rare terms carry more weights when they co-occur
than terms that occur frequently (e.g., “male” or “female”).
In this work, we use a standard inverse document frequency
weighting [6]. Each entry, C(i, j), in the co-occurrence ma-
trix C can be weighted by multiplying the following weight:
W (i, j) = (1− k

N
) ∗ (1− l

N
) where k is the number of times

the term i occurs in the table, l is the number of times the
term j occurs in the table, and N is the total number of rows
in the table. We incorporated the weighting scheme in all
the models for our experimentation, but have not weighted
the examples in this paper to retain their simplicity.

Entropy Vector Model. For a given random variable,
Shannon’s entropy [27] is defined as follows. Let X be a dis-
crete random variable on a finite set X = {x1, . . . , xn}, with

probability distribution function p(x) = Pr(X = x). Then,
the entropy H(X) of X is defined as: H(X) = −

P
x∈X p(x) log p(x).

The conditional entropy of a column Y conditioned on a col-
umn X is given by: H(Y |X) = −

P
y∈Y
P

x∈X p(y|x) log p(y|x).
In our work, we are interested in matching individual values
and not entire columns. We can obtain the entropy of a col-
umn conditioned on an individual value as: H(Y |X = x) =
−
P

y∈Y p(y|x) log p(y|x). Now, when two values x and y
co-occur, the entropies of a column conditioned on two val-
ues can be similarly computed as: H(Z|X = x, Y = y) =
−
P

z∈Z p(z|x, y) log p(z|x, y).
Similar to a co-occurrence frequency matrix, we can con-

struct a co-occurrence entropy matrix where the entries, in-
stead of being co-occurrence frequencies, are entropy vec-
tors. If the table has N columns, the entropy vector has
N −2 elements, each element in the vector corresponding to
a column in table. The entropy vector has 2 less elements,
because the two columns whose values have been fixed have
an entropy of 0 and we take them out. Note that the diago-
nals of the matrix have a vector of size N −1 elements since
in this case only one value has been fixed.

3.2 Constructing Signature Vectors of Values
Signature vector are constructed during the Build() and

the Refine() phases of Algorithm 1. Note that our value
mapping approach is iterative and interactive. In each itera-
tion, using a combination of statistical dependencies defined
in Section 3.1 (i.e., co-occurrence frequency and entropy),
the algorithm captures the unique statistical properties of
values in a Signature Vector. Then algorithm uses a sim-
ilarity measure between the two vectors to find mappings
between the values they represent. We now present a few
methods of constructing signature vectors in the following.

We denote a signature vector of a value v by
−→
sig(v).

1. Frequency-based Signature Vector: In this method, the

first entry of
−→
sig(v1) is the frequency of the value v1

itself. Then, for each known value mapping, x → y, a

new entry is added to
−→
sig(v1) as follows. Let x → y

be a pair of values mapped during the ith iteration.
Without loss of generality, assume that a value v1 is
in the same table as x. Then, in the (i + 1)th itera-

tion,
−→
sig(v1) will contain the co-occurrence frequency

of (v1, x) as a new entry. Note that in the first itera-
tion, if no value-mapping is known, then the signature
vectors of all values simply contain one entry each —
the frequency of the value itself.

For example, the initial frequency-based signature vec-

tor for the value Married of Table 1(a),
−→
sig(Married),

is [0.75], since the frequency of Married is 0.75. Now,
suppose the value mapping Ph.D. → D7 is given.
Then, in the next iteration, the algorithm computes
the co-occurrence frequency of Ph.D. and Married as

2/4 = 0.5, and thus modify
−→
sig(Married) to [0.75,

0.5]. Furthermore, if another value mapping M.S. →
D3 is known, the algorithm again computes the co-
occurrence frequency of M.S. and Married as: 1/4 =

0.25. Thus, the
−→
sig(Married) will have [0.75, 0.5, 0.25]

after the two value mappings have been processed.
The signature vectors for values in the corresponding
column in Table 1(b) can also be constructed in the
same way.

2. Entropy-based Signature Vector: Before any value map-

ping is known, the signature vector of a value v1,
−→
sig(v1),

is constructed as follows. Select only the rows that
have v1 in them. For these rows, compute the entropy

of each column. Then,
−→
sig(v1) consists of all these en-

tropy values. Note that if the table has n columns, the
signature vector will be of length n − 1 consisting of
one entry for each column except the column in which
v1 occurs. Similar to the frequency-based signature
vector computation, after a value mapping x → y is
known, where x and v1 are not in the same column,
the algorithm augments the signature vector as follows.
Assume that v1 co-occurs with x. Select only the rows
containing both x and v1, and compute the entropy of
all the other columns except those containing x and

v1. Add all these entropy values to the
−→
sig(v1) as new

entries. Note that in this case, we will be adding n−2
values for each value mapping — one entropy value for
each column except the entropy values of the columns
containing x and v1.

Using the same example above, we illustrate how entropy-
based signature vectors are computed. First, we se-
lect the three rows whose status column has the value
“Married” in Status column of Figure 1(a). Next, we
compute the entropy of the values in the remaining
columns – Name, Gender, Title, and Degree – for
those three rows. Therefore, the entropy-based sig-

nature vector,
−→
sig(Married), for the first iteration is

[1.59, 0.92, 0.92, 0.92]. Subsequently, when we know
the value mapping Ph.D. → D7, the algorithm se-
lects the first and the last row — the two rows where
“Ph.D.” and “Married” co-occur. For these two rows,
it then computes the entropies for the three remaining
columns – Name, Gender, and Title – that come to [1,

0, 0]. Therefore, the resulting augmented
−→
sig(Married)

is [1.59, 0.92, 0.92, 0.92, 1, 0, 0]. Similarly, upon
adding the value mapping M.S. → D3, the algorithm

selects the third row, and the augmented
−→
sig(Married)

becomes [1.59, 0.92, 0.92, 0.92, 1, 0, 0, 0, 0, 0]. Note
that in this illustration we have a lot of 0’s because of
the small data-sizes of the selected rows.

3. Hybrid Signature Vector: In this scheme, the algo-
rithm initially utilizes the advantages of the entropy-
based methods, and after a few matches are found it
switches over to the (relatively) inexpensive frequency-
based method. This switch can be achieved using
two variations: (a) Signature Switching Mode: Af-
ter the entropy-based iterations, the algorithm keeps
the matches obtained in those iterations. The next
iterations use frequency-based signature vectors cre-
ated from the existing matches; and (b) Mixed Signa-
ture Mode: After the entropy-based iterations, we keep
the matches from the previous iterations and retain
the signature vectors, but the future augmentation of
the signature vector is done using the co-occurrence
frequencies. Note that in this case, we are mixing
entropy-based and frequency-based values. Therefore,
it may be that the entropy values dominate the similar-
ity computations. To reduce this effect, we normalize
the values so that all values in the vectors fall in the
[0,1] range by dividing each entropy value by log(N),

which is the maximum possible entropy (correspond-
ing to the case when all the values are different) for a
column with N values.

4. Primary Entropy Signature Vector: The entropy-based
signature vector introduced above mainly consists of
two parts: 1) the part containing entropies calculated
initially while fixing the value in the table that the
entropy vector describes, and 2) the part with aug-
mented entropies that are appended as mappings are
discovered. We call the first part of the entropy-based
signature vector as Primary Entropy Signature Vec-
tor. Unlike the other models, this method uses only
the primary entropy vector throughout the iterations
without augmenting new values to the vector along the
way.

3.3 Matching Models
This is the Match() phase of Algorithm 1. Suppose two

columns, s and t, are known to be mapped, where s has a
domain of values {v1, ..., vn} and t has a range of values
{w1, ..., wm}. In this step, our goal is to find all mappings
from vi to wj : that is, g : vi → wj . Suppose, in the ith it-
eration, all signature vectors are properly created using one
of the methods in Section 3.2, and thus there are n + m

number of signature vectors created: {−→sig(v1), ...,
−→
sig(vn)}

and {−→sig(w1), ...,
−→
sig(wm)}. Then, we measure all pair-

wise distances between two vectors, dist(
−→
sig(vi),

−→
sig(wj))

(1 ≤ i ≤ n, 1 ≤ j ≤ m) to find the most similar two vec-
tors. In particular, we use the following two simple distance
metrics. Given two signature vectors −→x and −→y , where −→x =
[a1, ..., an] and −→y = [b1, ..., bn], respectively: (1) Euclidean

Distance is: dist(−→x ,−→y) =
p

(a1 − b1)2 + ... + (an − bn)2;
and (2) Using the Pearson correlation, Correlation Distance

is: dist(−→x ,−→y) = 1/2∗(1− covariance(−→x ,−→y)√
covariance(−→x ,−→x)×covariance(−→y ,−→y)

).

Our algorithms construct the initial signature vectors, and
augment them by processing matches in order. That is, it
takes the value match between x and y, and augments both
signature vectors and then proceeds to augment the vectors
for the next match. This simple procedure ensures the vec-
tors to be aligned at all times and the similarity computation
is meaningful.

Top-k Ranking. After computing all pair-wise distances,
the algorithm sorts the candidate mappings based on their
distances and proposes the top-k ranked candidate map-
pings to the user. The algorithm returns the two values
mapped, their similarity score (Euclidean or correlation dis-
tance), and their p-value. The p-value is a common metric
used in hypothesis testing [23], and can be computed by
transforming the correlation of the two vectors (of size N)
to create a t-statistic having N − 2 degrees of freedom. In
our context, the p-value states the probability of observ-
ing a candidate-mapping’s correlation by chance at the level
greater than or equal to the observed correlation. The ex-
pert uses a combination of the similarity score and the p-
value to get an indication of how good the match is. The
size of the top-k window can be set by the user. We have
experimented with values of 10 and 20 for k. The user then
reviews candidates, and either confirms or denounces some
of the proposed mappings.

User Feedback. Instead of finding value mappings in

one iteration, our iterative and interactive approaches grad-
ually improve mappings by exploiting positive or negative
feedbacks from the users. In particular, we consider four
plausible scenarios: (1) when users give always correct feed-
back to all cases, (2) when users give no feedback, (3) when
users give false negatives (denouncing a correct mapping as
to be incorrect), and (4) when users give false positives (con-
firming an incorrect mapping as to be correct).

(1) Correct Feedback. When users confirm a candidate
mapping, mp, positively, the mapping will be added to a
set of “known” mappings, and thus in the next iteration,
the signature vector of unmapped value v will have an en-
try corresponding to mp in the vector (thus carrying more
statistical information). When users reject a candidate map-
ping, mn, the mapping is no longer considered as candidate
mappings in the subsequent iterations. The user can also
go back and reject any mapping confirmed in any previous
iteration.

(2) No Feedback. In practice, users can be uncertain for
some candidate mappings and may leave out those mappings
without giving them feedback. The algorithms will just run
normally putting the mappings back into the candidate pool
and move on to the next iteration.

(3) False Negative. Suppose users may mistakenly confirm
a bad mapping or denounce a good mapping. We address
these problems in two ways. First, we modified the denounce
logic of our algorithms not to throw away a mapping that
is denounced but to penalize the mapping by applying a
negative weight with an exponential decay as follows:

di =

�
d× (1− ci−t) for i > t > 0
d otherwise

where d is the distance measure between the two signatures,
c is the decay (c < 1), i is the current iteration, and t is the
last iteration where the mapping was denounced (t is zero
if the current mapping has never been denounced). After a
mapping is denounced, the mapping’s similarity measure in
the next iteration will be discounted by the factor defined
with c. In the subsequent iterations, the decay will expo-
nentially decrease as the iterations elapse. If the denounced
mapping was a true mapping, its correlation value will likely
improve over the iterations as more user feedbacks are in-
corporated, and will eventually have a second chance as the
penalty diminishes. Once a denounced mapping returns to
the top-k, in practice, the algorithms can notify users of a
potential mistake and ask if users want to review the map-
ping again.

(4) False Positive. In order to handle false positive cases
where users confirm a bad mapping, we introduced a “kick-
out” threshold; we used “p-value ≥ 0.05” as the threshold
in our experiment. The algorithms now not only update the
signatures of unmapped values in each iteration, but also up-
date the signatures of the values in the confirmed mappings
and continuously monitor the changes in statistics of them
as well. If the statistics of a previously confirmed mapping
fell below the threshold after some iterations, the user can
be given a warning about the mapping or the mapping can
be kicked out and included back in the candidate pool.

Stopping Criteria. Our iterative matching process con-
tinues until all true mappings are found or users want to
stop the process. In practice, however, the number of true

mappings can be much smaller than the sizes of the two
tables being matched, and thus large numbers of candidate
mappings can still be generated even after all true mappings
were found. To avoid unnecessary iterations, we need stop-
ping criteria.

Ideally the iterations should stop right after the last true
mapping is found. However, in general, it is not always easy
to tell if there will be more mappings in the next iterations or
not. Users have to make a subjective decision. Users may
decide to stop if the current candidate list does not have
any good mappings, and the statistics of all the candidates
in the list indicate that they are statistically insignificant.
The next iteration’s top-k candidates will likely be worse
than the current ones, so stopping there perhaps would make
sense for users. On the other hand, even if users failed to
find a good mapping in an iteration, they might still want
to proceed if the statistics of the current top-k candidates
were strong. In practice, users may also force iterations stop
by explicitly specifying a cut-off point, α (e.g., 0.05, 0.01).
When α is set, the algorithms test in each iteration if the
minimum p-value of the current candidates is greater than
or equal to α, and if so, they stop.

4. VALIDATING THE FRAMEWORK
Set-up: Our algorithms were implemented using Matlab
7.0. Experiments were conducted on a machine running
Windows XP Professional with 3Ghz Pentium 4 and 2 GB
of memory. We used census data sets obtained from U.S.
Census Bureau1. For experiments, we selected 8 different
groups of records (17 attributes) including 1) all records for
“NY” state, 2) all records for “CA”, 3) all records for teen
ager group, 4) 20s, 5) 30s, 6) 40s, 7) 50s, and finally 8) all
army veterans. The number of rows in each data set ranges
from 7K to 10K. We sampled 5K tuples from each table for
experiments. Table 3 shows the basic statistics of NY and
CA tables. For example, there are 23 and 22 unique values in
the PRMJIND1 columns of CA and NY tables respectively,
and among them 22 values are common. The entropy of the
PRMJIND1 column of the CA table (=3.0251) is slightly
higher than that of the NY table (=3.0193).

Evaluation Metrics: We assume users only examine the
top-k candidates in each iteration, and confirm or denounce
all correct and incorrect mappings among the top-k candi-
dates. We iterate through each step until the complete map-
ping is found. The precision of the system can be calculated
as follows: Precision = total #of correct mappings

total #of candidate mappings presented to user
.

Another important metric for measuring the success of the
algorithm is response time. The computational complexity
of each iteration of the algorithm is bounded by O(mn2)
where m and n are the numbers of entries to be mapped in
each table (n < m). In each iteration, we compare two sig-
nature vectors of size < O(n) (=maximum possible size of a
signature vector) mn times. We considered these two met-
rics, precision and response time, to evaluate our approach.

Experiments: We present the results in the following or-
der: 1) comparing the base-line models, distance metrics,
top-k window sizes, 2) hybrid models, 3) response time, 4)
error correction, 5) sensitivity to different data distributions,
and finally 6) effects of pre-established mappings.

We also evaluated the effects of term weighting (discussed

1http://dataferrett.census.gov/TheDataWeb/index.html

Figure 1: The screen-shot of the experiment session.

0 10 20 30 40 50 60
0

50

100

150

200

250

iterations

of

 m
ap

pi
ng

s
fo

un
d

Optimal
CFM w/ Euc. (P. 0.39)
CFM w/ Corr. (0.54)
EVM w/ Euc. (0.63)
EVM w/ Corr. (0.65)
PEM w/ Euc. (0.58)
PEM w/ Corr. (0.58)

Figure 2: Three models (CFM, EVM, PEM) with
Euc and Corr are compared. (top-10 window).

in Section 3). However, since the weighted models outper-
formed non-weighted models on average by 15%, in this pa-
per, we presented only the results of the weighted models.
Figure 1 shows a screen capture of the command-line in-
terface of the proposed methods during its interactive and
iterative session.

4.1 Effects of Different Models, Similarity Met-
rics, and top-k Window Sizes

Figure 2 presents the result of mapping over NY and
CA with the three dependency models: Co-occurrence Fre-
quency (CFM), Entropy Vector (EV M), and Primary En-
tropy Model (PEM). Each of the three models was tested
twice, using the Euclidean distance (Euc) and the correla-
tion (Corr) as a similarity metric. Figure 2 shows the result
using top-10 windows. The result using top-20 windows was
similar, so we omitted the graph.

The straight line (Optimal) on the left in Figure 2 is an
imaginary line that depicts a best case mapping scenario
where an algorithm’s top-10 candidates were correct all the
time. In both experiments using top-10 and top-20 win-
dows, EV M outperformed the other models slightly, and
the Corr metric outperformed Euc. CFM performed much

No. Col. name
of unique values Entropies

Description
CA NY Common CA NY

1 HEHOUSUT 5 6 5 0.1552 0.1462 household type
2 HETENURE 3 3 3 1.0488 1.0558 own / rent / null
3 HRNUMHOU 13 13 12 2.8451 2.697 # of household members
4 HUFAMINC 17 16 16 3.6958 3.5968 total family income
5 PEEDUCA 17 17 17 3.2893 3.2759 highest degree earned
6 PEMARITL 7 7 7 2.1347 2.227 marital status
7 PERACE 4 4 4 0.9873 1.0149 race
8 PESEX 2 2 2 1 0.9971 sex
9 PUAFEVER 5 5 5 1.2443 1.1532 army veteran
10 PEMLR 8 8 8 2.1884 2.25 employment status
11 PRFTLF 4 4 4 1.8322 1.8075 full time, part time, etc
12 PEIO1COW 9 8 8 1.7832 1.8056 class of worker (fed., priv., etc.)
13 PRDTIND1 49 49 47 3.4289 3.3758 industry code
14 PRDTOCC1 45 45 45 3.4702 3.4921 occupation code
15 PRMJIND1 23 22 22 3.0251 3.0193 industry - major group
16 PRMJOCC1 14 14 14 2.6812 2.664 occupation - major group
17 PEERNLAB 3 3 3 0.5521 0.5754 union member? (y/n/null)

Table 3: Census table summary.

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

iterations

of

 m
ap

pi
ng

s
fo

un
d

Optimal

Hybrid (weight=2) w/ Corr. (P. 0.6)

Hybrid (w=1) w/ Corr. (0.65)

Hybrid (w=0.5) w/ Corr. (0.68)

Hybrid (w=0.1) w/ Corr. (0.82)

Hybrid (w=0.01) w/ Corr. (0.76)

PEM/CFM Switch (th=40) w/ Corr. (0.79)

Figure 3: Performance comparison of hybrid ap-
proaches using correlation as a similarity metric.
(top-10 Window).

better with Corr than with Euc while the other two models,
PEM and EV M , performed equally well with both Euc and
Corr. Both CFMs (with Euc and Corr) started slow until
the number of found mappings reached to some level (Corr,
10-20 mappings and Euc, about 30-40 mappings). Then,
the two models picked up rapidly in the rate that matches
or exceeds those of the other models. Unlike CFMs, both
EV M and PEM performed well from the beginning. In
fact, EV M with Corr (EV M -Corr hereafter) and PEM -
Corr produced almost perfect candidate lists for initial iter-
ations (first four iterations in Figure 2). Their performance,
however, degraded gradually after the initial runs and in
the latter stage their growth rate became worse than that of
CFM -Corr. EV M -Corr was the best performer achieving
65% precision.

4.2 Improving Performance with Hybrid Ap-
proaches

We tested two hybrid models, switching and mixed sig-
nature, over the same data sets, and showed the result in
Figure 3 (only the top-10 test shown). The PEM/CFM
Switching model with threshold = 40 (hereafter PEM/CFM40,
use PEM until it finds 40 initial mappings and then switch
to CFM) and five mixed signature models with different

weights, were tested. Recall that unlike the other models,
the mixed signature model contains two different types of
values: entropies and co-occurrence frequencies. Because
the two different types of values carry different information,
we can further tune the hybrid model by applying different
weights to the two types of values. We tested five differ-
ent weights (w=2, 1, 0.5, 0.1, 0.01) applied to the entropy
values; that is, if w=1, we weigh the two types of informa-
tion equally and if w=0.1, we discount the entropy values
by 1/10th.

Among the different weights tried, w = 0.1 outperformed
the others in both top-10 and top-20 tests. In the top-10
tests, it achieved 82% precision producing more than 8 cor-
rect mappings out of 10 candidate mappings on average.
In the top-20 tests, it achieved about 74% precision. The
PEM/CFM switching model also performed well; it achieved
79% and 74% precision in top-10 and 20 tests, respectively.
In summary, the hybrid models were quite successful; Mixed
(w=0.1) outperformed the previous top performer, EVM, by
26% and 21% in top-10 and 20 tests, respectively.

4.3 Response Times
We compared the response times of the two top perform-

ing algorithms, Mixed and PEM/CFM , for both top-10
and top-20 windows. In top-10 window tests, Mixed com-
pleted in 28 iterations – one iteration earlier than PEM/CFM ,
while in the top-20 tests, both algorithms finished in 16 iter-
ations. All four algorithms ran on average 2.2 – 2.7 seconds
per iteration.

4.4 Handling Incorrect/Incomplete User Feed-
back

We tested how our proposed solutions can handle false
positives/negatives (i.e., incorrect feedback from users). Fig-
ure 4 shows the result of the experiment where we tested
the error correction strategies in three scenarios: 10% leave-
outs, false negatives, and the combination of false positives
and negatives. We used Mixed (w = 0.1) for this experi-
ment and compared the results of the scenarios to that of
the perfect user scenario reported earlier. In each iteration,
we randomly chose 10% of the candidate mappings from the
top-k window and applied the errors. For the 10% leave-out
test, we simply send the chosen subset back to the algo-
rithm with no feedback. For the 10% false negative test,
we assured on average about 10% of the true mappings in

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

iterations

of

 m
ap

pi
ng

s
fo

un
d

Optimal

Hybrid (w=0.1) w/ Corr. (P. 0.74)

10 % Leave−Out (0.75)

10 % False Negative (0.69)

10 % False Negative + False Positive (0.67)

Figure 4: Evaluation of error-correction strategy for
handling incorrect or incomplete user feedbacks.

0 10 20 30 40 50 60 70 80
0

50

100

150

200

Iteration

of

 M
ap

pi
ng

s
F

ou
nd

Total Number of Found Mappings in Each Iteration (w/ Top−10 Window)

Optimal

10s vs. Veterans (0.30)

20s vs. Veterans (0.59)

20s vs. 30s (0.75)

20s vs. 40s (0.70)

20s vs. 50s (0.59)

30s vs. 40s (0.84)

Figure 5: Sensitivity of algorithm against different
data distributions.

each iteration were falsely identified as negative. Lastly, we
tried the combination errors where we denounced true map-
pings (false negatives) and confirmed false mappings (false
positives) for the 10% of the candidates.

As shown in Figure 4, 10% leave-out test finished in 17
iterations finding all true mappings while 10% false negative
test finished in 20 iterations also finding all true mappings.
On the other hand, 10% combination error test failed to find
all true mappings and stopped short at the 18th iteration.
We forced the algorithm to stop if all mappings that were
confirmed in the previous iteration were immediately kicked
out in the next iteration. After its 18th iteration, it pro-
duced the mapping result with 216 true mappings (out of
222) and seven false mappings. The seven false mappings
survived without being kicked out because their p-values
were below the threshold. Small numbers of true mappings
were also kicked out as their statistics were too weak; those
mappings include the ones with very low frequency values
(e.g., values only occur once or twice in the entire table).

4.5 Sensitivity of Algorithm Against Different
Data Distributions

We tested the sensitivity of our algorithm against the data
sets with different data distribution. Figure 5 shows the
result obtained using Mixed (w = 0.1) over six different
pairs of data sets: 1) 10s (this data set contains only teens)

1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

Iterations

of

 M
ap

pi
ng

s
F

ou
nd

Mappings in Each Iteration (w/ Top−10 Window, Two Unknown Cols: PRDTOCC1, PRMJOCC1)

Optimal

2 Unknown Columns Only (0.32)

2 Unknowns + 1 Known Column (0.89)

2 Unknowns + 3 Knowns (0.83)

2 Unknowns + 5 Known (0.95)

2 Unknowns + 7 Knowns (0.93)

2 Unknowns + 9 Knowns (0.93)

2 Unknowns + 15 Knowns (0.95)

Figure 6: Effects of pre-established mappings.

vs. army veterans (contains people who have ever served in
the army), 2) 20s vs. army veterans, 3) 20s vs. 30s, 4) 20s vs.
40s, 5) 20s vs. 50s, and lastly 6) 30s vs. 40s. The tests over
20s vs. 30s and 30s vs. 40s, representing groups with similar
distributions, achieved 75% and 84% accuracy, while the
tests over 10s vs. veterans and 20s vs. veterans, representing
groups with less similar distributions, achieved only 30% and
59% accuracy, respectively. The 10s vs. veterans test turned
out far worse than the rest of the tests. In fact, 10s table
represents a completely different distribution from the rest
of the tables; teens are very unlikely to own a house, have
a job, or be married. Confirming this, the 20s vs. veterans
test resulted in a much better result (finished in 38 iterations
while 10s-veterans, in 74 iterations). This result suggests
that we can expect a good performance from our algorithm
when applied to datasets with reasonably similar domains.

4.6 Effects of Pre-Established Mappings
All the above tests were done assuming no pre-established

mappings exist between the values (all to all match). In
practice, however, there can be some mappings that are ob-
vious because of their textual similarity. We examined the
effect of such pre-established mappings to our algorithms.
Figure 6 shows the result.

We compared the performance of Mixed (w = 0.1) over
NY and CA while increasing the number of pre-established
mappings. The line at the bottom shows the mapping result
of two columns (PRDTOCC1 and PRMJOCC1) across the
tables without considering any other columns. It achieved
only 32% accuracy. We then added an extra column (PRDTIND1)
with pre-established mapping, to the algorithm. The accu-
racy of the mapping improved significantly to 89%. As more
known columns were added, the accuracy of the result grad-
ually improved up to 95% (when all 17 columns used). The
result suggested that even a small number of pre-established
mappings can improve the performance of the algorithm sig-
nificantly. Also suggested is that the algorithm can work
even with a small number of common columns across the
tables, and hence can be applicable to other related prob-
lems such as approximate joins [5, 13].

5. RELATED WORK
There are vast amount of related work to ours – notably

(1) schema matching (e.g., [2, 7, 9, 14,16–18,20,21]) and (2)

object mapping (e.g., [1, 3–5,10,12,13,15,19,28]) problems.

(1) In this work, we assumed that we knew the correspon-
dences between the columns across the tables. However, in
general settings, such correspondences are not known but
have to be found first. To generate such correspondences,
various schema matching techniques have been proposed.
Some employs Machine Learning (e.g., LSD [9]), rules (e.g.,
TranScm [21]), Neural Network (e.g., SemInt [17]), struc-
tural similarity (e.g. Cupid [18]), or interactive user feed-
back (e.g., Clio [14]). Recent development (e.g., iMAP [7])
even enables to find not only 1-1, but also more complex
n-m schema matches (e.g., name = concat(first, last) or
euro = 1.32 × dollar). For a good survey and compari-
son, see [8, 25]. In particular, our proposals in this paper is
an extension of authors’ previous attempt [16] to the object
mapping problem – in [16], the schema matching problem in
the presence of opaque column names and data values are
addressed.

(2) Our “value mapping” problem is more closely related
to the object mapping problem (i.e., value is the object to
map), which is also known as various names in diverse con-
texts: e.g., record linkage [11,28], citation matching [19,24],
identity uncertainty [24], merge-purge [15], duplicate detec-
tion [1,22,26], and approximate string join [5,13]. Common
to all these is the problem to find similar objects (e.g., val-
ues, records, tuples, citations). Although different proposals
have adopted different approaches to solve the problem in
different domains, by and large, they focus on syntactic simi-
larities of objects under comparison. On the other hand, our
value mapping solutions can identify mappings where two
objects have little syntactic similarity. To cope with such
difficulties, we proposed to explore statistical characteristics
of objects such as co-occurrence frequency or entropy.

6. CONCLUSION
In this paper, we investigated the value mapping prob-

lem to locate matching pairs of values from two input data-
base tables. We proposed a two-step, iterative algorithm to
discover the mapping. Our algorithm iteratively uses the
statistical dependency model among values (e.g., value co-
occurrence frequency or entropy) as the basis for establish-
ing value mappings. In each iteration, it suggests a top-k
list of candidate mappings to users. The feedback provided
by users is used to improve the mappings suggested in sub-
sequent iterations. As validated through extensive experi-
mentations, our solutions successfully establish the mapping
between values across tables even in the presence of opaque
data values and thus can be a useful addition to existing
data integration techniques.

7. REFERENCES
[1] R. Ananthakrishna, S. Chaudhuri, and V. Ganti.

“Eliminating Fuzzy Duplicates in Data Warehouses”. In
VLDB, 2002.

[2] P. Andritsos, R. J. Miller, and P. Tsaparas.
Information-theoretic tools for mining database structure
from large data sets. In ACM SIGMOD, 2004.

[3] M. Bilenko and R. J. Mooney. “Adaptive Duplicate
Detection Using Learnable String Similarity Measures”. In
ACM KDD, Washington, DC, 2003.

[4] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani.
“Robust and Efficient Fuzzy Match for Online Data
Cleaning”. In ACM SIGMOD, 2003.

[5] W. W. Cohen. “Integration of Heterogeneous Databases
Without Common Domains using Queries based on Textual
Similarity”. In ACM SIGMOD, 1998.

[6] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W.
Furnas, and R. A. Harshman. “Indexing by Latent
Semantic Analysis”. J. of the American Society of
Information Science, 41(6):391–407, 1990.

[7] R. Dhamankar, Y. Lee, A. Doan, A. Y. Halevy, and
P. Domingos. “iMAP: Discovering Complex Mappings
between Database Schemas”. In ACM SIGMOD, 2004.

[8] H. Do, S. Melnik, and E. Rahm. “Comparison of Schema
Matching Evaluations”. In GI-Workshop “Web and
Databases”, Oct. 2002.

[9] A. Doan, P. Domingos, and A. Y. Halevy. “Reconciling
Schemas of Disparate Data Sources: A Machine-Learning
Approach”. In ACM SIGMOD, 2001.

[10] A. Doan, Y. Lu, Y. Lee, and J. Han. “Object Matching for
Data Integration: A Profile-Based Approach”. In Workshop
on Info. Integration on the Web, 2003.

[11] I. P. Fellegi and A. B. Sunter. “A Theory for Record
Linkage”. J. of the American Statistical Society,
64:1183–1210, 1969.

[12] H. Galhardas, D. Florescu, D. Shasha, and E. Simon. “An
Extensible Framework for Data Cleaning”. In IEEE ICDE,
2000.

[13] L. Gravano, P. G. Ipeirotis, N. Koudas, and D. Srivastava.
“Text Joins for Data Cleansing and Integration in an
RDBMS”. In IEEE ICDE, 2003.

[14] M. A. Hernandez, R. J. Miller, and L. M. Haas. “Clio: A
Semi-Automatic Tool for Schema Mappiong”. In ACM
SIGMOD, 2001.

[15] M. A. Hernandez and S. J. Stolfo. “The Merge/Purge
Problem for Large Databases”. In ACM SIGMOD, 1995.

[16] J. Kang and J. F. Naughton. “On Schema Matching with
Opaque Column Names and Data Values”. In ACM
SIGMOD, San Diego, CA, Jun. 2003.

[17] W.-S. Li and C. Clifton. “SEMINT: A Tool for Identifying
Attribute Correspondences in Heterogeneous Databases
using Neural Networks”. VLDB J., 10(4), Dec. 2001.

[18] J. Madhavan, P. A. Bernstein, and E. Rahm. “Generic
Schema Matching with Cupid”. In VLDB, 2001.

[19] A. McCallum, K. Nigam, and L. H. Ungar. “Efficient
Clustering of High-Dimensional Data Sets with Application
to Reference Matching”. In ACM KDD, Boston, MA, 2000.

[20] S. Melnik, H. Garcia-Molina, and E. Rahm. “Similarity
Flooding: A Versatile Graph Matching Algorithm and Its
Application to Schema Matching”. In IEEE ICDE, 2002.

[21] T. Milo and S. Zohar. “Using Schema Matching to Simplify
Heterogeneous Data Translation”. In VLDB, 1998.

[22] A. E. Monge. “Adaptive Detection of Approximately
Duplicate Database Records and the Database Integration
Approach to Information Discovery”. PhD thesis,
University of California, San Diego, 1997.

[23] D. S. Moore and G. P. McCabe. “Introduction to the
Practice of Statistics”. From Book News, Inc., 1998.

[24] H. Pasula, B. Marthi, B. Milch, S. Russell, and I. Shpitser.
“Identity Uncertainty and Citation Matching”. In Advances
in Neural Information Processing Systems. MIT Press,
2003.

[25] E. Rahm and P. A. Bernstein. “On Matching Schemas
Automatically”. VLDB J., 10(4), Dec. 2001.

[26] S. Sarawagi and A. Bhamidipaty. “Interactive
Deduplication using Active Learning”. In ACM SIGMOD,
2002.

[27] C. E. Shannon. “A Mathematical Theory of
Communication”. Bell System Technical J., 1948.

[28] W. E. Winkler. “The State of Record Linkage and Current
Research Problems”. Technical report, US Bureau of the
Census, Apr. 1999.

