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Abstract. Return-into-libc (RILC) is one of the most common forms
of code-reuse attacks. In this attack, an intruder uses a buffer overflow
or other exploit to redirect control flow through existing (libc) functions
within the legitimate program. While dangerous, it is generally consid-
ered limited in its expressive power since it only allows the attacker to ex-
ecute straight-line code. In other words, RILC attacks are believed to be
incapable of arbitrary computation—they are not Turing complete. Con-
sequently, to address this limitation, researchers have developed other
code-reuse techniques, such as return-oriented programming (ROP). In
this paper, we make the counterargument and demonstrate that the orig-
inal RILC technique is indeed Turing complete. Specifically, we present a
generalized RILC attack called Turing complete RILC' (TC-RILC) that
allows for arbitrary computations. We demonstrate that TC-RILC sat-
isfies formal requirements of Turing-completeness. In addition, because
it depends on the well-defined semantics of libc functions, we also show
that a TC-RILC attack can be portable between different versions (or
even different families) of operating systems and naturally has negative
implications for some existing anti-ROP defenses. The development of
TC-RILC on both Linux and Windows platforms demonstrates the ex-
pressiveness and practicality of the generalized RILC attack.
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1 Introduction

Computer systems are under constant threat by hackers who attempt to seize
unauthorized control for malicious ends. One popular method of attack is code
injection, in which the attacker injects machine code into the target application’s
memory, then exploits a software bug to divert control flow to the injected code.
Recently, code injection has been largely mitigated with the proposition and de-
ployment of the W& X scheme, wherein hardware and OS features are employed
to guarantee that writable memory pages cannot be executed.

Because of this, attackers have turned to code-reuse attacks, in which legit-
imate code is reused for malicious purposes. The simplest and most common
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form of code-reuse attack is return-into-libc (RILC) [1]. In RILC, the attacker
arranges for the stack pointer to point to a series of malicious stack frames in-
jected into the program’s memory. When the program returns from the current
function, control flow is redirected to the entry point of another function chosen
by the attacker. The stack frame also contains necessary function arguments, so
that the function is executed with attacker-supplied parameters. Moreover, such
calls can be chained, allowing the attacker to execute a sequence of arbitrary
function calls [1]. This capability is most commonly used to execute mprotect ()
to disable W@ X protection or system() to launch another program.

Though the RILC technique is indeed powerful, it is widely believed that a
RILC attack is capable of only linearly chaining multiple functions, but not ar-
bitrary computations—i.e., it is not Turing complete [1-6]. For example, in the
seminal ROP paper by Shacham et al. [2], it is explained that “in a return-into-
libc attack, the attacker can call one libc function after another, but this still
allows him to execute only straight-line code, as opposed to the branching and
other arbitrary behavior available to him with code injection”[2]. This common
belief motivated researchers to develop a new code-reuse attack, i.e., return-
oriented programming (ROP), in which a similar stack exploit is used to weave
together small snippets of code called gadgets.! Given a sufficiently large code-
base (such as the ubiquitous libc), ROP has been shown to be Turing complete.
Since the introduction on x86, there has been a flurry of research that apply
ROP to other platforms (including SPARC and ARM) and build ROP-based
malware to subvert kernel integrity, bypass software-based attestation schemes,
compromise electronic voting machines, and more [7], [8], [9], [10], [11].

In this paper, we investigate the expressiveness of traditional RILC attacks
and make the counterargument that they are in fact Turing complete and there-
fore equal in expressive power to ROP. Specifically, based on the previous ca-
pability of calling one function after another (exhibited in traditional RILC
attacks), our extension uniquely combines existing libc functions to construct
arbitrary computations. We call this variant of RILC Turing-complete return-
into-libc (TC-RILC). This result directly challenges the notion that the tradi-
tional RILC attack is limited in expressive power.

In addition, because TC-RILC relies on the intended semantics of the func-
tions being used, we also show that it inherits one inherent advantage from
traditional RILC attacks over ROP: it is relatively straightforward to port at-
tacks between different versions (or even different families) of operating systems.
For example, the adversary can retarget their RILC-based Linux attack code to
any other UNIX-style operating system (or a Microsoft Windows attack code to
any other version of the Windows from Windows 95 to Windows 7). Specifically,
if an attack can be constructed from widely available functions (e.g., POSIX
standard functions that are common on virtually all Linux, UNIX, and Win-

! There is some dispute over the precise definitions of return-into-libc attacks versus
return-oriented programming. For clarity, in this paper we adopt the view that the
two are separate techniques which, though they use similar means, differ wildly in
construction.
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dows environments), such attack code can be nearly universal.? Our experience
indicates that the portability directly comes from traditional RILC attacks and
the implementation-specific data needed are usually the actual function entry
points and certain data structures. This is a stark contrast to ROP, wherein one
needs to implement a scanner to find all the gadgets again. In other words, mov-
ing a ROP attack to a different version of the same OS or a different OS family
requires re-identifying a complete new set of gadgets. Further, even though our
focus in this paper is to correct the record, and not about presenting TC-RILC
as an invincible threat to negate existing defenses, we note that because TC-
RILC attacks do not have certain peculiarities specific to ROP, our technique
naturally has negative implications for some anti-code-reuse defenses [4],[12],[13]
that target ROP.

Recognizing the evolving nature of arms-race between code injection attacks
and defenses, we believe it is important to fully understand the limits and ca-
pabilities of these attack techniques. By clarifying the expressiveness of RILC
attacks with this paper, we hope to rectify the previous misconception of its
capability and further spur research into better defenses.

To summarize, the contributions of this paper are as follows:

— First, we show that traditional RILC attacks can be Turing complete, dis-
proving the commonly held misconception that such attacks are inherently
linear and therefore less expressive than ROP.

— Second, we show that TC-RILC largely depends on the well-defined seman-
tics of libc functions instead of the low-level machine code snippets used by
ROP. As these well-defined semantics are consistently maintained and com-
patible among different versions or even different families of OSs, a TC-RILC
attack can be ported more easily across OS variants and families.

— Third, we demonstrate the practicality of this technique by implementing two
example exploits: a universal Turing machine simulator and an implementa-
tion of the selection sort algorithm. Together, these examples demonstrate
the expressiveness and practicality of the technique.

2 Traditional View of RILC Attacks (on x86)

Our work aims to demonstrate the expressive power of the traditional return-
into-libc (RILC) attack; thus, we adopt the same threat model and assumptions
as prior literature dealing with this technique. Specifically, the traditional RILC
attack requires that an attacker be able to place a payload into memory (i.e.,
onto the stack) and hijack the esp register (which essentially becomes the de-
facto program counter in RILC). Such assumptions are made possible by the
commonality of vulnerabilities such as buffer overruns and format string bugs.
In addition, the attack depends on the presence of functionality useful to the
attacker being present in the existing codebase. RILC, as the name suggests,

2 There is a caveat on the Windows platform as it is mostly POSIX-compliant, but not
fully POSIX-compliant. This distinction is explored in greater depth in Section 3.
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ESP

FUNCTI ON ADDRESS

ESP LI FTER ADDRESS

FUNCTI ON PARAMETERS

Fig. 1. Format of a malicious RILC stack frame. The esp lifter address corresponds to
the function’s return address, allowing sequential execution of functions.

leverages the vast catalog of functions present in the C standard library to fulfill
this requirement, as libc is dynamically linked to all processes in UNIX-like
environments.? Further, our threat model specifies that the vulnerable programs
are protected via enforcement of code integrity (i.e., the ubiquitous WeX policy),
negating the possibility of a direct code injection.

As mentioned above, executing a RILC attack requires the ability to over-
write the stack with arbitrary content via a buffer overflow, format string bug,
or similar vulnerability. The content written to the stack is composed of valid
(in regards to platform-specific calling conventions) but malicious function call
frames that are specially crafted by the attacker in order to achieve an intended
purpose. Once the stack has been populated with malicious content, the frame
pointer (esp) must be redirected such that the next frame accessed is the first
frame crafted by the attacker. There exist several methods by which this redirec-
tion can be achieved and the method often differs from one exploit to the next.
The example exploits presented in this work leverage a pop esp ; ret sequence
that exists as part of the function epilogue in the main method of a vulnerable
application; thus, stack pointer redirection is as simple as injecting the address
of the first malicious frame into the correct stack position.

As powerful as individual libc functions are, they are also highly specific;
thus, using a single libc function limits an attacker to only the most basic of ex-
ploits. However, there are techniques available to chain multiple libe functions|[1],
[14], including one called esp lifting [1]. This method operates by using small
instruction sequences to glue multiple functions (i.e., stack frames) together. In
particular, these instruction sequences are composed of some number of pop
instructions followed by a ret, which are rather common as they are used to
implement standard C function epilogues. By inserting the memory location of
such a sequence into the current stack frame’s return address, an attacker can
advance the stack pointer to the location of the next stack frame, thereby chain-
ing multiple functions together. This method was proposed in 2001 [1] as an
“advanced” RILC attack (at that time), which is being re-assessed in this paper
for its expressiveness.

The format of a malicious stack frame is shown in Figure 1. The first item
in the stack, located at the top of the frame, is the address of the function

3 Note that Windows environments also support a variant of this attack through the
Visual C++ Runtime (msvert.dll) and Windows core libraries (e.g., user32.d11),
which are linked to most Windows applications.
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to be executed. This is immediately followed by the address of an esp lifting
instruction sequence, which acts as the return address of said function. In this
way, the stack pointer can be immediately advanced to the next frame upon
return from the previously called function. The final entries in the frame are the
parameters to be passed to the function. Such a layout complies perfectly with
the C standard for function frames while still allowing the attacker to maintain
control of the exploit’s execution.

The operation of ROP is in some ways similar to that of RILC. Most ap-
parent is the use of the stack for program control. In addition, both paradigms
utilize the concept of found code segments (“gadgets”, in ROP parlance) in
order to perform arbitrary computations; however, the length and location of
these segments differ greatly between the two. Specifically, ROP typically uti-
lizes small segments (often only a few instructions long) located arbitrarily in
memory. These segments can be either code intentionally emitted by the com-
piler or, because instructions on the x86 are of variable length, unintended code
sequences found by jumping to an offset that does not lie on an instruction
boundary. On the other hand, RILC identifies segments solely by their intended
definitions, namely as pre-defined functions. The esp lifter could be an addi-
tional requirement, but one that is trivially satisfied, due to the nature of the
C calling convention. It is important to clarify that while there may be some
similarities between the esp lifter and ROP gadgets, the former was published
as part of (advanced) RILC attacks six years before ROP was even proposed,
and was in use even earlier. Also, the former serves only the basic purpose of
gluing multiple functions, not any particular functionality such as arithmetic or
logic pursued in the latter. In this paper, our re-assessment of RILC’s expressive-
ness only utilizes the ingredients behind traditional RILC attacks, which include
various legitimate libc functions and the esp lifter.

RILC has been long noted in the past as being capable of executing only
straight-line code, while ROP is capable of conditionally altering program flow
(e.g., [2,4]). As aresult, RILC is generally considered as being incapable of fulfill-
ing the requirements for Turing-completeness — a classification that severely lim-
its its expressive power and capabilities. This work attempts to correct this mis-
conception by providing proof of and methods for achieving Turing-completeness
by utilizing commonly-available POSIX functions. By doing so, we can better
understand the limits and capabilities of RILC and its comparison with ROP.

3 Turing-Complete RILC

In the traditional view, RILC is limited in its expressive power to perform ar-
bitrary operations. For instance, in a pure RILC attack, parameter data of a
function is static and needs to be pre-stored in stack before its execution. How-
ever, its return value is typically kept in eax, which makes it challenging to carry
over the result of one libc function to another. Most importantly, during the exe-
cution of a RILC attack, stack frames are unwound in linear order, which makes
it challenging to support conditional branching. Note that conditional branching
is an essential operation for a system to be Turing complete.
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In the development of TC-RILC, we have found a solution to the above chal-
lenges. Specifically, our solution is based on the observation that many functions
have side-effects which may modify memory (including the stack) or system state.
For the ease of presentation, we identify the functions whose side-effects are the
result of useful computations and simply call these functions widgets (analogous
to ROP’s gadgets). To demonstrate the Turing completeness of RILC, we define
a variety of essential classes of widgets that are needed to perform arbitrary com-
putation, and show that such widgets are available in commonly deployed code
(e.g., libc).* Tt is important to stress that widgets are literally entire functions,
and that they are being exploited for their intended side-effects.

As our attack refines the traditional RILC, the structure of launching a TC-
RILC is basically the same as in traditional RILC. That is, the injected buffer
is comprised of malicious stack frames containing function entry points and pa-
rameters. However, one key difference is the specific functions that have been
chosen and misused in a unique way that makes it possible to support arbitrary
operations. Specifically, we find that widgets are available in commonly deployed
code and can be efficiently misused to solve the two problems listed above. First,
to achieve persistent data across function calls, we observe that widgets can be
found that use pointers to read or write to locations within the attacker’s stack.
Therefore, these functions can “forward copy” the result of one widget into a fu-
ture widget’s input parameters (see Section 3.2). Additionally, functions whose
inputs come via pointers or another method of indirection (e.g., environment
variables) can also be used to side-step this problem. Second, to achieve condi-
tional branching, we find a class of widgets capable of conditionally altering the
program counter in RILC or the stack pointer (see Section 3.3).

We point out that other intended effects may not be useful (or harmful) to
us. Among the intended effects, the returned value of a function — if any — is
typically stored in a register (e.g. eax) and is discarded by design (our widgets
cannot take registers as input). The other intended side effects in the form of
memory changes may be needed for TC-RILC (e.g., memcpy()) or irrelevant as
far as the effects do not change the memory content used in TC-RILC.

In the following, we categorize these widgets by their functional purpose.
When presenting each widget category, we also report example functions found
in libc, as specified in the POSIX standard.

3.1 Arithmetic and Logic

In this category, we consider any function as a candidate arithmetic and logic
widget if the result of an arithmetic or logic operation is made available as a side-
effect, i.e., written to memory as opposed to a register. In libc, the wordexp ()
function (specified in POSIX.1-2001 [15]) achieves this in a straightforward way.
In essence, this function performs the expansion of expressions used by UNIX
shells such as bash, and arithmetic is a natural component of that. It turns out
that this functionality serves a number of purposes, including integer addition,

4 These widgets are identified using manual analysis. See Section 5 for further discus-
sion.
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subtraction, multiplication, and division.> Of course, shell expansion is based
on human-readable strings rather than binary arithmetic. Therefore, to leverage
this functionality, we need to combine the string/integer conversion functions
itoa() and atoi() (as well as the standard string-manipulation functions) to
build input strings for wordexp (). This rather unorthodox approach allows us to
perform arithmetic solely with side-effects, a requirement in constructing the TC-
RILC attack. In addition to wordexp (), we can also make use of other pointer-
driven arithmetic and logic functions, such as sigandset() and sigorset(),
which flip numbered bits in an in-memory data structure.

In our development, we found that some of these functions (e.g., wordexp())
are not included in Windows environments. It turns out that the Microsoft Visual
C++ Runtime only supports a subset of POSIX, which may probably explain
why Windows is mostly POSIX-compliant, but not fully POSIX-compliant. Nev-
ertheless, it still does not prevent us from locating other alternative functions in
core Windows libraries. These core Windows libraries are loaded into almost all
running Windows processes. For example, if we just consider one core Windows
library — user32.dll, a quick examination of one co-author’s Windows XP (SP3)
desktop machine indicates that there are 74 running processes and 71 of them
load this particular library in memory.® In addition, we have manually verified
its presence in a variety of 32-bit Windows OSs we can install, ranging from
Windows 95 all the way up to and including Windows 7. In our prototype, we
simply choose from the functions or APIs defined in user32.dll” and use them
to provide the arithmetic/logic operations as needed.

In particular, Windows provides a suite of functions to manipulate geometric
shapes mathematically. For example, to perform the arithmetic addition or sub-
traction operation, we make use of the OffsetRect() function [16]. The intended
use of this function is to move a specified rectangle (in the Cartesian coordinate
system of the screen) by a certain offset along the X and Y axes. By making this
function call, we can effectively cast an arbitrary memory area as four consecutive
integers representing the top, left, bottom, and right coordinates of a rectangle
data structure and then modify it by providing the corresponding offset. In other
words, the intended operation of this function is exploited to perform addition or
subtraction. For simplicity in building our exploits, multiplication is achieved by
leveraging addition operations. The loop operation requires branching support,
which will be discussed later in this section. Multiplication and division can also
be achieved with a function like ScaleViewportExtEx() from gdi32.d11, but
this involves a measure of added complexity, as certain Windows-specific objects
must be prepared first.

5 The POSIX standard actually calls for a full compliment of logical and bitwise
operations as well, but this does not appear to be implemented in our version of
libc. However, this limitation does not hinder the TC-RILC technique.

5 The three which do not load user32.dll are the pseudo-processes System and System
Idle Process, as well as the session manager smss.eze.

" There are other core libraries in Windows (e.g., kernel32.dll, ntdll.dll, gdi32.dll,
and shell32.dll) that are loaded in almost every running process and can also be
potentially (mis)used for the same purpose.
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3.2 Memory Accesses

Arbitrary access to memory in a RILC attack is as simple as employing any
function which performs a memory copy. These functions can be used to move
data into and out of the RILC stack area. For this, libc provides us with a myriad
of choices: memcpy (), strcpy (), etc. These functions are especially important in
the context of TC-RILC, as they form the key to preserving data between calls.
Additionally, one can make use of more esoteric data storage mechanisms, such
as environment variables, which are automatically expanded by some functions,
including wordexp(). When a widget executes, the only results useful to the
attacker are side-effects. In order for the side-effect to be used as an input to
a later widget, an intervening memory access widget copies this result into a
future stack frame (or into a location referenced by a pointer in a future stack
frame). The end result is a data model where variables in the TC-RILC program
do not occupy a single place in memory, but rather are copied into places (or
carried over) just in time for their next use.

3.3 Branching

Branching, especially conditional branching, is the practice of altering the flow
of execution. In our context of launching a TC-RILC attack, this does not mean
simply altering the CPU’s instruction pointer eip. Rather, one must alter the
stack pointer esp, which serves as the de-facto virtual program counter. This is
a crucial ingredient to Turing complete computation, and has been long thought
to be impossible in a RILC attack. Our solution to this problem has two steps.

First, to perform an unconditional branch, we identify any widget which
explicitly alters the stack pointer. The C89 and POSIX standards define such
a function: longjmp (). The intended use of longjmp() is to support non-local
gotos [17], and is commonly used in threading libraries and error handlers. For
the attacker, however, longjmp () represents a convenient means to alter much
of the CPU state in a single call, including the stack and base pointers (esp and
ebp). This allows for unconditional branching within the RILC attack.

Next, to make this branch conditional, a pointer to the longjmp() function
can be provided as a parameter to another function which will execute the pointer
conditionally. A convenient choice for this role is the 1find () function (defined in
the POSIX standard [15] and supported in Windows). This function is intended
to help with linear searches through an array, and has the form:

1find(voidx*key,void*base,size_t*nmemb,size_t size,int (*compar) (void*,voidx*))

Normally, this function would walk through the array starting at base, calling
compar () with the given key and each iterated element. In TC-RILC, we instead
set compar to longjmp and key to the address of an attacker-supplied jmp_buf
structure (which includes values for a number of registers, including esp and
eip). The nmemb parameter is the conditional variable: longjmp () is called if and
only if this is non-zero. If it is called, execution of 1find () ends and both eip
and esp are rewritten with new attacker-supplied values. In addition to 1find (),
we have also identified that 1search() can be used for the same purpose. From
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Table 1. A subset of POSIX-compliant widgets used in TC-RILC

Category Widgets POSIX?
Branching 1find () +longjmp(), lsearch()+longjmp() Yes
Arithmetic/Logic wordexp(), sigandset (), sigorset() Yes®
Memory access memcpy (), strcpy(), sprintf (), sscanf (), etc. Yes
System calls |Usual functions: open(), close(), read(), write(), etc. Yes

this building block, it is relatively straightforward to implement regular control
flow primitives like if () and for (). Note some widgets may destroy the content
of the stack frame below the current esp. To guard against this situation, special
care is taken to backup the whole content of the stack frame that contains the
rest of the TC-RILC program before entering the loop. At the beginning of
each loop iteration, the content of the stack frame is restored. This functionality
successfully preserves the content and allows the creation of arbitrary control
flow branching, which makes TC-RILC possible.

3.4 System Calls

While not strictly necessary for Turing complete computation, almost all useful
attacks will need to make use of system calls. This is straightforward in a RILC
attack, as library functions can be employed just as they would in a user program.
For example, for file input/output, the attack can simply make use of the open(),
close(), read(), and write () functions as normal.

We stress that unlike the machine-code-based gadget scan used in ROP, the
discovery of widgets in TC-RILC is much more straightforward. Because the at-
tack depends only on the intended side-effects of existing functions, the attacker
needs only consult the code’s documentation to locate the necessary functions.
To maximize compatibility of the attack to multiple platforms, we primarily use
functions from the well-documented and widely-deployed POSIX standard [15].
For the Windows port, as it is not fully POSIX-compliant, we first attempt to use
supported POSIX functions. Only when they are not supported, will we fall back
to standard Windows APIs provided in core libraries that are loaded in almost
every running process. It is important to note that these core libraries typically
maintain consistent API interfaces across Windows variants, which contribute
to the compatibility of the proposed TC-RILC attack. In Table 1, we show an
incomplete list of widgets that are used in our implementation. Our prototyping
experience indicates that all functions except in the arithmetic/logic category
are actually supported in Windows. This means that specific TC-RILC attack
code can be readily ported to a different OS revision or even a different OS fam-
ily altogether (as long as the environment supports the same standards). The

8 The arithmetic/logic functions are not portable to Windows due to its lack of full
POSIX compliance. Instead, we choose standard, cross-version Windows APIs in
core Windows libraries to compensate for its limited POSIX support. Examples
include OffsetRect (), CopyRect (), and SetRect () in user32.dll to provide the TC-
RILC arithmetic operation. The functions in other categories are all supported in
both Windows and Linux. Also note that sigandset() and sigorset() are Glibc
extensions and are not part of POSIX standard.
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#i ncl ude <stdlib. h>
#i ncl ude <string. h>

int min( int argc, char** argv ) {
char buf[2048];
strcpy( buf, argv[1] );

}

Fig. 2. The vulnerable application used to launch the example attacks.

changes needed are the adjustment of function entry points and, if necessary,
the format of the jmp_buf data structure. This is in contrast to the ROP model,
which requires analysis of individual binaries in order to locate and assemble
specific snippets of machine code.

4 Implementation and Evaluation

To demonstrate the expressive power of the TC-RILC technique, we have devel-
oped two example stack-based buffer overflow attacks. The payload of the first
attack is a RILC-based implementation of a universal Turing machine simulator
while the payload of the second implements the selection sort algorithm. These
two attacks were developed and tested on the 32-bit x86 version of Debian Linux
5.0.4, and solely used POSIX-compliant functions within the included libc bi-
nary.? After that, we also ported the attack technique to Windows in a straight-
forward manner. Our Windows platform runs Windows XP (with service pack
3), and the vulnerable application was compiled with Microsoft Visual C++ 6.
The library functions employed were found in the standard runtime library for
Visual C++ programs'®, and one core Windows library*!.

In both environments, the vulnerable program that was exploited to launch
the attacks is given in Figure 2. In this program, the first command line argument
is copied into a fixed-size stack buffer by strcpy (). Because this is done without
bounds checking, an excessively long argument can overflow the return address
of the main stack frame. This straightforward vulnerability allows an attacker
to inject the RILC program into memory and hijack control flow in one step.

During our development, we experienced that both Linux and Windows have
features intended to protect longjmp () from malicious exploitation. For exam-
ple, in Linux, the values stored for eip and esp in the jmp_buf structure are
rotated several bits and xored by a known value in order to “mangle” them, i.e.,
adjust them in a way unknown to the attacker. Unfortunately, this protection
is not fully implemented, as the known value is currently a hard-coded constant
instead of a per-process random value. Windows instead protects the jmp_buf
structure by including a special “cookie” value within it. In theory, this would
prevent the attacker from overwriting the structure, but this protection is flawed
in a way similar to Linux: this value is a hard-coded constant. Therefore, these
protection features do not prevent TC-RILC from being launched (as simple
hacks involving longjmp () remain viable on both platforms).

9 /1ib/i686/cmov/1ibc-2.7.s0, MD5 checksum: edeTe3c6b4f1be983e00c0daafc3aal3.
10 msvert.dll, MD5 checksum: 355edbb4d412b01f1740c17e3f50fa00.
1 yser32.d11, MD5 checksum: b26b135f1b9f60c9388b4a7d16£600b.
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4.1 Universal Turing Machine Simulator

The term “Turing complete” is generally used as shorthand to indicate the capa-
bility for arbitrary computation. The set of Turing complete systems are equiv-
alent in expressive power, and such systems are said to be universal computers.
There are many ways to demonstrate a system is Turing complete. In this work,
we opt for the most straightforward approach — a Turing machine simulator.

A Turing machine is a computer consisting of a tape T with a movable read-
write head, an internal state register Q, and a fixed state transition table A.
At each interval, the machine reads the current symbol, and, based on that
symbol and the current internal state, updates the symbol, changes the state,
and possibly moves the head one step left or right. This behavior is governed
by the transition table, which constitutes the Turing machine’s “program”. A
system which can simulate this behavior for an arbitrary tape and transition
table is called a universal Turing machine.

We have developed a TC-RILC exploit that acts as a universal Turing ma-
chine, demonstrating the expressiveness of our technique. Instead of delving into
the complexity and details of the binary form of this attack code, we choose to
present an abstracted representation of our POSIX-based variant in Figure 3.
In this figure, the memory state is shown in Figure 3(a). Each definition here
indicates a pointer to a piece of attacker-controlled memory. These definitions
are commented inline. We would like to draw special attention to the jmp_buf
structure jb. This structure is crafted by the attacker so that, when passed to
longjmp (), the CPU stack pointer will be redirected to the top of the main loop.

The string of malicious stack frames that make up the TC-RILC program
itself is shown in Figure 3(b). For clarity, each stack frame is indicated with
a line of C-like code. To better understand this particular exploit, we need to
explain the mechanism that is used to store persistent data between function
calls. Specifically, our mechanism relies on the use of environment variables and
thus alleviates the need to rebuild the equation strings during each iteration of
the Turing machine run. As indicated in Figure 3(b), the exploit uses specially-
crafted strings of the form “VARIABLE=VALUE” that are updated with a new
VALUE before being added to the environment via a call to putenv(). In addi-
tion, wordexp () caps the result of any arithmetic operation at OxT7fffHff — pre-
sumably in an attempt to avoid the ambiguity encountered when representing
signed versus unsigned numbers. For this reason, all memory offsets are com-
puted by referencing only the lower two addressable bytes in equation strings,
then copying the result of the arithmetic operation into the lower half of a pointer
which already refers to the stack region. For example, consider that the exploit
is known to reside at a location spanned by addresses of the form OxbfffXXXX.
To successfully compute a memory offset, we must populate a known memory
location with a value of this form, then copy the result of any arithmetic opera-
tion containing a memory address into the XXXX portion of this location. The
resulting value can then be used as a pointer to the desired memory location.

The exploit therefore begins by initializing the environment with the variables
I (the offset into the tape) and Q (the current state). Once these variables are
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int
jmp_buf

NELP
jb = ...

wordexp_t we

// Integer used with 1find

On the Expressiveness of Return-into-libc Attacks

// When passed to longjmp, the stack pointer will be moved back to loop_start

// Result of a wordexp() operation

char* tape ptr = Oxbfffffff // Pointer into tape T, lower two bytes will be adjusted
char* table_ptr = Oxbfffffff // Pointer into table A, lower two bytes will be adjusted
char* T = "000000000000000000" // Tape -- each byte is one symbol
char* A =" 00 0" // State transition table. Rows indexed by the state Q then symbol S.
"00O0" // Each row gives:
"m211" // 1. The new state Q
"2 1-1" // 2. The symbol to be written
"1 1-1" // 3. The direction to move the head pointer (-1, 0, or 1)
"3 0-1" // This particular table is a 4-state 2-symbol busy beaver.
w1 1"
wog o1-1n
wogo1 o1
w10 1"
char* I = "I=0xC " // Current index into tape T
char* S = "S=0x0 " // Symbol just read from the tape
char* Q = "Q=0x1 " // Current state
char* P = "P=0x000 " // Lower 2 bytes of a pointer to a row within table A
char* M = "M=0x0 " // Direction for head movement
()
> loop_start:
putenv( I ) . .
ol @ ) - Update environment variables
wordexp ( "$((0x£765+$I)) ", &we, )
sscanf( *we.we wordv, "%hd ", &tape ptr ) _
sprintf( S+2, " %c ", *tape_ptr ) S T[I] Readsymbo}
putenv( S )
wordexp ( "$ ((0x£728+(12*$Q)+(6*$S))) ", &we, _
strcpy( P+2, *we.we wordv ) P= A[Q][S] Get table row
sscanf( *we.we wordv, "$hd ", &table_ptr )
sscanf( table ptr, "%3s ", Q+2 ) _ %
putenv( P ) Q=*P) Change state
putenv( Q )

wordexp( "$(($P+2)) ", &we,

)

sscanf( *we.we wordv, "$hd ", &table_ptr )

sscanf( table_ptr, " %c ", tape_ptr )

wordexp( "$(($P+4)) ", &we,

)

sscanf( *we.we_wordv, "%hd ", &table ptr )

sscanf( table ptr, "$%3s ", M+2 )

putenv( M )

wordexp ( "$(($I+$M)) ", &we, )

strepy( I+2, *we.we_wordv )

sscanf( Q+2, "$hd ", &NELP )

1find( &jb, , &NELP, , longjmp )
I

(b)

T[] = *(P+2) Write new symbol

M = *(P+4) Get head direction

I=1+M Move head
- Print current tape content

if (Q!=0) goto loop_start Loop

Fig. 3. A visual representation of the universal Turing machine simulator attack code.
The attacker-controlled static memory is shown in (a). The tape T and table A constitute
the program, while the environment variables I, S, Q, P, and M are used with wordexp ()
to do the bulk of the arithmetic and logic. When pointer indirection is needed, the
lower two bytes are calculated by wordexp(), then converted to binary and written
into the pointer variables tape_ptr and table_ptr. The stack frames are represented
in (b) using a C-like notation where each line corresponds to an attacker-crafted stack
frame. The frames are grouped by logical operation; within each group is its symbolic
representation and description. This is the POSIX-based variant of the attack.
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in place, we begin computing the locations of the elements needed to advance
the Turing machine. Specifically, we determine the memory location and value
of the current tape symbol S, then utilize this in conjunction with the current
state Q to determine the location P of the relevant row in the state-transition
table A. Given this memory location, advancing the machine is simply a matter
of adding the correct offset to P in order to read the new symbol, state, and head
movement direction M. Finally, we advance the head position I by M. Once these
operations have been completed, the machine is ready to execute its next step.
We use the value of the new state Q to determine whether or not the machine
needs to continue. Recall that our approach to conditional branching makes use
of a unique 1find () +longjmp () combination, and utilizes the nmemb parameter
as its conditional value—specifically, the branch is taken only if nmemb is non-
zero. In our Turing machine example, the final state is indicated by Q=0; thus,
we can determine whether or not to continue looping by simply copying the value
of the current state Q into the conditional parameter value.

To validate the correctness of our implementation, we configured the ex-
ploit to simulate a busy beaver—a special Turing machine that performs the
greatest number of steps possible before halting [18]. Specifically, we simulate
a 4-state 2-symbol busy beaver. In this exploit, there are in total 24 widgets
used for the TC-RILC implementation of the busy beaver Turing machine. We
also implement a Windows-variant of the same attack. The key difference from
the POSIX-variant turns out to be the replacement of wordezp() (in Figure 3)
with a few core Windows API functions. As mentioned earlier, though word-
exp() is a POSIX function, it is unfortunately not supported in Windows. As
such, we fall back on documented Windows APIs to emulate part of its func-
tionality as needed for our busy beaver Turning machine implementation. In
particular, our prototype makes use of two Windows API functions: SetRect()
and OffsetRect(). The OffsetRect() function is used to implement addition in a
straightforward manner with its effect similar to one simple C statement A +=
B. For multiplication, we achieve the same effect by controlling the number of
loops (via 1find ) +longjmp()) on an addition operation. More specifically, we
use SetRect() to initialize a rectangle data structure which contains the value
we want to multiply in a member field called 1eft. Then, in the body of the
loop, we repeatedly add to that field by using OffsetRect(). At the end of the
loop, the left field will contain the multiplication result. In our current pro-
totype, there was no need to develop support for division and complex logic
operations. However, such support could be developed using the wealth of other
Windows functions, including ScaleViewportExtEx () from gdi32.d11. In to-
tal, our Windows-variant of the busy beaver Turing machine contains 29 widgets.
We have confirmed the successful run of the busy beaver program written en-
tirely with library functions in various Windows systems, including Windows
95/98/2000/XP /Vista/7. The full detail can be found in [19].

4.2 Selection Sort

While the previous example is sufficient to demonstrate Turing completeness in
theory, a Turing machine is not a very convenient model for practical computa-
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tion. Therefore, to demonstrate the practicality of the technique, we also present
a TC-RILC exploit that implements the selection sort algorithm,

The algorithm is basically implemented with two for-loops. The inner loop
finds the minimum item by examining each one in the array. In the outer loop,
each iteration exchanges the found minimum item with the first one so that
subsequent iterations can exclude the first one to proceed with sorting. In other
words, after the m-th iteration (of the outer loop), the array is divided into two
parts: the first part contains the leftmost m items of the array, which is sorted
while the remainder constitutes the second part, which is not sorted.

Just as a compiler can analyze this code and produce a series of primitive
arithmetic, logic, and control flow machine instructions, we have been able to
map the algorithm to a sequence of TC-RILC widgets. (The abstracted repre-
sentation for the POSIX variant can be found in [19].) Specifically, we have two
similar for-loops. The outer loop is the main loop, which will sort the first m
items after m iterations. The inner loop instead is responsible for finding the
minimum item in the array. Each loop, either outer or inner, needs to properly
perform conditional control flow, which is fulfilled with the 1find () +1longjmp ()
combination. In our exploit, we also apply several other techniques used in our
universal Turing machine simulator (i.e., wordexp() for arithmetic operations
and sscanf () for data movement). In total, there are 24 widgets used in the
outer loop and 14 widgets used in the inner loop. The end result is a code-reuse
exploit that can hijack our simple example program and sort an in-memory array.

We point out that implementing selection sort is not an end in and of itself,
but it demonstrates the feasibility of TC-RILC: one can similarly craft complex,
expressive attack codes by chaining entire functions to launch a TC-RILC attack.

5 Discussion
We have shown that the traditional return-into-libc attack, previously considered
to be limited to straight-line code, is actually Turing complete. Given this, it is
interesting to examine the reason why the traditional view of RILC attacks fails
to properly recognize its expressive power and revisit the comparison between
TC-RILC and ROP as they are now equivalent in expressive power.
Analyzing the commonly-held misconception The RILC attacks have
been known for more than a decade [20]. However, the reason why we still suffer
from this misconception is in part attributed to the lack of thorough understand-
ing of the side-effects of legitimate C library functions. Specifically, we may have
been used to providing normal input arguments to these functions and do not
give careful and thorough consideration to all possible inputs. For example, the
previously claimed incapability of RILC to perform conditional branching can be
overcome by exploiting the side-effects of combining normal libc functions, i.e.,
1find O +longjmp () or lsearch()+longjmp (). Also, the presence of a wealth
of libc functions greatly facilitates the selection, construction, and integration of
a variety of functional components in TC-RILC computation, including arith-
metic/logic, data movement, memory access, and system calls. Moreover, thanks
to the POSIX standard, the C library maintains a well-defined, consistent inter-
face across various OS variants and families. This interface not only significantly
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contributes to the portability and compatibility of legitimate user programs, but
also equally helps the portability and compatibility of developed TC-RILC at-
tack code. For example, our Windows variant of the busy beaver Turing machine
can run on all 32-bit Windows OSs from Windows 95 to Windows 7. Also, our
experience indicates the cross-OS port is rather straightforward provided that
they support the POSIX standard. The only limitation we have encountered so
far is due to the lack of full POSIX-compliance in Windows.

From another perspective, one interesting open question is the issue of cross-
architecture portability. We have shown that the technique can be used on dif-
ferent operating systems on the x86 32-bit architecture, but it is not clear yet
how to carry the model to other CPU ISAs, especially RISC platforms. Our
technique depends on the calling convention in use, which is influenced by the
CPU architecture. For instance, the MIPS architecture passes most function pa-
rameters via registers rather than the stack, so applying TC-RILC in such an
environment seems problematic. This remains an interesting problem which we
leave to future work.

Revisiting the comparison with ROP  Arguably due to its capability
to perform arbitrary computation (in which traditional RILC was thought to
be limited), ROP has recently attracted significant attention and development
[2,7-9,11]. With this limitation in traditional RILC attacks removed, there is a
need to re-assess the comparison between the two techniques.

As mentioned earlier, TC-RILC has several advantages. First, because it uses
the intended behavior of functions to operate, attacks can be ported to different
implementations by accordingly changing the function offsets and the format
of data; this is true even between very different environments, provided that
they support the same library functions. It is interesting to mention that most
existing work on code-reuse attacks makes a probabilistic argument: if enough
code is present, then it is likely that one can find enough code snippets to con-
struct a Turing complete computation. In this work, however, we make a more
concrete claim: because we rely mainly on the intended behavior of standard-
ized functions, the TC-RILC technique is applicable to any standards-compliant
OS environment. Second, because these functions are necessary for the normal
operation of existing software!'?, they cannot be simply taken away. This is in
contrast with ROP, where the attacker is at the mercy of the specific machine
instructions available in the binary. Also, a TC-RILC attack requires less in-
formation about the library than ROP: TC-RILC needs the locations of used
library functions'?, whereas ROP requires an in-depth scan of the binary for use-
ful instruction sequences. Third, certain existing anti-ROP defenses, i.e., DROP

12 Our TC-RILC mainly relies on POSIX functions and does not utilize any “danger-
ous” functions such as system(), which may be removed by some security measures.

13 They can be legitimately obtained by making certain library function calls. Exam-
ples include d1sym() in Linux and GetProcAddress () in Windows. Strictly speaking,
traditional RILC attack also requires the location of esp lifting instructions. How-
ever, they can be replaced with the frame faking technique [1]. Possibilities also exist
with the side-effects from misused library functions, e.g., longjmp().
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[12] and DynIMA [4] are defeated by the TC-RILC technique. These techniques
observe the frequency or the presence of ret instructions and exploiting the fact
that ROP gadgets are typically 2-5 instructions in length. Though these defenses
are rendered ineffective by the recent ROP refinement [21], with the use of entire
functions, TC-RILC is naturally immune from these defenses.

On the other hand, TC-RILC does have some disadvantages. First, a TC-
RILC attack may require more stack space than an equivalent ROP attack. This
distinction could be important when the vulnerability only permits overflows
of a limited size. Second, our experience indicates that attacks based on TC-
RILC could be more complex to construct manually than ROP attacks. This
is primarily because of the complexity of storing data and operating control
flow entirely through side-effects. In contrast, ROP programs can leverage the
CPU registers to save state, and access memory only as needed. However, this
complexity could be effectively reduced or even eliminated by developing a RILC-
aware compiler, leveraging the same algorithms and techniques that produce
ROP attacks. Third, while performance is not the primary aim of a TC-RILC
attack, it is intrinsically computationally less efficient, especially when compared
to native program execution.

To measure its computation overhead, we adapted our Turing machine ex-
ample to compute a 5-state, 2-symbol busy beaver candidate, which runs for
47,176,870 steps, making it a much more computationally intensive program
than our earlier example. For comparison, we developed a straightforward Tur-
ing machine simulator based on the same algorithm in both Python and C. The
C version, which we use as a baseline, finished in 0.19 seconds, while the Python
version took 42.75 seconds (225 times slower). The TC-RILC execution took
419.38 seconds, and is therefore over 2000 times slower than the C implementa-
tion. Such an overhead is to be expected, as the exploit is rife with memory copy
and string processing operations which are unnecessary in a normal program.

It is also interesting to explore some possible defense mechanisms to counter
TC-RILC attacks. At first impression, one may feel that removing vulnerable
functions from applications that do not need them might defeat TC-RILC. This
is indeed a generic approach to defend against traditional RILC attacks, though
in practice, it may be challenging to deploy. Particularly, there are several diffi-
culties: First, how do we know in advance those functions an application is going
to use or not going to use? Second, this approach will not work if it turns out
that the application itself needs those functions behind TC-RILC. One may also
attempt to hinder TC-RILC attacks by trying to improve the protection mech-
anism used in longjmp () function. It is an open question, however, as to how
effective it will remain when the attacker can almost always reverse-engineer the
new mechanism and devise a method to craft the related jmp_buf.

From the attacker’s perspective, there are several possible ways to improve
TC-RILC attacks. One possible approach would be to extend the widget catalog.
In the interest of time, our current prototype does not explore other libraries
to find “abusable” widgets — as the current longjmp () and others are sufficient
to demonstrate that RILC is indeed Turing-complete. Given the amount and



On the Expressiveness of Return-into-libc Attacks 17

size of installed libraries in a typical system (especially Windows), we strongly
believe that similar functions could be found. It is also worthwhile to point out
that in our current prototype, finding widgets requires manual analysis. More
engineering effort will be needed to develop a scanner to harvest widgets from
function specifications (e.g. header files).

We want to stress that, like ROP, TC-RILC is susceptible to some existing
defense techniques. To be clear, the goal of this paper is not to cast TC-RILC as
a threat without peer, but rather to reveal the unexpected fact that the RILC
technique is more expressive and flexible than previously thought. The defenses
available against this and other code-reuse attacks are explored and summarized
in the following section.

6 Related Work

The original return-into-libc (RILC) attack was formalized as early as 1997,
when Solar Designer introduced a single-call exploit which redirected control
flow into the system() function of libc in order to launch a shell [20]. This
technique was subsequently expanded to include multi-function chaining through
the use of esp lifters and other techniques in 2001 [1]. This introduced the RILC
technique as a mechanism for straight-line, chained execution of functions. Not
satisfied with the limited expressive power that RILC was assumed to have,
Shacham et al. put forth the notion of return-oriented programming (ROP) [2].
By arranging and chaining the execution of short code sequences (“gadgets”),
ROP has been shown to be Turing complete. ROP was first introduced for the
x86 and subsequently expanded to other architectures, including SPARC [7],
ARM [8], and others. Further, Hund et al. presented a return-oriented rootkit
for the Windows operating system that bypasses kernel integrity protections [9].
Castelluccia et al. similarly presented a ROP-based rootkit, but deployed it on
embedded devices to attack existing software-based attestation techniques [10].
Checkoway et al. showed the feasibility of a ROP-based attack against electronic
voting machines [11].

ROP attacks exhibit several peculiarities in their control flow and use of
the stack; these features have been used to develop defenses against the ROP
technique. For instance, ROPDefender [22] rewrites existing binaries to record
a separate shadow stack which is used to verify that each return address is
valid; this prevents return-based attacks, including both ROP and RILC. Other
systems also make use of a shadow stack, either in hardware or software, and
can be used to similarly enforce stack integrity [23-25].

Another interesting trait of ROP attacks is their reliance on gadgets—typically
only 2 to 5 instructions in length. This means that the frequency of the ret in-
struction during the execution of a ROP attack is abnormally high. Capitalizing
on this insight, DROP [12] and DynIMA [4] can detect a ROP-based attack. Be-
cause a TC-RILC attack makes use of whole function widgets, it does not exhibit
this anomaly and is therefore indistinguishable from normal program execution
to these defense schemes. From another perspective, the return-less approach
[13] and G-Free [6] prevent return-oriented gadgets from being located or assem-
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bled. However, they only de-generalize the ROP back to (and will not block) the
traditional RILC as they still provide the same function-level semantics.
Continuing the arm race between attackers and defenders, various forms of
return-free code-reuses have been introduced. Checkoway et al. chain code snip-
pets ending in a pop/jmp sequences to achieve arbitrary computation with ROP-
like semantics [26]. Bletsch et al. introduce the concept of jump-oriented pro-
gramming, which leverages indirect jump sequences instead of ret instructions
to govern control flow [5]. Finally, Davi shows a jump-based attack on ARM is
possible by using a special Branch-Load-Exchange (BLX) instruction [27].14
Other Defenses In addition to defenses that specifically target ROP, there
are orthogonal defense schemes that protect against a variety of machine-level
attacks. Address-space layout randomization (ASLR) randomizes the memory
layout of a running program, making it difficult to determine the addresses in
libc and other legitimate code on which code-reuse attacks rely [28,29]. However,
there are several attacks which can bypass or seriously limit ASLR, especially on
the 32-bit x86 architecture [1]. Additionally, ASLR can be defeated by leakage
of sensitive information about the memory layout of the process [30]. There-
fore, while ASLR is certainly useful, it is not a silver bullet to the problem
of code-reuse attacks. Instruction-set randomization (ISR) is another attempt
at introducing artificial heterogeneity into program memory [31,32]. Instead of
randomizing address-space, ISR randomizes the instruction set for each running
process so that instructions in the injected attack code fail to execute correctly.
However, it is ineffective against code-reuse attacks, including ROP and RILC.
Many mechanisms have been proposed to enforce the integrity of memory.
Program shepherding is a technique to allow the application of security pol-
icy to control flow transfers [33]. Abadi et al. introduce the notion of Control
Flow Integrity (CFI), which seeks to ensure that execution only passes through
approved paths taken from the software’s control flow graph [34]. Subsequent
work expanded on the notion of CFI to allow for other security features, such
as Data Flow Integrity (DFI) [35]. If CFT is properly enforced, most, if not all,
code-reuse attacks will be prevented. Unfortunately, systems which enforce CFI
are not widely deployed, presumably due to issues of overhead and complexity.

7 Conclusion

Return-into-libc (RILC) is one of the most common forms of code-reuse tech-
nique, but has been long considered to be incapable of arbitrary computation. In
this paper, we present the counterargument that, by chaining existing functions
in unique ways, RILC can be made Turing complete. Specifically, we demon-
strate that the generalized TC-RILC attack satisfies the formal requirements of
Turing completeness. Moreover, by relying mainly on the well-defined semantics
of libc functions, TC-RILC attacks are portable across OS variants and families
and can also bypass some recent anti-code-reuse defenses that target the return-
oriented programming technique. Our prototype development on both Linux and
Windows demonstrates the expressiveness and practicality of this technique.

4 Note that systems described separately in [26] and [27] are now merged [21].
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