DKSM: Subverting Virtual Machine Introspection for Fun and Pr ofit

Sina Bahram, Xuxian Jiang, Zhi Wang Junghwan Rhee, Dongyan Xu
Mike Grace, Jinku Li, Deepa Srinivasan Department of Comp8teence
North Carolina State University Purdue University
{sbahram, xjiang4, zhwang, mcgracg@ncsu.edu {rhee, dxy@cs.purdue.edu
Abstract successfully developed to demonstrate its great potential

For example, Livewire [11] is the first introspection-based

Virtual machine (VM) introspection is a powerful tech- intrusion detection system that aims to protect running
nique for determining the specific aspects of guest VM guest VMs from being compromised (e.g., by kernel
execution from outside the VM. Unfortunately, existing rootkits). XenAccess [2], VMwatcher [13], VMwall [23],
introspection solutions share a common questionable as-and others [14], [15] were developed to monitor VM
sumption. This assumption is embodied in the expectationexecution and infer guest-internal states or events (e.g.,
that original kernel data structures are respected by the running processes, loaded kernel modules, active network
untrusted guest and thus can be directly used to bridge connections, or ongoing guest system calls). These guest-
the well-known semantic gap. In this paper, we assume theinternal states and events are needed for the purpose of
perspective of the attacker, and exploit this questionable either recording or denying the execution of suspicious
assumption to subvert VM introspection. In particular, programs. Most recently, VMware has introduced VMsafe
we present an attack calleldKSM (Direct Kernel Struc- [25] technology that can allow third-party security verslor
ture Manipulation), and show that it can effectively foil to leverage the unique benefits of VM introspection to
existing VM introspection solutions into providing false better monitor, protect, and control guest VMs.
information. By assuming this perspective, we hope to The capability to introspect running VMs opens up
better understand the challenges and opportunities for the many opportunities that are simply not possible with
development of future reliable VM introspection solutions physical machines. A key challenge, however, that needs

that arenot vulnerable to the proposed attack. to be overcome is the so-calls@mantic gag9] between
Keywords: Virtualization, Introspection, Direct Kernel the external and internal observations of a VM (Figure
Structure Manipulation 1(a)). Specifically, from outside the VM, we can get a view

. of the VM at the virtual machine monitor (VMM) level,
| Introduction which includes its register values, memory pages, disk
Research in virtualization technologies has gained sig-blocks and low-level events (e.g., execution of a privitkge
nificant momentum in recent years, mainly due to the instruction); whereas from inside the VM, we can observe
many new opportunities to address a variety of computer semantic-level entities (e.g. processes and files) andsven
system problems (including security and reliability). One (e.g., system calls). This semantic gap is formed by the
key technique behind these opportunities is callethal vast difference between external and internal obseration
machine introspectiariThe goal of VM introspection is to manifesting the main challenge for VM introspection.
enable the observation of a VM's states and events from To bridge the semantic gap (Figure 1(b)), one key
outside the VM. In particular, this outside observation can observation behind existing introspection tools is that th
have the same (or similar) semantic view of system statesguest OS being introspected contains a set of data struc-
and events as if they were seen from inside the VM. This tures (e.g., those for process and file system management),
observability is critical to enable tamper-resistant,hhig which can be used as “templates” to interpret VMM-level
fidelity VM monitoring, which is in turn the basis of a VM observations. As such, we can cast low-level VM
wide range of opportunities being actively explored, such observations to guest OS data structures to uncover the
as introspection-based intrusion detection, fault-tolee, VM’'s semantic entities and their states. As an example,
service hosting, and dynamic resource provisioning. by casting VM memory page content to guest OS data
VM introspection has been touted as an extremely pow- structure definitions, we can locate and identify kernel
erful technique and a number of recent systems have beemlata structures that have been defined to maintain semantic

™

File Q‘ ! File
’] Semantic Guest OS«)
< L0 Gap VM Introspection
=" L |
Virtual Machine Monitor VirtuII Machine Monitor t
(a) The “semantic gap” challenge (b) Existing VM introspection tools (e.g., XenAccess [2])

Fig. 1. Existing VM introspection tools bridge the “semanti c gap”

entities in the VM (e.g., process control blocks and kernel can present any desiregkternal view of the system to
modules). By following these data structures, we can evade or circumvent VM introspection, while presenting
further derive their attributes (e.g., a process’ name,, PID a completely differeninternal view of the system to the
page table etc.). In particular, for a process, we can egplor guest. However, neither of these two views will represent
its virtual address space through its page table and derivethe actual view of what is executing in the system.
its user-level states (e.g., variables at specific memory We have developed a proof-of-concept DKSM proto-
locations). type to illustrate this attack and show the fragility of

However, a careful examination of existing VM intro- existing introspection tools. In our prototype, we have
spection tools as well as our past experiences in buildingsuccessfully misrepresented several important types-of in
some of them [13] indicate thathe effectiveness and formation to existing VM introspection tools. Specifically
reliability of VM introspection does not naturally come by manipulating information aboutunning processes
without question In particular, the main concern stems loaded modulgsandactive network connections/e show
from a common, fundamental assumption of VM intro- that it is possible for a new (and stealthier) class of
spection: the guest OS being introspected is assumed tantrospection-resistant malware to emerge. In additioa, w
use the kernel data in a prescribed fashion by following also examine possible strategies to better cloak the DKSM
these data structure templates. In other words, all egistin attack and “raise the bar” even further for future enhanced
introspection tools rely upon the fact that the underlying VM introspection techniques. Meanwhile, it is important to
guest OS is conforming to certain behaviors and idioms note that by effectively evading existing VM introspection
(with respect to these templates) which would, at first tools, our goal here is to expose the fundamental limitation
glance, appear to be rather obvious and set in stoneof these tools; thereby arguing for the need of next-
Unfortunately, as is most often the case with introspection generation VM introspection techniques with enhanced
the guest OS kernel could be compromised. And oncetamper-resistance. We believe this higher level of dilagen
compromised, the assumption about the kernel respectings increasingly important especially considering the eotr
its own data structures becomes seriously questionable. trend of adopting virtualization and related introspettio

In this paper, we presemirect Kernel Structure Ma- capable applications.
nipulation (DKSM) an attack which can effectively subvert .
and confound existing VM introspection tools. Specifically Il. DKSM Design
by presenting DKSM, we show that it is possible to In a nutshell, DKSM foils existing introspection tech-
compromise a guest such that the kernel’'s use of any fieldniques by attacking the basic assumption upon which
of its data structures (or templates) could be potentially they are based. Specifically, it is important to notice that
modified. The modification can be achieved by various DKSM is based on the observation that the kernel data
techniques that involve changing the associated syntax andtructures (or templates) of a guest VM are key to any
semantics of the underlying data structures, thus invali- introspection tool, which means a DKSM attack can be
dating the fundamental assumption of introspection. With launched in various ways to manipulate these kernel data
this invalidation, we are effectively creating three diéfiet structures. In the following, we examine three different
views of the system: (1) The firdgternal, view comprises approaches: (1¥yntax-based manipulatiowhere certain
what the OS (or various system routines suchpasnd fields of kernel data structures are potentially added or
netsta) sees; (2) The seconexternal view comprises removed; (2) semantics-based manipulatiowhere the
what an external introspection-based tool observes; (8) Th semantics of the underlying data structures are changed;
third, actual view comprises what is really going on in and (3)multifaceted combo manipulatiavhich effectively
the system. A piece of malware (e.g., a kernel rootkit) that combines the previous two. Note all these attacks can
implements our proposed attack technique can effectivelyeffectively manipulate the kernel data structures to sttbve
control all three of these views. This means that an attackerintrospection tools and their analysis.

In this work, we assume the presence of guest kerneltypes or widths. For example, in a kernel data structure
vulnerabilities that can be exploited by the attacker to that contains several integer values, one interestinglatta
compromise the guest kernel and hijack the control flow. involves switching these integers around. By doing so, the
We consider this adversarial model because this is often theunderlying OS can still use the correct integer fields of
case how an introspection tool is deployed. By hijacking the data structure. However, an external introspectioh too
control flow, the attacker has the freedom to either modify would assume the standard layout of the data structure
existing kernel code or inject his own code for execution. (before the members are switched) to be true; therefore,
We also notice the recent emergence of return-orientedit would assign incorrect semantics to these switched
programming [7], [20], [12] and believe it is possible member fields. Further, such a technique can be easily
to launch a similarly return-oriented DKSM attack. This extended from integers to strings, and eventually support

possibility will be discussed in Section IlI-C. any data types. Here, we also note that homogeneity of
. . data types is not required at all, which means that an
A. Syntax-based Manipulation integer field can be used to contain a pointer to a C-style

One potential approach to implementing a DKSM attack string, while a previous C—;tyle string pointer. can bg used
involves adding or removing specific fields from particular 2S @n actual integer. Effectively, such a technique hides th
kernel data structures. By doing so, the template-baseoacmal data in plain sight as it has been neither redirected
approach of existing introspection tools will be using the NO' changed in any way. However, when the data is
wrong templates to infer guest states and thus deriveP€iNg introspected, the template-based view precludes the
inaccurate results. Note that an added member field to thetX@mination of the actual way in which this data is used.
kernel data structure may not impact introspection as the”S Such, the introspection technique is unable to derive
analysis of existing member fields could be sufficient in accurate semantics about the affected data structures.
inferring guest VM states. However, a removed member
field could greatly affect the accuracy and reliability o th
results. As mentioned in [10], certain fields of kernel data
structures are simply not used by the ®8s a result,

From another perspective, we can also achieve
semantics-based manipulation by redirecting chosen fields
of kernel data structures to somewhere else. In other words,

. various fields of interest are redirected to shadow location
their removal would not adversely affect the OS kernel

instead of being exchanged with other members. By doin
behavior. When an introspection tool depends on any of d J 4 d

h 4 fields for th vsi h b (ﬁo, the attack can create a data structure that is physically
t ese removed Tields tor the analysis, suc syntax- ase is-contiguous (and the affected OS kernel will be instru-
manipulation will evade or even mislead the tool analysis.

mented to operate seamlessly with these dis-contiguous

From ancIJ(ther p;rspectlve, v_vel_no_tlc_e this fc_)rr; of the | ernel objects), thus greatly impacting the template-thase
DKSM attack is subject to certain limitations as it does not introspection view. One nice property of this approach is

fundamentally hide or change the underlying semantics Ofthat introspection tools are still presented with a pelyect
the affected data structures. What happens is that the datﬂatural and normal looking view of the system. No fields
structure types are syntactically manipulated. Therefibre are missing or added, nor do the meanings of various
an introspection tool is changed to lessen its dependerlcymember fields in the kernel data structures appear to be
upon the syntax of related templates (e.g., by leveraging,, ,sal. Unfortunately, for the introspection tools, th® O
only essential member fields), the chances are high thaliS not using this data in any meaningful way. As a result,

this attack is less effective. we can further use it to provide false information in an
B. Semantics-based Manipulation attempt to mislead or confuse the external view generated
by introspection.
A more advanced form of the DKSM attack is to modify
the underlying semantics of the kernel data structures of Specifically, a rootkit that chooses to employ this spe-
interest. Because the changed semantics can be transparefific technique has the intriguing opportunity to present
to the OS while offering great consternation to introspec- an external view of the system (to introspection tools), as
tion tools, we consider this approach to be much more well as an internal view (to running anti-virus software for
powerful than the previous approach. example). Theexternalview is false and consists of what
Specifically, kernel data structures contain a number of the rootkit wishes the introspection tool to see. Similarly

member fields. Often, some of these fields are of similar the interal view can be anything and everything that
the rootkit wishes the OS to see. Neither of these views
LA similar observation has led to the examination of reliapiit kernel have to be remotely accurate. They simply have to satisfy
data structure signatures for memory forensic analysis.ifigly, when o rrent expectations, such as those of the underlying OS, or
a signature involves a member that is not being used by the Qfelker . . .
an attacker could potentially misuse this member to evade oeausl ~fundamental assgmptlons, such as those of |r_1trospect|0n.
signature-based analysis. One such example is the backwartpin However, the reality, i.e., thactual view, of what is going

the all task list [10]. on in the system can be hidden away from all parties.

C. Multifaceted Combo Manipulation LKM, or other delivery mechanism to gain root access, this

A third approach is to combine the above two attacks scheme proceeds to overwrite thpse instrgctions that acces
together to launch a multifaceted combo attack. This is .da‘a Of. interest and detour their execution. When. thos.e
possible because there is no limitation in the presented!nStr“Ct'OnS are to be executed, the detoured executidn wil

attacks restricting them to be mutually exclusive. Specif- include aintionaI logic to decide how thos«_a instructions
ically, a combo attack would involve first redirecting all should be instrumented to reflect thigernal view of the

accesses of the specific data, followed by switching the}gulr(;ent kernell datac.j For exalt"mple, when certamhmember
various sibling members with one another, while simulta- lelds are re-located to another memory page, the corre-

neously adding and removing unused member fields to thesponding kernel data-accessing code will be redirected to

various data structures. An introspection tool would have t tahccesz_thetdgtg ftrom the g‘fg Iocatlon. ALSO' wheg sto:jlnlg
first untangle the complex interweaved web of semantics e redirected data (e.g., S, port numbers, and module
encompassing each structure (since all the introspectionnames)’ we can further obfuscate this data to foil potential

tool's templates now have become useless). Then it wouldanaIySiS attempts. For instance, the data can be split_ apart
have to try to derive and understand the appropriateSUCh that PIDs do not appear close to one another in the

semantics of the various data structures. After it has redirected form, strings can be altered programmatically t

; : . _foil statistical analysis, and so on.
successfully realized such a hard goal, the introspection D .
tool is finally left with the reality that none of this data We note that this scheme can be detected if a VM

is even being used because it has all been redirected. wdhtrospection tool chooses to examine the memory loca-

notice that this particular process is remarkably simitar t tions containing the original instructions and verify keim

the existing arms-race between malware obfuscation and[:Ode integrity. Specifit_:ally, a 1ool that carrie_d out such
reverse engineering. As a result, DKSM can make things an analysis would e‘?‘s"y detect the compromise of kernel
arbitrarily hard for analysis. code. And by analyzing how the code is modified, the tool

This combo attack interestingly puts the attacker in the rr}at)rg piece togetherI? re:tlt;]/ 1ew Oft the s;:jstem, m?.epetr)\ den(;
position of a “defender”. One is, in essence, defending Ott i V?Atllfhus ristl;] S %f € ?yn axfall(n szlergatn |csd ase
against the introspection tool's attempts to find out the 3U'aCKS. ough the obiuscations of kernel data and non-

truth. The various stages of the attack can be viewed ascontiguous layout of kernel objects can make this task

layers of “defense” that the introspection tool must break significantly harder, a persisteqt introspeqtion tool may
through to find the truth, only to be presented with another gventually defeat these ot_n‘uscatlons. More importarity, t
false and even more complicated set of circumstancesNtrospection tool would infer that the guest kernel code

to have to deal with. In addition, certain implementation was compromised, thus exposing the attack.
details such as shadow scheme and return scheme (Sectio ghadow Scheme
[I1) make such an attack very attractive as it can not only

effectively subvert all existing introspection tools, faso From another perspective, our second scheme aims to
significantly raise the bar for next-generation ones. use a shadow memory implementation to increase the

attack’s stealthiness and thus make it harder for detection
[ll. Implementation Strategies Particularly, a shadow memory implementation is a specific

))) _ form of split memory where data and code are separated
In this section, we present different schemes with fom one another. Our scheme is inspired by available split
yaryir_lg_ ste_althine_zss guarantees and respective prototyPmemory systems [18], [19], [22], [24] on the86 architec-
ing difficulties to implement the proposed DKSM attack. tyre and misuses this technique for our attack. Specifically
Specifically, we first examine @irect scheméhat achieves i 3 shadow memory implementation, one can exploit the
the DKSM effect by directly changing existing kernel code caching mechanisms of the6 architecture to present one

that accesses the kernel data. Then we preseiadow view of memory mapped in cache, while the original code

achieve the same goal (e.g., by hijacking kernel control potentially mislead introspection.
flow without tampering with existing kernel code). We then Note this shadow mode can facilitate (redirection-
present areturn schemethat misuses existing code via based) semantics manipulation and make it harder for
the use of return-oriented programming [20], [12]. Each jnrospection tools to handle. In particular, if the origfin
scheme builds upon the previous one. In the following, we jnstryctions that would have been overwritten for detagirin
also examine the strengths and weaknesses of each schemg, direct mode are examined, they appear to be completely
A. Direct Scheme pristineT and u_nc_hanged. In shqdow mo_de, one basic way
to achieve this is to tamper with function pointers (not
In the direct scheme, the kernel code which accesses theode) in the related execution paths that contain those
data is directly manipulated. Using an exploit, malicious instructions and redirect their execution to our own code

Algorithm 1: TLB Poisoning overcomes this challenge by leveraging certain protection

Input: Splitting Page Address (addr), Pagetable bits associated with page table entries. In particular, by
Entry for addr (pte) marking the original code pages not executablX)(when
they are to be executed, a page fault occurs, and a small
1invalidate_instr_tlb (pte); piece of logic can execute to dictate the values that are
2 pte =t he_shadow_code_page (add); supposed to be seen by whatever is accessing these pages.
3 mar k_gl obal (pte); More specifically, if the pages are simply read or written
areload_instr_tlb (pte); to, these operations go through to the page containing
5 pte =t he_ori g_code_page (addr) ; the original values with no interception; however, for an

instruction fetch, the ITLB will need to be reloaded to point
to the memory page with the DKSM code. Therefore, one

to launch the attack. Although this scheme still requires 1ast important thing to handle is to re-gain the control to
the execution of our own attack code, it avoids the need tofeload flushed TLB entries.
modify existing kernel code. In the following, we examine ~ There are two main approaches to achieve that: (1)
an advanced split-memory implementation that has beenThe first approach can directly modify the IDT (Interrupt
used in existing kernel rootkits, i.e., Shadow Walker [22]. Descriptor Table) to hijack the page fault handling routine
Specifica”y, Sp"t_memory is achieved by |nte|||gent|y One limitation of this approach, however, is that the intro-
poisoning the TLB cache for better stealthiness. This is Spection tools can be enhanced to spot the modification of
made possible due to the presence of separate instructiothe IDT table. To mitigate that, we can choose to hijack
cache (ITLB) and data cache (DTLB) on commodi§6 a function pointer that is located in the execution path of
processors. Both instruction fetch and data access ardage fault handling. The misuse of such a function pointer
eventually achieved through ITLB and DTLB, respectively. is significantly more stealthier than the direct modificatio
The separation of ITLB and DTLB is intended to achieve Of IDT (that has well-known values). (2) The second
better performance as instruction and data typically haveapproach involves the debug registers (DRs). Specifically,
different locality properties. In Algorithm 1, we show how ©ne can use them to regain the control by placing break-
this split-memory can be realized. points either on the page fault handling routine or those
Basically, the algorithm invalidates the previous ITLB instructions that access the kernel data of interest. By
entry (this is achieved by the step 1) that points to the doing so, we can minimize the changes to the system.
origina| code page and reloads it with the new shadow The dOWnSideS, however, include the limited avallablllty (0]
code page. The code in the shadow page implements thdRs (which can greatly restrict the scale of launching the
DKSM attack (by redirecting certain member fields of DKSM attack) and the pOSSlbI'lty that the contents of these
kernel data structures to some other locations). For theDRs can be inspected as well to detect such anomalies.
purpose of TLB poisoning, the _shadow code page will not C. Return Scheme
immediately contain a five-bytgnp (for the purpose of
detouring the execution to the DKSM code as in the direct Our next strategy is to apply the notion of return-
mode). Instead, it will contain another spediap which oriented programming [7], [12], [20] that can effectively
returns back to the insertion point where the Algorithm bypass existing code integrity protection schemes. As
1 is executed. This specid@inp is intended to facilitate pointed out earlier, thalirect schemeneeds to modify
the step 4 in two ways: Firstly, it causes this page to existing kernel code and the modification will likely be
be loaded into the ITLB. Secondly, it returns the control trapped by code integrity protection schemes. Similarly,
back to the insertion point and resumes the execution tothe shadow schemeequires the execution of attack code
the redirection code for DKSM. Considering the entries in the kernel space and the execution of unverified attack
in the TLB cache could be possibly invalidated by context code, though common in compromised systems that are
switches, the algorithm marks the global bit to prevent this being introspected, will be prevented if the kernel code
from happening (step 3). integrity is strictly enforced. To bypass these protection
In the meantime, due to the limited size of ITLB mechanisms, we naturally turn to return-oriented program-
and DTLB caches, the cached entries, under TLB pres-ming so that the proposed DKSM attacks become harder
sure, could be replaced due to the side-effect of anotherto defeat.
unrelated memory access. In order to have a reliable Note that in our prototype, we did not implement this
split-memory scheme, there is a need to re-populate thereturn scheme. The reasons are that return-oriented pro-
invalidated entries in the cache after they are replaced.gramming can achieve Turing-completeness in performing
Note a persistent TLB cache is possible if it is managed by malicious computation and existing research efforts have
software. However, if managed by hardware, this becomesalready successfully developed a return-oriented program
much more challenging. The Shadow Walker rootkit [22] ming compiler [7], [12], [20]. Considering the main pur-

pose of this work is to expose the fundamental limitation system emulator, QEMW.9.1. By logging every mem-

of existing introspection techniques, we use a loadableory access, the modified QEMU is used to show those

kernel module to implement the other two modes. In this instructions that access a given list of memory locations

way, we can still model the same level of access a DKSM (containing the kernel objects of interest). We also point

attack would have, ifimplemented based on return-orientedout that debug registers (DRs) can be used to profile these

programming. locations in a production system, avoiding the need of a
.) modified QEMU.

IV. Prototyping and Evaluation After identifying the relevant instructions, we then

We have implemented a proof-of-concept DKSM pro- launch the DKSM attack by loading a kernel module.
totype and used it to attack a Ubunfu04 system to When being loaded, the module initializes a shadow
demonstrate its capability to control the external view copy of the affected kernel objects and patches all these
presented to introspection tools (e.g. XenAccess) as well a instructions in memory to redirect their accesses. With
the internal view presented to various system managementhe redirection, the related memory accesses will go to
routines (e.g., top, ps, Ismod, and netstat). In the follgwi the shadow copy instead of the original copy. In the
we present our prototyping details, three representativefollowing, we discuss three representative examples in

case studies, and related performance evaluation. detail on how a DKSM attack can be used to manipulate
running processes, loaded modules, and active network
A. Prototyping Details & Case Studies connections, respectively.

1) Attack I: Process ManipulationTo manipulate run-
ning processes, we choose one important member field,
i.e., PID, to demonstrate the DKSM attack. As described
earlier, we first need to find out those memory addresses
that contain the PID field and then profile the guest
execution to locate all kernel instructions that access the
PID field. At first, we thought this could be challenging
due to the dynamic nature of running processes (as new
ones will be dynamically created). Fortunately, it turns
out that the kernel treats its access of the PID field in
a generic way. Specifically, if we just profile the memory
access for one particular PID, the identified instructions
will be applicable for all PIDs in the system. This is not
surprising since commodity OS kernels need to support
attacked by existing kernel rootkits. Consequently, our ?Xnﬁm; ;(;rnnge:c rgg{etﬁfkeArsn; ifs,stlrj:’ctggEgetoalt\;]v:):cfg;teg

goal here is to misrepresent the information about running kernel objects. For our redirection purposes, there is d nee
processes, loaded kernel modules, and active networl&0 maintain al : 1 mapping between the,original PID

connections. (2) Once these kernel objects are determlnedand the corresponding shadow copy. Accordingly, when

;;?Il\?vvi\lll_ u:ngESSt'%ZS'Se \élV:tZt ;rrié:‘jégﬁte_ghg‘rsetrgfgorvioshadowing the related PIDs, we will have to emulate the
' original kernel instruction, derive the exact PID that is

complementary approaches: The_ first one s o analyzebeing accessed, lookup tihe 1 mapping, and then redirect
the kernel source code and identify those instructions thatthe memory access.

will access the kernel objects of interest. The second . . . -
When an external introspection tool applies the original

one is to profile the execution of OS kernel and locate data struct " late to infer th ¢ state. it
every instruction that touches the chosen kernel objects. ata structure as a template to infer the guest stale, |
will be accessing the original memory locations. However,

In our prototype, considering the convenience of system :
development and our past experience, we take the seconHﬂ'eSe Io_catlons areo Iongerused by_the kernel. In other
words, if we simply write an arbitrary number value

approach. Specifically, we modified the open-source WhOIe(e.g., 42) into the original PID field, from that particular

2For the TLB-based shadow scheme, our prototyping experience Moment, introspection will report the PID as 42.
indicates there exists a subtle architectural issue tHattafthe TLB As a running example, the PID field of thimit
flushing. Specifically, there exist a vast variety of virtoechine monitor . .
implementations and running modes. Some of them will involve ddvo process (PID 1) on our Ubuntu 9.04 install is lo-

switch (from the guest to the virtual machine monitor and vieesg) in cated atOxdf8301ec. This memory address is derived
the process of re-gaining the control (Section Ill). A wodditch for from the task struct structure of theinit process (|0_

non-para-virtualized guests will flush the TLB, leading tonecessary "
performance penalty. Fortunately, it is being avoided irené@rocessors cated atOxdf83000O) and the offset of the PID field

with tagged-TLB support [4]. in task struct (Oxlec). With this address, we then exer-

In our prototype, we first prepare all kernel data struc-
ture manipulation routines in a loadable kernel module
(LKM). To launch the DKSM attack, we either directly
modify the existing kernel code (the direct mode) or
indirectly hijack the control flow (the shadow mode) and
then invoke these routines in the LKM to manipulate kernel
data structures. For simplicity, we focus our DKSM attack
on redirection-based semantics manipulation in the contex
of direct modé

Before launching a DKSM attack, there are two ques-
tions which must be answered. (1) The first one is “what
are the specific kernel data structures which should be
chosen for the DKSM attack?” To answer this question,
we select important kernel objects which are frequently

el [(=0 (e = SOt = [=T (50
Eile Edit wiew ITerminal Tabs Help Eile Edit wiew ITerminal Tabs Help
roct@inside:—# ps -A root@outside:/# process-list 5

PID TTY TIME <MD L 1] e

00:00:00 init 1] pDirect

00:00:00 kthreadd 2] Kernel

00:00:00 ksoftirqd/e 3] Structure

00:00:00 watchdog,e 5] Manipulation:

00:00:00 events/ /0 8

ee:e0:00 khelper 12] Subwerting

00:00:00 asyncsmgr 2171 wirtual

00:00:00 kintegrityd/se L 3a] Machine

kblockdse 55 Introspection

ee:e0:00 kseriod s9

00:00:00 khungtaskd 144

ee:00:00 pdflush >33

ee:ee:00 pdflush 3377 Fun

00:00:00 kswapde 6161 and

00:00:00 aios0 [9871 Profit

00:00:00 cryptose

ee:00:00 kjournald

ee:00:01 udewvd

VONOUWAWNKD

for

NN NN
0]
0]
0]
0]
<]
<]

25841 by

960 tty4d 00:00:00 getty)
261 Tttys 00:00:00 getty 6765] Sina
2967 Tttty 00:00:00 getty 1e946] Bahram,
o7e tty3 00:00:00 getty 17711] Xuxian
973 tty6 00:00: 00 getty [28657] Jiang.
1883 7 e@:008: 868 syslogd 46368] Zhi
1821 7 00:00:00 dd ¥5025] wang,
1823 7 ee:88: 868 klogd 121393] Mike
1941 7 ee:00:060 dbus-daemon 196418] Grace.
1e62 7 ee:00:060 sshd 3178111 Jimnku
1114 7 00:00:080 atd 514229] Li
1139 7 e0:00:068 cron 832040] and
1158 7 00 :00:00 apache22 [134626929] Dongyan
1159 ? 060:860:808 apache2 2178309] Xu
116@ 7 00:00:00 apachez 3524578] ==rrsssses
1179 7 0e:00:88 apachez 57028871
1234 ttyl 00:00:00 getty 9227465]
1235 ttyse 0E:00:00 getty 149303521
root@inside:—# [] rooct@outside: /# []
(a) An inside view of running processes frqms (b) An external view of running processes frofenAccess

Fig. 2. A DKSM attack against running processes

cise possible code paths in the profiler (e.g., by running their consistency (thus avoiding the view comparison-
commands such aps top, cat, /proc/l/sched and so based detection [13]). An astute reader may also observe
on) to identify related PID-accessing instructions. The that the PIDs in Figure 2(b) actually follow the Fibonacci
profiling results indicate that there only exist two lo- sequence, showing the fact that there is no synthetic
cations: 0xc01bf798 (in kernel functionnext tgid) and limitation (other than the actual 32-bit width restrictjon
02c0117a52 (in proc_sched show task. With the help of when launching the DKSM attack against the 32-bit PID
a disassembler, these two instructions are presented afield of the task. Our experience confirms that similar steps
follows: can be used to handle the redirection of almost all other
0xc01bf798: 8b 80 ec 01 00 00 nov Oxlec(%ax), %eax data types.
0xc0117a52: 8b 81 ec 01 00 00 mov Oxlec(%ecx). veax 2) Attack II: Manipulating Loaded Modulesin this
After identifying these two instructions, we can then experiment, we apply the DKSM attack to manipulate
load the LKM to create a shadow copy of the PIDs Of the views about loaded kernel modules. Specifically, we

all running processes and then replace these two with achgose the module name field to demonstrate our attack.
jmp to our instrumentation code. Our instrumentation code Regirecting a name string is similar to, but slightly

essentially performs the memory access redirection from yiterent from, the redirection of non-string types. In
the original memory location to the corresponding shadow paticylar, most of our previous steps remain the same. We
copy. During our prototyping, we experienced several firt fing out the memory address that contains the module
caveats when these instructions were being patched. Fof5mes. Using a kernel modu139cpas an example,
example, the instruction that accesses the kernel object ofis name field on our system is located (ate084d5cc.
interest may be less than five bytes in length, thus it is gimjjarly, this memory address is derived from the module
unable to accommodate the five-byte-Igngpinstruction. gyycrure for theB139cpmodule (located abre084d5¢0)

As a result, subsequent instructions will need to be over- .o mpined with the offset of the name field in the module
written, which means our instrumentation code will have gt cture (zc). Just as we did previously, we exercised

to compensate for_ the addition_ally overwritten instrucsio possible code paths in the profiler (e.g., by running com-
as a part of the mstrumentgtlon. After t_he_lt,_we need t0 mands such atsmodand cat /proc/modulesto identify
seamlessly return the execution to where it is jumped from. ,g|ated module-name-accessing instructions. The prgfilin
In our experiment, after loading the DKSM module to results indicate that there only exists one instruction at
launch the attack, we run the commaps -Ato get an 0xc0248131 (in the string routine):
internal viewof running processes and use fhrecess-list 0xc0248131: 89 e5 mov %sp, %ebp
command that comes with XenAccess to obtairexternal We can see that thstring function is responsible for
view. For comparison, the results are shown in Figures the module name access. However, if we overwrite this
2(a) and 2(b), respectively. We point out that the distorted function, we would intercept the checking of every single
information shown in Figure 2(b) “dramatizes” the fact that string that the kernel deals with. This is certainly not a
the external view of the VM can be arbitrarily changed tenable and efficient solution. Instead, what needs to occur
and in practice, the attacker can easily create a moreis the movement of our redirection to one semantic level
realistic yet deceptive view. In particular, the attackenc higher and for us to identify the corresponding call sites
distort both internal and external views while maintaining that invoke thestring routine. As a result, we identify

Flle Edit Wiew Terminal Tabs Help Fle Edit View Terminal Tabs Help File Edit Wiew Terminal Tabs Help
root@inside:~# lsmod root@inside: /# lsmod root@utside: /# module-list 5
Module Size \Used by Module Size \Used by hello

8139too 21296 © hello 21296 0 world

8139cp 18188 © world 18188 @ root@outside: /# |:|

root@inside:~# [] | root@inside: /# []

(a) An inside view of loaded modules from the (b) An inside view of loaded modules from the (c) An external view of loaded modules from
first run of Ismodbefore launching the attack second run ofsmodafter launching the attack XenAccessfter launching the attack

Fig. 3. A DKSM attack against loaded modules
the m_showroutine. The related instructions are located that are being affected by the attack, though the underlying

at 0zc013c¢542 (shown below). By overriding the value of semantics might be vastly different, they share a limited
eax we can successfully control how the module names set of common attack mechanisms. In the following, we

are eventually printed. only present an abbreviated description of this experiment
0xc013c542: 83 cO 08 add $0x8, Yeax In our experiment, we choose to hide an active net-
0xc013c545: 89 44 24 08 nov %ax, 0x8(%esp) work connection as the demonstration. We found that the

tcp4_seq showfunction is the one that iterates across the
list of network connections. Therefore, a simple attack
on the iteration code is designed to achieve the intended
results. After the attack, we ran theetstatcommand to

list the TCP connections in the LISTEN state and wrote
a network-listutility based on XenAccess to list the TCP
at 0zc0185651 in the get task comm function. In our ports as well as th'e applications that own these pqrts. The
instrumentation, we simply examine the current content in 'eSults are shown in Figures 4(a) and 4(b), respectively. As
edx use it to locate the corresponding shadow string, ande ¢an see, one active TCP port, i.e., 80, is hidden from
reload it with the shadow copy. By doing so, we can not the external view.

only handle both instructions, but also avoid redirecting a
instruction that occurs in a very frequently executed loop.

If we look back at the previous attack on running
processes, there are two instructions (at0249959 and
0zc02481bc) that access the process name field. They
appear in frequently used routinestrnlen and string.
Interestingly, by moving our redirection one level higher,
we identify a common instructionafld $0x2d4,%edx

B. Performance

0xc0249959: 80 38 00 cnpb $0x0, (%eax) DKSM DKSM

0xc02481bc: Of b6 04 13 novzbl (%bx, %edx, 1), %eax (NO) (YES) Overhead
To demonstrate our attack, we first run the command Apache > =05

Ismodto get an authentiinternal view of loaded mod- 911.341| 886.483 '

(#reqgs/sec)

ules. Then we load the DKSM module, re-run the same Kernel 247.788| 248.777| 0.4% (Usen

command to get a manipulatédternal view. After that, Compilation [189.835| 194.556 | 2.5% (System)

we also use themodule-listcommand that comes with (seconds) [449.93 | 452.35 | 0.5% (Total)

XenAccess to obtain amxternal view. The results are
shown in Figures 3(a), 3(b), and 3(c), respectively. From
the figure, our attack module successfully controls both To evaluate the performance impact from the proposed
internal and external views. It is important to note that a DKSM attack, we use a default Ubuntu 9.04 32-bit install
number of introspection-based tools [11], [13] have beenon a standard Dell Optiplex 760 desktop machine. The
developed to compare its external view with an internal desktop has 4GB of memory and an Intel Core2 Quad
view and any discrepancy will indicate the presence of a CPU Q9550 processor, running at 2.83GHz. We choose
hidden malware. The coordinated control of both internal two performance measurement tasks: the Apache HTTP
and external views is needed by DKSM to foil such a throughput benchmarking tool and kernel compilation. Our
Cross-view comparison. HTTP benchmarks were performed with a one minute du-
3) Attack Ill: Manipulating Network Connections: ration, at a concurrency level df The kernel compilation
Next, we present our DKSM attack against network con- runs consist of compiling the kernel ten times and taking
nections. Note that the manipulation of network connection the average of the reported time. Each measurement task
information is remarkably similar to what we have dis- is performed twice: one with DKSM disabled and another
cussed so far. Particularly, the redirection of port nummber enabled. When enabled, the DKSM attack achieves the
is almost the same as the redirection of the process’manipulation of running processes, loaded modules, and
PID in Section IV-Al. The manipulation of the name of active network connections (Section IV-A). We summatrize
a running process which owns a network connection is our results in Table 1.
extremely similar to the process/module name redirection From the table, we can see the DKSM-infected system
in Section IV-A2. This similarity highlights an intriguing causes a 2.7% slowdown in the measured HTTP through-
aspect of any DKSM attack: For different kernel objects put. In our experiments, we noticed up to a 5% variation

TABLE I. Summary of experiments

|=
File Edit Wiew Terminal Tabs Help

root@inside:~# netstat -ano | grep LISTEN | grep tcp
tcp 0] 0 0.0.0.0:80 0.0.0.0:%
tep 0] 0 0.0.0.0:22 0.0.0.0:%
root@inside:~# D

GinEen

ssssss

LISTEN
LISTEN

of f (0.00/6/0)
of f (0.00/6/0)

‘ Port P

(a) An inside view of network connections fronetstat (b) An external view of network connections frokenAccess

Fig. 4. A DKSM attack against network connections

simply across multiple sets of runs. For the kernel compi- first place. Unfortunately, there are no working systems

lation, the overhead of the total elapsed time to compile [17] developed yet to guarantee the kernel CFI, due to

the kernel is 0.5%. Again, a higher variation was noticed the fact that the enforcement of kernel CFI is much

across multiple compilation runs, leading us to firmly more challenging than the user-level counterparts [3] (e.g

believe that this overhead is statistically insignificant. because of the support of multi-tasking and asynchronous
)) interrupts in commodity OS kernel design). Alternatively,

V. Discussion weaker form of semantic integrity [5] can be used to detect
In this section, we re-visit the nature of the proposed the violation of kernel data invariants. Recent efforts [6]
DKSM attack and aim to better understand the limitations Nave made encouraging progress toward this direction by

of existing introspection tools. This analysis is necegsar inferring these invariants. _
as it can lead to countermeasures that can be potentially More fundamentally, if we re-examine the nature of
deployed to defend against DKSM and insights for the de- Introspection, an gxtgrnal introspection tool aims .tO an-
velopment of next-generation, reliable introspectionigoo ~ @lyze€ @ guest which is not trusted. However, it still de-
In the various instantiations of DKSM (Section Il), we Pends on the guest-maintained memory state and expects
can see that the success of DKSM is directly proportional the untrusted guest to respect the kernel data structure
to its scope and capability of kernel data access. Thistemplates, therefore leading totiaust _mversmnprobl_em.
ratio directly translates into the efficacy of the attackr Fo 1hiS problem fundamentally explains the effectiveness
example, if DKSM was unable to redirect or manipulate Of our attack and equivalently the fragility of existing
a particular field or data structure, then it would be much Introspection solutions. For the very same reason, we
harder to attack such kernel data, and consequently it migh@!SO believe that existing memory snapshot-based memory
be unable to foil various types of introspection analysis. @nlysis tools and forensics systems [1], [8], [10] shaee th

This results in two potential limitations of DKSM which ~Same limitation. o

can be leveraged for defense purposes. From another perspectlve, in this paper, we have so far
only explored the spatial aspect of DKSM (i.e., the layout
of a data structure), not the temporal aspect. Consider-
ing the dynamics of a guest OS, an introspection-based
analysis of a running guest typically requires a period

Unmanipulatable structures The first one involves
the inability of DKSM to redirect certain structures thag ar
specified and used by the CPU directly. For example, the
global descriptor table (GDT), the interrupt descriptdéa ¢ time to complete and is thus temporally limited in its
(IDT), the task state segment (TSS), and so forth. These., ity to obtain a consistent view. To partially addres
structures, once loaded into the CPU cannot be changedy o some introspection tools such as VIX [16] choose
implicitly. To change them, an explicit reload operation ¢, ha.se guest execution while performing introspection
is necessary. For example, thdt instruction will reload activities. However, this adversely perturbs the executib

the IDTR to a given memory address. Fortunately, theseyhe gyest VM. Further, the asynchronous and independent
malicious reloads can be easily detected and defeatednayre of external introspection still implies it may not be

Similarly, for an introspection tool, it is important to gta
from the unmanipulatable data structure as a base and the
gradually expand from it to reliably infer other guest state

Untamperable control flow To influence the kernel's
interpretation of a particular kernel object, DKSM needs to
maintain its ownactual view on how the object should be
accessed. To do that, there is a need for DKSM to hijack
the control flow, either by directly modifying existing
kernel code (the direct mode) or indirectly tampering with

mutually excluded when the guest is running in a critical
Qection, resulting in an inconsistent view. It is part of our
future work to assess the extent and scale of this limitation

VI. Related Work

VM Introspection can be executed in two different
ways. The first one involves the introspection completely
running outside of the guest. Several examples of the
external approach exist [2], [5], [11], [13], [14], [16],

a function pointer (the shadow mode) or a return address[23]. This approach benefits from a much stronger level

(the return mode). As such, if a full kernel control-flow

integrity (CFI) guarantee can be made about a system,

such a guarantee will disallow DKSM to execute in the

of isolation, and thus protection. Unfortunately, because
this introspection is performed outside of the guest, its
view is also an external one and cannot benefit from the

implicit advantages afforded to the internal view. Namely, [5] F. Baiardi, D. Cilea, D. Sgandurra, and F. Ceccarelli. Mea-
an external view has to bridge a significant semantic gap ~ suring semantic integrity for remote attestation.Proc. of
[9]. This results in a much more complex implementation the 2nd Conference on Trusted Compufiagoo.

. . . oy . [6] A. Baliga, V. Ganapathy, and L. Iftode. Automatic inference
of introspection techniques with its VMM-level view of the and enforcement of kernel data structure invariant®rbc.

guest. Several systems such as Livewire [11], VMwatcher of the 2008 ACSA(pages 77-86, Washington, DC, 2008.
[13], and VMwall [23] have to reconstruct the semantics of [7] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When

what is executing within the guest and thus are vulnerable ~ Good Instructions Go Bad: Generalizing Return-Oriented
to the proposed DKSM attack. Programming to RISC. IrProc. of the 15th ACM CGS

. . . 2008.
The second approach to VM introspection is to take [8] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and

a hybrid approach by having two entities, one inside and X. Jiang. Mapping Kernel Objects to Enable Systematic
another outside. The goal here is to obtain the advantages Integrity Checking. InProc. of the 16th ACM CGS009.
of having a semantic-rich view of the guest with the help [8] P- M. Chen and B. D. Noble. When virtual is better than

: ; ; : : . real. InProc. of the 8th HotOS Workshpp001.
of an internal entity while still protecting the internal 10] B. Dolan-Gavitt, A. Srivastava, P. Traynor, and J. Giffin.

entity from being corrupted. SIM [21] is a recent research Robust Signatures for Kernel Data Structures.Phoc. of
system that is moving towards this direction. However, the 16th ACM CCSpages 566-577, 2009.

in its current implementation, the current internal agent, [11] T. Garfinkel and M. Rosenblum. A Virtual Machine
though running inside the guest context, still suffers from Introspection Based Architecture for Intrusion Detection. In

th i it is desi d tt | Proc. of the 2003 NDS3-ebruary 2003.
€ semantic gap as It Is designed not to rely on any o1 g Hund, T. Holz, and F. Freiling. Return-Oriented Rootkits:

existing kernel code. As such, it is still vulnerable to the Bypasssing Kernel Code Integrity Protection Mechanisms.
proposed DKSM attack. From another perspective, as it is In Proc. of the 18th USENIX Security Symposi2@09.
running inside the guest, it has unique advantages that cafl3] X. Jiang, X. Wang, and D. Xu. Stealthy Malware Detec-

: . tion through VMM-based "Out-of-the-Box” Semantic View
be potentially leveraged to mitigate the DKSM attack. We Reconstruction. IrProc. of the 14th ACM CGR007.

plan to explore this possibility in our future work. [14] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-
. Dusseau. Antfarm: Tracking Processes in a Virtual Machine
VII. Conclusion Environment. InProc. of the 2006 USENIX Annual Techni-
In this paper, we have shown that current VM introspec- cal ConferenceBerkeley, CA, 2006.

tion techniques are subject to an attack called DKSM. By [15] L. Litty, H. A. Lagar-Cavilla, and D. Lie. Hypervisor
yiolating their basic assumption about the use of underly- glrjopc?oor; tfr?er Bﬁ? téfé/:]r}gre?]%\gegg S'iﬁ?ﬁ;'”%ﬁ&iﬁ,%& In
ing kernel data structures, a DKSM attack can change the[16] K. Nance, M. Bishop, and B. Hay. Virtual Machine
syntax and semantics of kernel data structures in a running Introspection: Observation or Interferencé2EE Security
guest. We have developed a proof-of-concept prototype _ and Privacy 6(5):32-37, 2008. _

and used it to manipulate important system information [17] N- L. Petroni, Jr. and M. Hicks. Automated Detection of

(e runnin rocesses. loaded kernel modules. and ac- Persistent Kernel Control-Flow Attacks. Rroc. of the 14th
G- gp , ' ACM CCS 2007.

tive network connections) to successfully foil existing [18] R. Riley, X. Jiang, and D. Xu. An Architectural Approach

introspection tools into reporting false information. By to Preventing Code Injection Attacks. Proc. of the 37th
exposing this fundamental limitation, we aim to examine 10] DRSgnzag)e(SJ?g;Afoéndeg?}(. Guest-Transoarent Prevention
the challenges as well as opportgnmes for.the devel_opmenl{ of Kemﬁl Rootki%é with VMM-Based Memgry Shadowing.
of next-generation, reliable VM introspection technigues In Proc. of the 11th RAID2008.

Acknowledgments The authors would like to thank the [20] H. Shacham. The Geometry of Innocent Flesh on the Bone:
reviewers for their insightful comments. This work was Return-into-libc without Function Calls (on the x86). In

. Proc. of the 14th ACM CCSACM, 2007.
supported in part by the US AFRL grant FA8750-09-1- [21] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi. Secure in-VM

0224 and the US NSF grants 0852131, 0855141, 0855297, ~ Monitoring using Hardware Virtualization. IRroc. of the
and 0952640. Any opinions and findings expressed in this 16th ACM CCS2009. -
material are those of the authors and do not necessarilyi22] S. Sparks and J. Butler. Shadow Walker: Raising the Bar

; For Windows Rootkit DetectionPhrack 11(63), 2005.
reflect the views of the AFRL and the NSF. [23] A. Srivastava and J. Giffin. Tamper-Resistant, Application-
References Aware Blocking of Malicious Network Connections. In

Proc. of the 11th RAIDBerlin, Heidelberg, 2008.
[24] P. C.van Oorschot, A. Somayaji, and G. Wurster. Hardware-

- Assisted Circumvention of Self-Hashing Software Tam-
[2] Xenaccess library. http://code.google.com/p/xenaccess/. per ResistancelEEE Trans. Dependable Secur. Comput
[3] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control- 2(2):82-92 2065 ' ’ '

flow integrity principles, implementations, and applications. [25] VMware. VMware VMsafe Security Technology.

ACM Trans. Inf. Syst. Secufi3(1):1-40, 2009. . Cal ;
[4] Advanced Micro Devices. AMD64 Architecture Program- C:;p;gmrhvlmware.com/technlcal resources/security/

mer's Manual Volume 3: General-Purpose and System In-
structions 3.14 edition, September 2007.

[1] Volatile systems. https://www.volatilesystems.com.

