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Abstract—Stream processing has become increasingly important as many emerging applications call for continuous real-time

processing over data streams, such as voice-over-IP telephony, security surveillance, and sensor data analysis. In this paper, we

propose a composable stream processing system for cooperative peer-to-peer environments. The system can dynamically select and

compose stream processing elements located on different peers into user desired applications. We investigate multiple alternative

approaches to composing stream applications: 1) global-state-based centralized versus local-state-based distributed algorithms for

initially composing stream applications at setup phase. The centralized algorithm performs periodical global state maintenance while

the distributed algorithm performs on-demand state collection. 2) Reactive versus proactive failure recovery schemes for maintaining

composed stream applications during runtime. The reactive failure recovery algorithm dynamically recomposes a new stream

application upon failures while the proactive approach maintains a number of backup compositions for failure recovery. We conduct

both theoretical analysis and experimental evaluations to study the properties of different approaches. Our study illustrates the

performance and overhead trade-offs among different design alternatives, which can provide important guidance for selecting proper

algorithms to compose stream applications in cooperative peer-to-peer environments.

Index Terms—Peer-to-peer, stream processing, service composition, resource management, quality-of-service.
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1 INTRODUCTION

1.1 Background

WITH the popularity of peer-to-peer (P2P) file sharing
systems [1], P2P systems have drawn much research

attention. One salient advantage of P2P systems is that they
can aggregate a tremendous amount of resources in a
failure-resilient and cost-efficient fashion. Previous work
has addressed the problems of scalable data lookup (e.g.,
[28], [31], [26]), incentive engineering (e.g., [22]), and
anonymity preservation (e.g., [35]) for providing efficient
P2P data sharing. Inspired by P2P file sharing systems,
researchers have proposed other P2P applications such as
P2P streaming systems (e.g., [33], [17], [20], [8]) and P2P
storage systems (e.g., [4]). In this paper, we focus on
studying the problem of providing stream processing
applications in cooperative P2P environments [8]. A
cooperative P2P system consists of responsible peer users
who honestly share resources with each other for the
common good of everyone, such as enterpise P2P systems.
The P2P streaming system can effectively support many
stream applications such as voice-over-IP (VoIP) telephony,
sensor data analysis, and security surveillance. Fig. 1 shows
a VoIP application where the speaker’s audio stream is
processed by a language translation service and a speech
transcription service before reaching the receiver. In this
paper, a service is a self-contained application unit
providing a certain stream processing function.

Although streaming systems have been studied in
conventional distributed environments, P2P streaming
systems must meet new challenges: 1) Heterogeneity: P2P
systems consist of heterogeneous end-hosts, which implies
that stream applications should be adaptive to fill the gap
between senders and receivers. 2) Decentralization: P2P
systems are fully decentralized where services can have
multiple instances dispersed on different peers. 3) Churn:
P2P systems allow peers to arbitrarily leave or join the
systems, which makes long-lived stream applications prone
to failures. To address these challenges, we propose a
composable streaming system that can dynamically compose
stream applications from selected service instances based on
the user’s function, resource, and quality-of-service (QoS)
requirements. Although composable service infrastructures
have been proposed under different research context (e.g.,
[25], [10], [21], [23], [13], [7]), it is still an open problem to
provide an efficient composable streaming system that can
meet the new challenges of P2P environments.

1.2 Our Contributions

We identify two key problems in composable P2P stream-
ing systems: 1) initial service composition for initially
composing stream applications at service setup phases,
and 2) dynamic failure recovery for maintaining stream
applications during service runtime phases. We first
formulate both problems into constrained optimal graph
mapping problems and prove them to be NP-hard [11].
Then, we propose multiple polynomial approximation
algorithms for both problems. We also conduct theoretical
analysis and simulation experiments to show the tradeoffs
among different design alternatives. Our study provides
important insights for designing P2P composable stream
processing systems. Specifically, we make the following
contributions:
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. We present two polynomial approximation algo-
rithms for the initial service composition problem:
1) global-state-based centralized (GC) algorithm, and
2) local-state-based distributed (LD) algorithm. In the
former approach, each peer performs a centralized
computation based on the global state information for
the initial service composition. TheGC algorithm uses
a novel adaptive composite metric to achieve balanced
load distribution subject to the user’s multicon-
strained QoS requirements. In contrast, the LD
algorithm is a fully distributed and localized algo-
rithm that employs a novel composition probing
algorithm to find the initial service composition. We
conduct theoretical analysis to compare the GC
algorithm and the LD algorithm in terms of complex-
ity and overhead. Our analysis reveals the key factors
that decide the trade-offs between the GC algorithm
and the LD algorithm.

. We present reactive failure recovery (RFR) and proactive
failure recovery (PFR) schemes for maintaining the
availability and QoS of composed stream applications
during service runtime. The RFR algorithm dynami-
cally recomposes a new stream application based on
the global state information when the currently
composed stream application fails. To achieve fast
failure recovery, the RFR algorithm recomposes a
new stream application that has the largest number of
common service instances with the failed stream
application subject to the condition that the new
stream application satisfies the user’s requirements.
In contrast, thePFR algorithm maintains a number of
backup service compositions in advance for each
stream session. Thus, the PFR algorithm can quickly
recover stream application failures if one of the
backup service compositions can satisfy the user’s
requirements. We also conduct theoretical analysis to
compare the RFR algorithm and the PFR algorithm
in terms of complexity and overhead.

. We implement all proposed algorithms and evaluate
their performance and overhead using extensive
simulations. The simulator runs the GC, LD, RFR,
and PFR algorithms on top of a simulated P2P
overlay network. The simulator emulates dynamic
resource allocations and shortest-path data routing at
three different layers (i.e., IP network layer, overlay
network layer, and composed stream application

layer). Our results show that both GC and LD
algorithms can achieve much better performance than
other common heuristic algorithms, and that our
algorithms are robust for different workloads and
system conditions. We also conduct failure recovery
experiments in dynamic P2P systems where a number
of peers randomly fail. The results show that both
RFR and PFR algorithms are much more efficient
than the brute-force approach.

The rest of the paper is organized as follows: Section 2
introduces the system model. Section 3 presents the initial
service composition algorithms. Section 4 presents the
dynamic failure recovery schemes. Section 5 presents
experimental results. Finally, we conclude the paper in
Section 6.

2 SYSTEM MODEL

2.1 Composite Stream Application Model

Composite stream applications extend conventional stream
applications with interposed services that can provide
various stream processing functions (e.g., transformation,
aggregation, and correlation). To achieve QoS awareness
and resource efficiency, interposed services are dynamically
selected based on the user’s requirements. The composable
streaming system provides session-oriented application
model that includes three different phases:

1. The session setup phase invokes the initial service
composition algorithm to dynamically create a
stream application satisfying the user’s require-
ments. If the initial service composition is successful,
the system allocates resources for the session and
creates a session record for later references.

2. The session runtime phase performs streaming of
application data units (ADUs) using source routing
where each ADU carries the list of all service
instances it needs to visit before it reaches the
destination. During runtime, the composed stream
application may experience failures due to peer
departures or failures. The system can repair the
broken composed stream application using dynamic
failure recovery algorithms. If the failure recovery is
successful, the streaming session is resumed from
the last checkpoint.

3. The session closing phase tears down the streaming
session when the application finishes its task. The
resources used by the application session are
released and the corresponding session record is
deleted.

2.2 Layered System Architecture

We propose a three-layer system architecture to support the
composed stream application model, illustrated by Fig. 2. The
rationale behind this layered architecture is to achieve QoS-
aware and resource-efficient service composition by decou-
pling the concepts of service functions, service instances, and
physical hosts. Each service function can be mapped to
different service instances located on distributed peer hosts,
illustrated by Fig. 3. Instead of requiring the user to directly
specify the service instance, the composable streaming
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system can automatically select the best service instance for
each required service function. During runtime, the mapping
from the service function to the service instance can
dynamically change to adapt to system changes (e.g., peer
failures/departures).1 Table 1 summarizes our notations. We
now describe each layer as follows.

2.2.1 Abstract Service Layer

This layer represents the interface of the composable
streaming system presented to the user, illustrated by the
top layer in Fig. 2. The user is provided with various
composite service templates described by function graphs
(�i). Each node in the function graph represents an atomic
service function (Fi) such as the language translation
service. The dependency link between two function nodes,
denoted by Fie> Fj, represents that the output of Fi will be
used as the input of Fj. The user request can also specify
multiconstrained QoS requirements Qreq ¼ ½qreq1 ; . . . ; qreqm �,
where qreqi defines the user’s requirement for the ith QoS
metric (e.g., delay and loss rate). In this paper, we assume
additive and deterministic QoS metrics. Multiplicative QoS
metrics (e.g., loss rate) can be transformed into additive QoS
metrics using logarithmic functions. Our solution can also
be extended to support statistical QoS metrics [12]. For
example, we can specify the VoIP application example
illustrated by Fig. 1 as follows:

�i ¼ ðF1 ¼ AudioRecording; F2 ¼ LanguageTranslation;
F3 ¼ SpeechTranscription; F4 ¼ AudioPlayback;
F1e> F2; F2e> F4; F1e> F3; F3e> F4Þ;
Qreq ¼ ½qreq1 ðdelayÞ ¼ 500ms; qreq2 ðLossRateÞ ¼ 5%�:

Different from conventional stream applications, composed

stream applications have nonuniform resource requirements:

1) service instances, denoted by si, can have different end-

system resource requirements (e.g., CPU and memory) due

to function and implementation variations and 2) inter-

service connections called service links, denoted by li, can

have different bandwidth requirements since interposed

services (e.g., speech-to-text) can change the data content.

Thus, we associate an end-system resource requirement

vector Rsi ¼ ½rsi1 ; . . . ; rsin � with each service instance si, and a

bandwidth requirement bli with each service link li. The

resource requirements are also related to the size of the

ADU packet and the stream rate, which will be factored into

the Rsi and bli during runtime.

2.2.2 Instantiated Service Layer

This layer consists of instantiated stream applications

illustrated by the middle tier in Fig. 2. Each stream application

is described by a service graph (�) that includes a service

instance set (�s) and a service link set (�l). Each service

instance si is associated with a QoS vector Qsi ¼ ½qsi1 ; . . . ; qsim�,
where qsii ; 1 � i � m denotes the ith QoS value of si. The

service link (li) represents the connection between service

instances in the service graph. We use Qli ¼ ½qli1 ; . . . ; qlim� to

denote the QoS values of the service link li. Each service link is

instantiated into an overlay path (}) consisting of a list of

overlay links ei. For example, in Fig. 2, the service link l2
between s1 and s9 is instantiated into the overlay path:

} ¼4 v1 ! v2 ! v4 since v1 and v4 are not directly connected.

We call an overlay node a service peer if it provides any service

instance for the stream application. We call an overlay node a

relay peer if it only provides application-level data forwarding

for the stream application. A service graph can be a directed

acyclic graph (DAG) consisting of multiple service paths (�i).

For example, in Fig. 2, the service graph includes two service

paths. The QoS values of a service path, denoted by Q�i , are

defined as the accumulated QoS values of its constituent

service instances and service links. The QoS values of a service

graph, denoted byQ�, are defined as the worst QoS values of

its service paths (i.e., the largest delay or worst loss rate).
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1. Some service functions such as audio playback can only be
instantiated on certain hosts (receiving host).

Fig. 2. P2P composable streaming system architecture.

Fig. 3. Stream application composition model.

TABLE 1
Notations



2.2.3 P2P Overlay Network Layer

This layer consists of a collection of peer hosts vi connected
via application-level connections called overlay links (ei),
illustrated by the bottom tier in Fig. 2. Each peer provides a
set of service instances denoted by fsi; . . . ; sjg. If two peers
are not directly connected, the data stream between them
has to flow through an overlay path }. For example, in Fig. 2,
the data from v1 to v4 has to flow through the overlay path
} ¼4 v1 ! v2 ! v4. The overlay network layer provides a
resilient data routing infrastructure [5] for composed stream
applications. The overlay topology [27] can be constructed
in different ways in terms of topology type, node degree,
and neighbor selections. We adopt the mesh topology that is
commonly used by overlay streaming systems [9], [30], [20].
Each overlay link, ei, is associated with a QoS vector
Qei ¼ ½qei1 ; . . . ; qeim�. Each peer vi is associated with an end-
system resource vector RAvi ¼ ½ravi1 ; . . . ; ravin �, which de-
scribes the current available end-system resources (e.g.,
CPU and memory) on the peer host vi. Each overlay link ei
is associated with a bandwidth availability metric baei . Each
peer host maintains a local state including the QoS/resource
states of its neighbor peers and adjacent overlay links in the
overlay network. Currently, our system implements overlay
data routing using the delay-based shortest path routing
algorithm.

2.3 Problem Descriptions

We formulate the initial service composition (ISC) problem
into a constrained optimization problem: mapping a
function graph into the best service graph. First, the
composed stream application should satisfy the user’s
function, QoS, and resource requirements. Second, the
composed stream application should be instantiated on
least-loaded nodes and overlay links for balanced load
distribution. Formally, the ISC problem can be defined as
follows.

Definition 1: Initial service composition (ISC) problem.
Given a P2P overlay network G = (V,E) where V denotes the
set of jV j nodes (vi) and E denotes the set of jEj overlay links
(ei). Let si:F denote the function provided by the service
instance si, si=vj denote the service instance si provided by the
peer host vj, and li=}j denote the service link li instantiated on
the overlay path }j. We use !k; 0 � !k � 1; 1 � k � nþ 1 to
denote the importance of the ith resource type, wherePnþ1

k¼1 !k ¼ 1. Given a user request h�;Qreq; Rreqi, the ISC
problem is to find the best service graph � ¼4 f�s; �lg such that

min
X

si=vj2�s

Xn
k¼1

!k �
rsik
ra

vj
k

þ !nþ1 �
X

li=}j2�l

bli

ba}j
; ð1Þ

subject to 8Fk 2 �; 9si 2 �s; si:F ¼ Fk; ð2Þ
q�i � q

req
i ; 1 � i � m; ð3Þ

8si=vj 2 �s; rsik � ravj ; 1 � k � n ^ 8li=}j 2 �l; bli � ba}j : ð4Þ

Compared to conventional distributed systems, P2P
systems present much more dynamics (e.g., arbitrary peer
arrivals/departures and service instance deletions/addi-
tions). Thus, a composed stream application is prone to
failures, which makes dynamic failure recovery necessary

for providing failure-resilient composed streaming services.
We also formulate the dynamic failure recovery (DFR)
problem into a constrained optimization problem. First, the
new stream application should satisfy the user’s require-
ments and does not include any failed service instances or
overlay links. Second, the new service graph should have
the largest number of common service instances with the
current service graph so as to minimize failure recovery
disruption. Formally, the DFR problem can be defined as
follows.

Definition 2: Dynamic failure recovery (DFR) problem. Let
�old and �new denote the broken service graph and the new
service graph, respectively. Let j�olds \ �news j denote the number
of common service instances between the old service graph and
the new service graph. Given the P2P system G ¼ ðV ;EÞ and
the user request h�;Qreq; Rreqi, the DFR problem is to find a
new service graph �new such that maximize j�olds \ �news j,
subject to �new satisfies (2), (3), and (4).

We prove that finding the optimal solutions for both ISC
and DFR problems are computationally intractable, which
is indicated by the following theorem. Proofs for all
theorems and corollaries in this paper can be found in the
Appendix. Thus, our goal is to explore efficient approxima-
tion algorithms for both problems.

Theorem 1. Both ISC and DFR problems are NP-hard.

2.4 Assumptions

First, we assume cooperative managed P2P environments
[8] such as enterprise P2P systems. Second, service
instances are either stateless or contain only soft states that
can be recovered by software. Third, we assume that service
instances are described using high-level specification
languages (e.g., [29], [24], [15]) based on a common
ontology. Fourth, we assume that there exists a translator
(e.g., [3]) that can map the application-level QoS specifica-
tions into low-level resource requirements (e.g., CPU,
memory, and network bandwidth). Fifth, we assume that
each peer can monitor available network bandwidth on its
adjacent overlay links using measurement tools (e.g., [19],
[18]). Finally, we assume that a service discovery system
[14] is available to find candidate service instances match-
ing a required service function.

3 INITIAL SERVICE COMPOSITION ALTERNATIVES

This section presents and compares two different poly-
nomial algorithms for the initial service composition
problem: 1) global-state-based centralized algorithm and
2) local-state-based distributed algorithm.

3.1 Global-State-Based Centralized Algorithm

The global-state-based centralized (GC) algorithm requires
each peer to maintain a global state information and
executes a centralized algorithm to find the best service
graph. The global state information consists of all peers’
local states: the QoS vectors of all service instances/overlay
links and the resource vectors of all peer hosts/overlay

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 2006



links. The centralized algorithm requires global state
information since a service composition request is allowed
to use any service function. As we mentioned in Section 2,
each peer will, by default, maintain local state information
about its neighbors. The GC algorithm requires each peer to
periodically disseminate its local state information to all
other peers so that each peer can have update-to-date global
state information.

We first describe the baselineGC algorithm for composing
service paths illustrated by Fig. 4. The algorithm is adapted
from the canonical Dijkstra shortest path algorithm. First, we
construct a candidate graph consisting of all candidate
service instances for all required service functions. The ith
column in the candidate graph includes all candidate service
instances for the ith required service function Fi in the
function graph. The goal of this step is to satisfy the user’s
function requirements while reducing the service path
searching range. Second, we perform a consistency check
between every two dependent service instances. Two
dependent service instances si and sj are consistent if the
output properties (e.g., media format, resolution, and stream
rate) of si satisfy the input requirements of sj. If two service
instances are consistent, we add a link between them in the
candidate graph. Third, we assign a cost value to each
candidate graph link Lij ¼ si=vi ! sj=vj. The cost value is
calculated based on an adaptive composite cost function,
denoted by FðLijÞ, that will be described in the next
paragraph. Finally, we run a modified Dijkstra algorithm to
find the shortest path from the source peer to the destination
peer, which is returned as the best service path by the GC
algorithm.

The cost function FðLij ¼ si=vi ! sj=vjÞ is designed to

meet the multiconstrained optimization goal of the initial

service composition (Definition 1). We use ½qsj1 ; . . . ; q
sj
m� and

½qli1 ; . . . ; qlim� to denote the QoS values of the service instance sj

and the service link li from si to sj. To aggregate different QoS

metrics using normalization, we use ½qmax1 ; . . . ; qmaxm � to denote

the maximum values of the QoS metrics. To meet the load

balancing goal (1), we consider the end-system resource

“congestion” ratio
r
sj
k

ra
vj
k

; 1 � k � n, where r
sj
k denotes the

requirement of sj for rk and ra
vj
k denotes the availability of

rk on the provisioning host vj. We also consider the

bandwidth “congestion” ratio bli
ba}i , where bli denotes the

bandwidth requirement of li and ba}i denotes the available

bandwidth of the corresponding overlay path }i. We set

FðLijÞ ¼ 1, if 9k; 1 � k � n, r
sj
k > ra

vj
k , or blj > ba}j , which

means that the resource requirements of si or lj cannot be

satisfied. Thus, we define FðLijÞ associated with a candidate

graph link Lij ¼ si=vi ! sj=vj as follows:

FðLijÞ ¼
Xm
k¼1

wk �
q
sj
k

qmaxk

þ qlik
qmaxk

 !
þ wmþ1�

Xn
z¼1

!z �
r
sj
k

ra
vj
k

þ !nþ1 �
blj

ba}j

 !
:

ð5Þ

The weight wk; 1 � k � mþ 1 represent the importance
of different QoS or resource metrics during service path
finding, where

Pmþ1
k¼1 wk ¼ 1. The weight !z; 1 � z � nþ 1

represent the importance of different resource metrics
during load balancing, where

Pnþ1
z¼1 !z ¼ 1. Higher weight

value represents that the corresponding metric will be
given higher priority in service instance selection. To satisfy
multiple QoS constraints, we modify the Djikstra algorithm
by adaptively adjusting the importance weights based on
the “violation risk” of different QoS metrics. We want to
minimize the maximum violation risk among all QoS
metrics. To be specific, suppose sj=vj is the current chosen
node by the Extract_Min operation in the Dijkstra algo-
rithm, whose shortest path from the source s0 is just
determined, denoted by s0 7!sj. We calculate the violation

risk of the qk metric using the ratio Pqk ¼
q
s0 7!sj
k

qreq
k

, where q
s0 7!sj
k

is the value of qk for the partial service path s0 7!sj and qreqk

is the required constraint. The higher the ratio Pqk is, the

higher violation risk the qk metric has since its accumulated

value is closer to its constraint. Based on the violation risk

of different QoS metrics, we calculate the importance

weights using wk ¼
PqkPm

j¼1
Pqj
� ð1� wmþ1Þ, which means that

we give higher priority to the metric with higher violation

risk. We do not claim that our GC algorithm is the best

heuristic for the initial service composition problem. But,

our design provides important insight that adaptation and

aggregation are important for solving the problem. Later, in

Section 5, we will show that the GC algorithm can achieve

better performance than other common heuristics.
The above baseline GC algorithm solves the service path

finding problem. We now extend the above algorithm to solve
the problem of service graph finding using standard divide-
and-conquer strategy, illustrated by Fig. 5. We first divide a
function graph into several stages using “branch” nodes that
have multiple inputs or outputs, e.g.,F1,F10, andF15 in Fig. 5.
Each stage consists of disjoint function paths. We can use the
baseline GC algorithm to instantiate all disjoint function
paths into service paths. The QoS values of a stage are defined
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as the bottleneck values (e.g., longest delay) among the stage’s
constituent service paths. Then, we can use a virtual node to
represent each stage to reduce the problem into the case of
finding a service path. For example, in Fig. 5, we first
instantiate the two stages and then replace them with two
virtual nodes. The QoS values of a service graph are defined
as the aggregation of its constituent stages. For more complex
function graphs, we may need to recursively apply the above
strategy since stages may include substages.

3.2 Local-State-Based Distributed Algorithm

The local-state-based distributed (LD) algorithm, illustrated by
Fig. 6, executes a composition probing protocol that
employs a set of probing messages, called probes, to
perform distributed service graph finding. Different from
the GC algorithm, the LD algorithm does not require global
state information and each peer only maintains local state
information about its neighbors. The major task of the
composition probing is to collect distributed state informa-
tion on-demand according to the user’s request. Different
from the network probing that performs on-demand state
measurement, the composition probing performs on-demand
state collection. The best service graph is then derived based
on the state information collected by the composition
probing. The LD algorithm can explicitly control the
number of probes for a user request, which is called probing
budget (�). The probing budget is a configurable system
parameter controlling the tradeoff between performance
(i.e., composition success rate) and overhead. We can
adaptively set the probing budget as the minimum number
of needed probes to achieve a performance target under
current system conditions [16].

The LD algorithm includes four major phases. First, the
source peer decomposes the function graph into Y function
paths. For example, in Fig. 6, we decompose the function
graph into two function paths. The source then generates a
probe for each function path. Each probe is initialized with its
designated function path, user’s QoS/resource requirements,
and the probing budget b�=Y c. Then, the algorithm enters the
second phase: hop-by-hop probe processing. At each hop, the
probe collects local state information from the visited peer
host. The probe can spawn new probes to visit multiple next-
hop service instances under the probing budget constraint.
All spawned probes will arrive at the destination peer after
traversing different candidate service paths.

In the third phase, the destination peer merges probed
service paths into complete candidate service graphs. We

briefly describe the merging algorithm as follows: 1) Classify
all service paths into Y sets according to their provisioned
service functions. All service paths in one set provide the
same set of service functions. 2) Merge every Y combinable
service paths, one from each of the Y sets, into a complete
service graph. Two service paths are mergable if their
common service functions are performed by the same
service instance. Next, we select qualified service graphs
based on the user’s QoS and resource requirements (3), (4).
One nice property of the LD algorithm is that it can find
multiple qualified service graphs using one round of
composition probing. These redundant qualified service
graphs can be conveniently used as backup service graphs,
which will be described in the next section. The best service
graph is then selected among the qualified service graphs
according to the load balancing goal (1). Finally, the
destination peer sends a confirmation message to the source
peer containing the selected service graph.

The per-hop probe processing at each service peer
includes four major steps. First, the peer checks whether
the service path traversed by the probe already violates the
user’s QoS and resource requirements. If the service path
cannot meet the requirements, the peer drops the probe to
prune unqualified searching branches as early as possible.
Otherwise, the peer performs soft resource allocation to
temporarily reserve required resources on the local node
and the overlay link to the next-hop peer. Thus, we can
ensure that required resources are still available at the end
of the probing process. By soft, we mean that resource
allocation will be cancelled after a certain timeout period if
the peer does not receive a confirmation message. Since two
service links li and lj can share the common overlay link ek,
soft resource allocation can address the problem of resource
overbooking on the same overlay link by two different
service links. We can apply the same approach to the
problem of shared physical link between two overlay links
if the underlying physical network topology is available.

Third, the peer selects candidate service instances to
probe for the next-hop service function. Let �k denote the
probing budget for the next-hop function Fk. Let Zk denote
the number of all candidate service instances for Fk. If
�k � Zk, the peer has enough probing budget to probe all
candidate service instances. The peer spawns Zk probes
from the received probe and each new probe has the
probing budget b�kZkc. However, if �k < Zk, the peer needs to
select a subset of service instances to probe. If the
information about those candidate service instances is not
available in the peer’s local state, the peer performs random
selection. The peer can also perform greedy selection based
on available external information such as geographical
locations and network delay provided by the overlay data
routing layer. Fourth, each new probe inherits the state
information of the old probe and collects local state
information from the current peer. Finally, the current peer
delivers all new probes to the overlay data routing layer
that will route the probes to their designated next-hop
service instances. During the routing process, probes will
also collect QoS and available bandwidth information about
the overlay paths from the current service peer to the next-
hop service peers. Different from service peer, the relay
peer only performs overlay data routing for the stream
application. Thus, when a relay peer receives a probe, it
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does not spawn new probes but only updates the probe
with its local resource and QoS states.

3.3 Analytical Comparison

3.3.1 Computational Complexity

Both GC and LD algorithms are polynomial algorithms
whose computational complexities are stated by the
following theorems.

Theorem 2. Let K, L, and m denote the number of candidate
service instances, the number of candidate service links, and
the dimension of QoS constraints. The computational complex-
ity of the GC algorithm is OðKlogK þKmþ LlogKÞ.

Theorem 3. Let K denote the number of candidate service
instances, L denote the number of candidate service links, jV j
denote the number of all peers, � denote the probing budget, Y
denote the number of function paths decomposed from the
function graph, andm denote the dimension of QoS constraints.

The computational complexity of the LD algorithm is
OðlogjV j þ ðLþ ð�Y Þ

Y ðY ðlog� � logY Þ þmÞÞ=KÞ.

Compared to the GC algorithm that performs centralized
computation at the source peer, the LD algorithm performs
distributed computation at different peers. Thus, the LD
algorithm imposes less computation load on each peer.
However, the LD algorithm may require longer execution
time since probes have to travel across wide-area networks
to collect state information. We have implemented a
prototype of the LD algorithm and measured its execution
time on the PlanetLab testbed [2]. The LD algorithm takes
about a few seconds to finish the initial service composition
in a P2P system using 102 Planetlab hosts distributed across
the US and Europe [14], which is acceptable for long-lived
stream applications that often last tens of minutes or hours.

3.3.2 Space Complexity

Let jV j denote the number of all peers. The space complex-

ity of the GC algorithm is OðjV j2Þ for recording the global

state information. Thus, in a large-scale P2P system (i.e., jV j
is large), the GC algorithm has large memory requirement

for all peers. In contrast, the space complexity of the LD

algorithm is a constant with regard to jV j because each peer

only maintains local state information.

3.3.3 Algorithm Overhead

The overhead of the GC algorithm mainly comes from the
global state maintenance. To keep up-to-date global state
information at each peer, we need to perform periodical
dissemination of each peer’s states to all other peers. Each
peer first constructs a message containing the local state
information measured by itself and then sends this message
to all other peers. We define the overhead of theGC algorithm
as the number of state update messages generated per time
unit in the P2P system.

Theorem 4. Let T denote the state update period and jV j denote
the number of peers. Assuming each peer needs at least one
message to update its local state information with any other

peer host, the overhead lower-bound of the GC algorithm is
bjV jðjV j�1Þ

T c.

The overhead of the LD algorithm includes both probing
overhead and local state maintenance overhead, which are
defined as the total number of probing messages and local
state update messages generated per time unit in the whole
P2P system.

Theorem 5. Let Z denote the average number of user requests per

time unit, � denote the probing budget,T denote the state update

period, and � denote the average node degree in the P2P overlay

network. In a P2P system G ¼ ðV ;EÞ, the overhead upper-

bound of the LD algorithm is Z � � þ bjV j��T c.
Based on Theorem 3 and Theorem 4, the GC algorithm

has larger overhead than the LD algorithm if

jV jðjV j � 1Þ
T

� �
> Z � � þ jV j � �

T

� �
: ð6Þ

In a large P2P system where jV j2 � jV j, we can simplify
the above inequality as follows:

Z <
jV jðjV j � �Þ

� � T : ð7Þ

The above inequality indicates that the overhead compar-
ison between the GC algorithm and the LD algorithm
depends on a number of factors including:

1. the scale of the P2P system jV j,
2. the user request rate Z,
3. the probing budget �,
4. the state update period T , and
5. the overlay network’s node degree �.

P2P systems can include tens of, hundreds of, or thousands
of nodes. The user request rate can also vary from time to
time. The probing budget is adaptively configured by the
system based on the system’s performance target and
resource conditions. The state update period depends on
the dynamics of the P2P system. In a highly dynamic P2P
system, the state update period should be short in order to
keep track of frequent peer changes. The value of � depends
on the overlay network’s topology. Our analysis provides
important guidance for selecting proper algorithms under
different system conditions. For example, if the peer
number jV j is 1,000, average node degree � is 100, the
probing budget � is 200, the state update period T is two
time units, and the average request rate Z is 2,000 requests
per time unit, the LD algorithm has lower overhead than
the GC algorithm.

4 DYNAMIC FAILURE RECOVERY ALTERNATIVES

In this section, we present and compare two different
schemes for the dynamic failure recovery (DFR) problem
(Definition 2): 1) reactive failure recovery and 2) proactive
failure recovery. The failures of composed stream applica-
tions can be caused by dynamic peer departures/failures or
software failures of service instances.

4.1 Reactive Failure Recovery

The main idea of the reactive failure recovery (RFR)
algorithm is to dynamically recompose a new service graph
when the current service graph fails, illustrated by Fig. 7.
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The new service graph should continue to satisfy the user’s
function, QoS and resource requirements. To achieve fast
failure recovery, the new service graph should incur
minimum service instance changes for reducing the user
perceived disruptions. Similar to the GC algorithm, the
RFR algorithm requires global state information and
performs centralized computation to find a new service
graph. First, we generate an updated candidate graph from
the function graph including the update-to-date QoS/
resource states and the failure information about all
candidate service instances and service links. In P2P
systems, the service instance failure can be caused by peer
departures, peer host failures, or service instance deletions.
We modify the candidate graph by removing those failed
service instances. The service link failure will be handled by
the overlay data routing layer (e.g., finding a new overlay
path). For example, in Fig. 7, two service instances s1 and
s10 failed on the current service graph. Thus, we remove s1

and s10 from the candidate service instance list.
To minimize service instance changes, we further modify

the candidate graph by removing the other candidate service
instances in the column where the old service instance is
good. For example, in Fig. 7, the service instance s6 is
performing well for providing the service function F3 on the
current service graph. We modify the candidate graph by
removing the other candidate service instance s7 that also
provides F10. Thus, the new service graph is forced to reuse
the same service instance s6 in the current service graph. In
Fig. 7, we applied the above modification on the other two
good service instances s4 providing F2 and s8 providing F4.
We then use the same adaptive Dijkstra algorithm as the GC
scheme to find a new service graph in the modified candidate
graph. If a new qualified service graph can be found, the
interrupted stream session can be resumed by switching from
the broken service graph to the new service graph. For
example, in Fig. 7, the RFR algorithm found a new service
graph shown in dash-dotted lines in the modified candidate
graph to recover the failures of the current service graph
shown in solid lines.

4.2 Proactive Failure Recovery

The main idea of the proactive failure recovery (PFR)
algorithm is to maintain a number of backup service graphs
for each active stream session, illustrated by Fig. 8. When
the current service graph fails, the stream session can be
resumed if one of the backup service graphs can recover the
failure. For example, in Fig. 8, the source peer maintains
two backup service graphs that are partially disjoint with
the current service graph. When the current service graph
(shown in solid lines) failed, we can recover the failure by
switching to one of the backup service graphs (shown in

dashed lines). In contrast to the RFR scheme, the PFR
algorithm does not recompose a new service graph on-the-
fly. Instead, the PFR algorithm needs to maintain the
quality of backup service graphs using periodical measure-
ments, which is denoted as “maintenance overhead.” When
the source peer detects that one of the backup service
graphs fails or becomes unqualified, the PFR algorithm
will select another qualified service graph as the backup
service graph.

To achieve efficient proactive failure recovery, we need
to answer two key questions: 1) How many backup service
graphs should be maintained for a stream session? 2) Which
qualified service graphs should be selected as backup
service graphs? The number of maintained backup service
graphs represents the trade-off between failure resilience
and maintenance overhead. The more backup service
graphs we maintain, the better failure resilience we can
achieve. However, the maintenance overhead also becomes
larger. Thus, the PFR algorithm adaptively decides the
number of backup service graphs based on the condition of
the current service graph and the user’s requirements. In
particular, the failure probability of the composed stream
application is decided by the provisioning peers’ avail-
ability [6]. Intuitively, if the QoS values and failure
probability of the current service graph are much better
than the user’s requirements, we can maintain a small
number of backup service graphs since the failure prob-
ability of the current service graph is small. Otherwise, we
need to maintain more backup service graphs to achieve
user desired QoS assurances and failure resilience. Let Q� ¼
½q�1 ; . . . ; q�m� and f� denote the QoS values and failure
probability of the current service graph �. Let Qreq ¼
½qreq1 ; . . . ; qreqm � and freq denote the user required QoS and
failure probability. Let � denote the system’s upper-bound
for the backup service graph number, and � denote the
number of redundant qualified service graphs found by the
initial service composition. The PFR algorithm calculates
the number of backup service graph � as follows:

� ¼min � �
Xm
i¼1

q�i
qreqi
þ f�

freq

 !$ %
;�

 !
: ð8Þ

Given the number of backup service graphs, the PFR
algorithm needs to decide which qualified service graphs
should be selected as backup service graphs. On one hand,
failure resilience implies that backup service graphs should
be disjoint with the current service graph. On the other
hand, fast failure recovery implies that the backup service
graph should be overlapped with the current service graph.
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To accommodate both requirements, the PFR algorithm
selects the backup service graphs as follows: For each
service instance si on the current service graph, PFR selects
a qualified service graph that does not include si but has the
largest number of common service instances with the
current service graph. Hence, if si fails, PFR can quickly
recover the failure by switching to the above backup service
graph with minimum service instance changes. In order to
handle concurrent service instance failures, the PFR
algorithm continues to select backup service graphs that
do not include every two service instances, every three
service instances, and so forth. However, under the
constraint of backup service graph number �, PFR may
not be able to maintain all desired backup service graphs.
Thus, PFR first maintains backup service graphs for most
unreliable service instances.

4.3 Analytical Comparison

4.3.1 Computational Complexity

The RFR algorithm recomposes a new service graph based
on the modified candidate service graph. Thus, the
computational complexity of the RFR algorithm is the
same as the GC algorithm (Theorem 2). In contrast, the
PFR algorithm does not recompose a new service graph
upon failure, but replaces the broken service graph with a
backup service graph. The PFR algorithm selects a number
of backup service graphs from the qualified service graphs
found by the initial service composition algorithm. Let �
denote the upper-bound of backup service graph number
for each session. It takes the PFR algorithm at most Oð�Þ
time to find a proper backup service graph to replace the
broken service graph.

4.3.2 Space Complexity

The space complexity of the RFR algorithm is the same as
the GC algorithm since both of them require global state
information. If we use the RFR algorithm together with the
GC algorithm, we do not need extra memory since the
global state is already available. In contrast, the space
complexity of the PFR algorithm is the requirement for
storing backup service graphs. Let M denote the number of
active sessions maintained by the peer and � denote the
upper-bound on the number of backup service graphs for
each session. The space complexity of the proactive failure
recovery is OðM � �Þ.

4.3.3 Algorithm Overhead

The overhead of the RFR algorithm comes from the
requirement of the global state. If we use the RFR algorithm
together with theGC algorithm, we pay no extra overhead for
failure recovery. In contrast, the PFR algorithm does not
require global state information. However, the PFR algo-
rithm has to pay the backup service graph maintenance
overhead. We define the overhead of the PFR algorithm as
the number of maintenance messages generated per time unit.
We have the following theorem about the PFR algorithm
overhead.

Theorem 6. Let Z denote the average user request rate, D denote
the average application session duration, � denote the upper-
bound of backup service graph number, and T denote the

backup maintenance period. In a P2P system G = (V, E), the

overhead upper-bound of the proactive failure recovery

algorithm is bZ�D��T c.

5 EXPERIMENTAL EVALUATION

5.1 Evaluation Methodology

We implement all proposed algorithms and conduct exten-
sive experiments using a P2P streaming simulation testbed.
The simulator implements the three-layer system architecture
illustrated by Fig. 2a. We first use the degree-based Internet
topology generator Inet-3.0 [34] to generate a 3,200 node
power-law graph as the IP-layer network topology. We then
randomly select jV jnodes as peer hosts and connect them into
an overlay network. We use the mesh topology where each
peer is connected with 0:1 � jV j neighbors via overlay links.
The simulator emulates delay-based shortest path data
routing and dynamic resource allocations at both IP network
layer and overlay network layer. Table 2 summarizes all
parameters used by the simulator.

Similar to previous work (e.g., [9]), we randomly assign
QoS values (e.g., delay and loss rate) to each IP network link
since Inet-3.0 does not provide QoS values for each network
link. To simulate dynamics in the real world, the simulator
first sets mean QoS values for each IP link. The instant QoS
values then follow uniform or Gaussian distribution with
certain deviation range. The mean delays of IP links are
uniformly distributed within the interval [10, 50] ms. The
mean loss rates of IP links are randomly set in the range of
½1%; 5%�. The initial bandwidth capacity of each IP link is set
in the range of [2, 100] Mbps. The CPU capacity of each
physical host is uniformly distributed in the range of [100,
800] units. Different values reflect the heterogeneity of P2P
systems. In the GC algorithm, the system performs global
state update within the whole network every minute.
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The QoS and resource values of each overlay link can be
derived from the values of its underlying IP-layer network
path. The number of service instances for each service
function is uniformly distributed in the range of [5, 25]. The
source stream rate is randomly set in the range of [5, 50]
ADUs per second. The size of one ADU is uniformly
distributed in the range of [160, 2,000] Byte. The CPU and
memory requirements for a service instance to process one
ADU are uniformly distributed in the range of [5, 50] units
and [200, 4,000] Byte, respectively. The processing time for a
service instance to process one ADU is randomly distrib-
uted in the range of [1, 5] ms. For example, in the VoIP
application, the source audio stream rate is 64Kbps (i.e.,
stream rate = 50 ADUs per second, the size of each ADU =
176 Byte). The amortized processing time and memory
requirement for processing one ADU in the VoIP applica-
tion is 2 ms and 400 Byte, respectively.

A number of user requests are randomly generated from
different peers during each minute, which is defined by the
request rate. The user request randomly chooses one of
30 predefined function graphs. Each function graph consists
of one or two function paths. Each function path consists of
[2, 6] function nodes. The total delay constraint and loss rate
constraint for the composed stream application are uniformly
distributed in the range of [1,000, 3,000] ms and ½3%; 10%�,
respectively. Each stream session lasts [5, 20] minutes.

For comparison, we also implement several alternative

heuristic algorithms for the ISC problem:

1. Dijkstra-composite algorithm that uses standard Dijk-
stra algorithm with the composite metric (5) with
fixed importance weights wk ¼ 1

mþ1 ; 1 � k � mþ 1,
2. Dijkstra-delay algorithm that uses standard Dijkstra

algorithm with delay metric only,
3. Dijkstra-loss algorithm that uses standard Dijkstra

algorithm with loss rate metric only,
4. Dijkstra-resource algorithm that uses standard Dijk-

stra algorithm with resource metrics only,
5. Brute-force probing algorithm that exhaustively

probes all candidate service graphs, and
6. Random algorithm that randomly selects service

instances in service composition.

To evaluate the performance of the proposed failure
recovery algorithms, we also implement a random recovery
(RR) algorithm for the DFR problem that randomly
recomposes a new service graph to recover failures.

We define the following comparison metrics:

1. composition success rate, which is defined by SuccessNum
ReqNum

where SuccessNum denotes the number of success-

ful service compositions and ReqNum denotes the
number of user requests;

2. composition overhead, which is defined as the number
of algorithm overhead messages (e.g., state update
messages, probing messages, and backup mainte-
nance messages) generated per minute; and

3. composition failure rate, which is defined by FailureNum
SessionNum ,

where FailureNum denotes the number of failed
stream sessions and SessionNum denotes the
number of established stream sessions.

5.2 Results and Analysis

We first evaluate the GC and LD algorithms for the initial
service composition problem. We use a 1,000-node P2P
overlay network. Fig. 9 shows the performance comparison
results under different request rates. Each success rate value
is averaged over all requests generated during a 1,000 minute
simulation. We empirically set the probing budget as
� ¼ minð0:3 � �max; 500Þ, where �max denotes the number of
probes required by the brute-force probing algorithm. Each
service function has 10 candidate service instances. We
observe that bothGC andLD algorithms consistently achieve
better performance than other heuristic algorithms. Com-
pared to the random algorithm, theGC algorithm can achieve
three times better composition performance, and the LD
algorithm can be four times better. The GC algorithm also
performs better than the Dijkstra-composite algorithm by as
much as 20 percent, which indicates the adaptation effective-
ness of the GC algorithm. Compared to the single-metric-
based Dijkstra algorithms Dijkstra-delay and Dijkstra-loss,
the GC algorithm can have as much as 250 percent
improvement, which shows the effectiveness of the compo-
site metric. The Dijkstra-delay and Dijkstra-loss algorithms
can even perform worse than the random algorithm under
heavy workload since they do not consider load conditions of
different peers.

Fig. 12 shows the overhead of different algorithms in the
above experiments. The overhead of the GC algorithm is not
affected by the request rate. The results show that the GC
algorithm can have one magnitude larger overhead than the
LD algorithm in the 1,000-node P2P system due to its global
state requirement. The overhead of theGC algorithm is solely
decided by the size of the overlay network (i.e., jV j ¼ 1; 000).
In contrast, the overhead of the brute-force probing algorithm
increases linearly with the request rate. However, the LD
algorithm has much slower overhead increase since it
performs bounded and pruned probing.

We conduct the second set of experiments to evaluate the
scalability of the GC and LD algorithms. Fig. 10 shows the
performance of different algorithms on different sizes of P2P
overlay networks under the same workload (i.e., 50 requests
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per minute). The overall processing capacity of the P2P
system increases as more nodes are added into the system.
We observe that both LD and GC algorithms perform
consistently better than other alternative schemes. Moreover,
the LD and GC algorithms show faster performance
increases than other heuristic algorithms. Fig. 13 shows the
overhead of theGC,LD, and brute-force probing algorithms.
The results show that both GC and brute-force probing
algorithms require much larger overhead than the LD

algorithm. Particularly, the overhead of the GC algorithm
quickly increases as more nodes join the P2P system.

We conduct the third set of experiments to evaluate the
effect of candidate service instance number on the perfor-
mance of different initial service composition algorithms.
We use a 500-node P2P system and gradually increase the
number of candidate service instances for each service
function from 5 to 25. The request rate is set as 30 requests
per minute. Fig. 11 shows the composition performance of
different algorithms using different number of candidate
service instances. We observe that the GC and LD
algorithms consistently perform better than other alterna-
tive algorithms. Fig. 14 shows the overhead of the GC, LD,
and brute-force probing algorithms. The overhead of the
GC algorithm is not affected by the number of candidate
service instances. In contrast, the overhead of the brute-
force probing algorithm exponentially increases with the

number of candidate service instances since the number of
candidate service graphs exponentially increases as the
number of candidate service instances. However, the
overhead of the LD algorithm has limited overhead
increase because of the probing budget constraint. This set
of experiments indicate that the proposed algorithms are
robust for different replications of service functions.

We now evaluate the performance of different failure
recovery algorithms. The RFR algorithm is combined with
the GC algorithm since the RFR algorithm requires the
same global state as the GC algorithm. The PFR algorithm
is combined with the LD algorithm. We simulate a dynamic
500-node P2P system where a portion of peers randomly
fail during each minute. We evaluate the performance of
different failure recovery algorithms by comparing the
failure rate values with and without dynamic failure
recovery. A failure recovery is said to be successful if we
can replace the broken service graph with a new qualified
service graph. The maximum backup service graph number
(�) in the PFR algorithm is set as 5. Fig. 15, Fig. 16, and
Fig. 17 show the failure rate results of different failure
recovery algorithms in a dynamic P2P system with
10 percent peers randomly fail each minute. We observe
that the random recovery (RR) algorithm can only reduce
the failure rate by at most 25 percent, the RFR algorithm
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can reduce the failure rate by as much as 70 percent, and the
PFR algorithm can reduce the failure rate by as much as
65 percent by maintaining on average 4.5 backup service
graphs. Fig. 18, Fig. 19, and Fig. 20 show the failure rate
results of different failure recovery algorithms in a more
dynamic P2P system with 20 percent peers randomly fail
each minute. We observe that all algorithms experience
higher failure rates since more peers experience failures.
However, the RFR algorithm achieves on average 50 per-
cent lower failure rate than the RR algorithm. By main-
taining about four backup service graphs for each session,
the PFR algorithm can achieve on average 25 percent lower
failure rate than the RR algorithm. We can increase the
number of backup service graphs to further reduce the
failure rate.

6 CONCLUSION

This paper has presented a composable stream processing
system for cooperative P2P environments. To the best of our
knowledge, this is the first work that studied composing
stream applications in P2P environments. Specifically, this
paper proposes and analyzes a set of efficient algorithms for
two key problems in composing stream applications: 1) the
global-state-based centralized algorithm versus the local-
state-based distributed algorithm for the initial service
composition problem, and 2) the reactive failure recovery
algorithm versus the proactive failure recovery algorithm
for the dynamic failure recovery problem. While finding the
optimal solutions for both problems is NP-hard, the
proposed approximation algorithms can achieve much
better performance than other alternative heuristics under
different workloads and system conditions. Our compar-
ison study also reveals the key factors that can affect the
trade-offs among different design alternatives. Our results
can provide important guidance for adaptively selecting

proper algorithms to compose stream processing applica-
tions in dynamic P2P environments.

APPENDIX

Proof scratch of Theorem 1. We prove that both ISC and
DFR problems are NP-hard by showing that the multi-
constrained path selection (MCP) problem, which is known
to be NP-hard [11], maps directly to the special cases of
both problems. tu

Proof of Theorem 2. Let us first consider the basic case
where the function graph has a path structure. The first
step of the GC algorithm (i.e., constructing the candidate
graph) takes time OðKÞ. The time to perform the QoS
consistency check is OðLÞ. In the third step, each
EXTRACT-MIN operation takes time OðlogKÞ assuming
that the priority queue in the Dijkstra algorithm is
implemented by a binary heap. Each weight adjustment
operation takes time OðmÞ. There are K such operations.
Each RELAX operation takes time OðlogKÞ. There are at
most L such operations. Thus, the total running time is
OðKlogK þKmþ LlogKÞ. We now prove that the above
conclusion also holds for generic function graphs.
Suppose the function graph consists of B stages, each
stage consists of U disjoint function paths. Let Ki and Li,
1 � i � U denote candidate service instance number of
the ith function path. According to the basic case, the
computational complexity of finding the best service
path for the function path is

OðKilogKi þKimþ LilogKiÞ:

Thus, the computational complexity of instantiating the
whole stage is Oð

PU
i¼1 KilogKi þKimþ LilogKiÞ. Let

K0j ¼
PU

i¼1 Ki; 1 � j � B denote the number of all service
instances in the stage and L0j ¼

PU
i¼1 Li denote the

number of all service links in the stage. Then, we have
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Fig. 17. Proactive failure recovery with a failure rate of 10 percent peers
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Fig. 18. Random failure recovery with a failure rate of 20 percent peers
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Fig. 19. Reactive failure recovery with a failure rate of 20 percent peers
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Fig. 20. Proactive failure recovery with a failure rate of 20 percent peers

per minute.



O
XU
i¼1

ðKilogKi þKimþ LilogKiÞ
 !
< OðK0jlogK0j þK0jmþ L0jlogK0jÞ:

Thus, the running time to instantiate all stages is

Oð
PB

j¼1ðK0jlogK0j þK0jmþ L0jlogK0jÞÞ. Let K0 ¼
PB

j¼1 K
0
j

and L0 ¼
PB

j¼1 L
0
j. Then, we have

O
XB
j¼1

ðK0jlogK0j þK0jmþ L0jlogK0jÞ
 !
< OðK0logK0 þK0mþ L0logK0Þ:

The last step is to replace all stages with virtual nodes
and then run our modified Dijkstra algorithm. The
running time of the last step is

OððK �K0ÞlogðK �K0Þ þ ðK �K0Þm
þ ðL� L0ÞlogðL� L0ÞÞ:

Thus, the total running time is

OðK0logK0 þK0mþ L0logK0Þ þOððK �K0ÞlogðK �K0Þ

þ ðK �K0Þmþ ðL� L0ÞlogðK �K0ÞÞ < OðKlogK þKm

þ LlogKÞ:
ut

Proof of Theorem 3. The first step to generate the root probe

takes Oð1Þ. In each per-hop probe processing, the step to

derive the next-hop service task takes timeOð1Þ. Each P2P

service discovery takes time OðlogjV jÞ using the distrib-

uted hash table [28]. There are K service discovery

operations. The rest of the per-hop probe processing

operation takes Oð1Þ time. There are totally L operations.

In the third step, to select the best service graph, there are at

most � different service paths due to the probing budget

constraint. The classification takes Oð�Þ time. Because the

function graph is decomposed into Y function paths, the

service paths can be classified into Y sets and each set

includes �i service paths satisfying
PY

i¼1 �i ¼ �. Thus, the

merging operation takes time Oð
QY

i¼1 �iÞ < Oðð�Y Þ
Y Þ. The

number of complete service graphs is at mostOðð�Y Þ
Y Þ. The

qualified service path selection takes at most Oðmð�Y Þ
Y Þ

time. The sorting takes Oðð�Y Þ
Y Y ðlog� � logY Þ time. Thus,

the total running time is OðKlogjV j þ Lþ ð�Y Þ
Y ðY ðlog� �

logY Þ þmÞÞ. There are K service peers. Thus, the

amortized running time at each peer is OðlogjV j þ ðLþ
ð�Y Þ

Y ðY ðlog� � logY Þ þmÞÞ=KÞ. tu
Proof of Theorem 4. The global state information at each

peer should include the states of all peers and all overlay

links in the P2P overlay network. Since each state update

message includes the states of at most one peer, each

peer needs to receive at least ðjV j � 1Þ state update

messages to obtain the states of all other peers. Because

each state is updated b1
Tc times per time unit, the number

of messages received by each peer per time unit is at least

bðjV j�1Þ
T c. Thus, the total number of messages received by

all peers must be no less than bjV jðjV j�1Þ
T c. Because the

number of messages generated should be no less than

the messages received, the global state maintenance

overhead is at least bjV jðjV j�1Þ
T c. Thus, the overhead lower-

bound of the GC algorithm is at least bjV jðjV j�1Þ
T c. tu

Proof of Theorem 5. Because the LD algorithm is triggered

by user requests, the number of probing processes

invoked in the P2P system is no more than Z times per

time unit (i.e., request rate). Because the LD algorithm

guarantees that the number of probes generated during a

single probing process is no larger than the probing

budget �, the total number of probes generated per time

unit is at most Z � �. Because each peer has on average �

neighbors and the state update period is T time units, the

number of all local state update messages generated in

the P2P system is bjV j��T c. Thus, the overhead upper-

bound of the LD algorithm is Z � � þ bjV j��T c. tu
Proof of Theorem 6. According to (8), the number of

backup service graphs maintained per session is no more

than minð�;�� 1Þ. Because each candidate service

graph needs at least one probe, the qualified service

service graph number � won’t exceed the probing

budget �. Thus, minð�;�� 1Þ should be no more than

minð�; �Þ. Because � � �, the number of backup service

service graphs maintained per session is no more than �.

Thus, each session generates at most b�Tc maintenance

messages per time unit assuming we use one main-

tenance message for each backup service graph. Given

the request rate Z and maximum session duration D time

units, the number of active sessions during each time

unit is no more than Z �D. Thus, the upper-bound of

backup service graph maintenance overhead is bZ�D��T c.tu
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