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Abstract—Multiparty voice-over-IP (MVoIP) services allow a group of people to freely communicate with each other via the Internet,
which have many important applications such as online gaming and teleconferencing. In this paper, we present a peer-to-peer MVoIP

system called peerTalk. Compared to traditional approaches such as server-based mixing, peerTalk achieves better scalability and
failure resilience by dynamically distributing the stream processing workload among different peers. Particularly, peerTalk decouples

the MVoIP service delivery into two phases: mixing phase and distribution phase. The decoupled model allows us to explore the
asymmetric property of MVoIP services (for example, distinct speaking/listening activities and unequal inbound/outbound bandwidths)

so that the system can better adapt to distinct stream mixing and distribution requirements. To overcome arbitrary peer departures/
failures, peerTalk provides lightweight backup schemes to achieve fast failure recovery. We have implemented a prototype of the

peerTalk system and evaluated its performance using both a large-scale simulation testbed and a real Internet environment. Our initial
implementation demonstrates the feasibility of our approach and shows promising results: peerTalk can outperform existing

approaches such as P2P overlay multicast and coupled distributed processing for providing MVoIP services.

Index Terms—Peer-to-peer streaming, voice-over-IP, adaptive system, service overlay network, quality-of-service, failure resilience.

Ç

1 INTRODUCTION

RECENT Internet advancement has made large-scale live
streaming a reality [37]. Although previous work has

studied the feasibility of supporting stream content delivery
using peer-to-peer (P2P) architectures (for example, [15],
[14], [7], [21], [13], and [12]), little is known whether it is
feasible to provide large-scale multiparty voice-over-IP
(MVoIP) services using application end points such as peer
hosts. The MVoIP service allows a group of people to freely
communicate with each other via the Internet, which can be
used in many important applications such as massively
multiplayer online gaming [10], [20], telechorus, and online
stock trading. Different from conventional conferencing
systems that impose explicit or implicit floor controls, we
strive to provide a more flexible MVoIP service that allows
any participant to “speak” at anytime. By speaking, we
mean not only the uttering of words but also nonverbal
activities such as shouting, singing, cheering, and laughing
that are common in interactive and spontaneous applica-
tions such as online gaming. For example, in the Internet
gaming application, MVoIP services allow game players to

easily communicate with each other for deploying strategies
and game spectators to cheer up players. The emerging
collaborative distributed virtual environment applications
such as inhabited television [28] and digital virtual world
(for example, Second Life [1]) can support large online
communities and highly interactive social events where it is
common to have overlapping audio transmissions from
multiple participants.

Traditional multiparty conferencing systems employ
either multicast (for example, [16], [15], [14], and [7]),
illustrated in Fig. 1a, or server-based centralized audio
mixing (for example, H.323 multipoint control units),
illustrated in Fig. 1b. Using the multicast approach, the
system needs to distribute multiple audio streams concur-
rently from all active speakers to all participants. Although
multicast is well suited for broadcast applications that
usually involve one active speaker, it becomes inefficient for
interactive and spontaneous applications (for example,
online gaming) that often include many simultaneous
speakers. The system can be overloaded by processing
many audio streams concurrently. Moreover, since any
participant is allowed to produce audio streams at any time,
we need to maintain a large number of multicast trees for all
participants, which can incur a lot of maintenance overhead
especially in dynamic P2P environments where peers can
dynamically leave or join the system. The audio mixing
scheme can effectively reduce the number of concurrent
streams, which first mixes the audio streams of all active
speakers into a single stream and then distribute the mixed
stream to all participants. However, centralized audio
mixing lacks the scalability desired by P2P applications
that often have large groups and many concurrent voice-
over-IP (VoIP) sessions. For example, the existing most
popular VoIP system Skype [2] can only support
conferencing sessions with at most five people. Previous
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work (for example, [28], [22], and [10]) has proposed the
coupled distributed processing (CDP) approach that
uses the same tree for both stream mixing and
distribution, illustrated in Fig. 1c. However, we observe
that MVoIP services present asymmetric properties: 1) the
number of active speakers (that is, stream sources) is often
different from the number of listeners (for example, stream
receivers), and 2) the inbound bandwidth of a peer can be
different from its outbound bandwidth (for example, cable
network). Thus, CDP can be suboptimal by using the same
tree for both mixing and distribution.

In this paper, we present the design and implementation
of the first P2P MVoIP system called peerTalk. Compared to
previous work, our solution presents three unique features.
First, peerTalk provides the first decoupled distributed
processing (DDP) model for MVoIP services, illustrated in
Fig. 1d. The DDP model partitions the multistream audio
delivery into two phases: 1) mixing phase, which mixes
audio streams of all active speakers into a single stream via
a mixing tree, and 2) distribution phase, which distributes the
mixed audio stream to all listeners via a distribution tree. The
decoupled processing model can better match the asym-
metric property of the MVoIP application, which allows us
to optimize and adapt to distinct stream processing
operations (that is, mixing or distribution) more efficiently.
Second, peerTalk is fully distributed and self-organizing,
which does not require any specialized servers or IP
multicast support. The system provides scalable MVoIP
services by efficiently distributing the stream processing
load among different peers. Thus, peerTalk can naturally
scale up as more peers join the system. Third, peerTalk is
adaptive, which can dynamically grow or shrink the mixing
tree based on the current number of active speakers. During
an MVoIP session, the number of active speakers can
dynamically change over time. For example, in a P2P
gaming application, there can be many active speakers at
exciting moments and fewer speakers during quiet periods.
Any static solution (for example, predetermined aggrega-
tion tree at setup time) can be either oversufficient, which
wastes system resources, or undersufficient, which fails to
meet workload requirements. Thus, peerTalk performs
continuous optimization to adaptively optimize the quality
of the MVoIP service in dynamic P2P environments.

The peerTalk system aims at supporting P2P applications
(for example, P2P gaming [20]) where MVoIP services are
mostly applicable. However, compared to conventional
distributed systems, P2P environments present more chal-
lenges due to higher failure frequency and arbitrary peer

departures. The peerTalk system provides failure-resilient
MVoIP services using a set of lightweight failure recovery
schemes. First, the system maintains a number of backups
for each mixer on the mixing tree by utilizing redundant
resources in P2P environments. Thus, we can achieve fast
failure recovery for time-sensitive VoIP applications by
avoiding constructing a new mixing tree on the fly as much
as possible. Second, similar to previous work [15], [6], [36],
peerTalk adopts an overlay-based approach for failure
resilience. We first connect peer hosts into an overlay mesh
on top of the IP network. The mixing tree and the
distribution tree are then built on top of the overlay mesh.
Finally, we assume cooperative P2P environments where
peers are willing to share resources with each other. The
P2P VoIP service provides natural incentives for
participants to share resources since they want to receive
high-quality VoIP services with low cost.

We have implemented a prototype of the peerTalk
system and conducted extensive experiments in both wide
area networks such as PlanetLab [27] and simulated P2P
networks. Our experiments validate the feasibility of
supporting MVoIP services using P2P systems and demon-
strate the performance advantages of our approach
compared to existing schemes. More specifically, our
results show that 1) peerTalk can greatly reduce resource
contentions in P2P environments compared to the overlay
multicast approach, especially for MVoIP sessions with
large group sizes and heavy workloads (that is, many
active speakers), 2) peerTalk achieves much a lower service
delay than the CDP approach by using separate trees, and
3) peerTalk can quickly recover MVoIP service failures
while maintaining low resource contention and service
delays among live peers. The rest of this paper is organized
as follows: Section 2 introduces the peerTalk system model.
Section 3 presents the detailed design and algorithms for
P2P MVoIP service provisioning. Section 4 presents the
failure resilience management schemes. Section 5 presents
the experimental results and analysis. Section 6 discusses
related work. Finally, the paper concludes in Section 7.

2 SYSTEM MODEL

In this section, we introduce the peerTalk system model.
First, we describe the MVoIP service model and its applica-
tions. Second, we present the overlay-based P2PVoIP system
architecture. Third, we provide an overview of our approach
to providing MVoIP services using a P2P system.
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Fig. 1. Design alternatives of MVoIP services. (a) Overlay multicast. (b) Centralized mixing. (c) CDP. (d) DDP.



2.1 Multiparty Voice-over-IP Service Model

MVoIP services allow geographically dispersed participants
to communicate with each other in a more natural way than
other alternative solutions such as instant messaging. The
basic MVoIP service model considered in this paper is that
each participant is allowed to speak at anytime and should
be able to hear the voices of all other active speakers.
Different from conventional conferencing systems that often
impose explicit or implicit floor control, the MVoIP service
does not limit the number of participants who can “speak”
and the time when participants can “speak.” By speaking,
we mean that participants produce any audio signals that
could be not only the uttering of words but also nonverbal
activities such as singing, cheering, and laughing, or some
background sound in a virtual environment (for example,
music). The MVoIP service has many interesting applica-
tions. For example, in increasingly popular multiplayer
Internet game applications [20], the MVoIP service allows
both players and spectators to communicate naturally in
real time [35]. The players can better coordinate with each
other for deploying strategies using audio than using
instant text messaging. Moreover, the MVoIP service allows
the game spectators to cheer up the players in more
personalized ways [10]. Other important applications
include interactive Internet TV, teleimmersions, audio-
enabled teleauctions, and collaborative virtual environ-
ments. All of the above applications have a common
property that many participants can produce audio streams
simultaneously. Moreover, the number of active speakers
can change over time as the session’s activeness changes.

2.2 Overlay-Based System Architecture

The peerTalk system adopts an overlay-based approach for
quality-of-service (QoS) management and failure resilience.
Instead of constructing the mixing and distribution trees
directly, peerTalk first connects peer hosts into an overlay
mesh on top of the existing IP network. The mixing and
distribution trees are then constructed on top of the overlay
mesh. Each peer is connected with a number of peers called
neighbors via application-level virtual links called
overlay links. Each overlay link between two peer hosts vi
and vj, denoted by li;j, can be mapped to the IP network
path between vi and vj. The number of neighbors to which
a peer host can be connected is called the outbound degree
of the peer host, which is limited by the outbound
bandwidth at the peer host. Similarly, the inbound degree
of the peer host is constrained by its inbound bandwidth.
The overlay topology can dynamically change while each
peer selects different neighbor peers. Specifically, to
construct an overlay mesh with node degree k, each peer
selects ½k=2" nearby peers as neighbors for network locality
and ½k=2" random peers as neighbors for failure resilience
[31]. Remote random peers allow the overlay network to
better survive correlated failures.

Each peer sends heartbeat messages to its neighbors to
indicate its liveness and current stream processing perfor-
mance (for example, processing time and throughput). Each
peer can keep an up-to-date neighbor list and the neighbors’
information based on the heartbeat messages. Each peer
also periodically monitors the network delay to its
neighbors and the bandwidth of the corresponding links

using active probing [19]. Each peer maintains the routing
cost (that is, network delay) to every other peer and the path
that leads to such a cost. The distribution tree rooted at each
peer is constructed from the reverse shortest paths in
similar fashion to DVMRP [16]. The mixing tree is
dynamically constructed using the adaptive P2P mixing
algorithm presented in Section 3. The rationale behind the
overlay-based approach include the following: 1) allowing
each peer to maintain QoS information (for example, CPU
load) about its neighbors and the network QoS (for
example, network delay and data loss) of its adjacent
overlay links from itself to its neighbors, 2) reducing tree-
repairing frequency by leveraging the resilience property of
the overlay mesh that contains multiple redundant paths
between every pair of peer hosts, and 3) leveraging
previous overlay multicast solutions (for example, [15])
for building the distribution tree.

2.3 Approach Overview

The peerTalk system provides the MVoIP service using a
new P2P stream processing approach, which decouples the
audio stream mixing from the audio stream distribution.
Fig. 2 shows a P2P MVoIP session with eight participants.
Unlike conventional schemes (for example, centralized
mixing), peerTalk does not require any special servers
and uses only the end systems of all participants, called
peer hosts, to perform audio stream processing in a fully
distributed and self-organizing fashion. Each MVoIP
service session employs a set of audio stream processing
components called mixers and distributors. The mixers and
distributors are dynamically instantiated on different peer
hosts based on their load conditions. Each mixer, denoted
by Mi, has multiple input ports and a single output port.
The mixer periodically aggregates the audio samples that
arrived at all input ports into one audio sample and
normalizes the result to generate a mixed audio sample
packet that is sent out via the output port. The mixer is the
basic building block in the mixing phase of the decoupled
stream processing. In contrast, each distributor, denoted by
Di, has a single input port and multiple output ports. The
distributor replicates each input audio packet into multiple
copies that are sent out via the output ports. The distributor
provides the basic function for the distribution phase.

Different from traditional client-server systems, P2P
systems consist of end-system hosts, denoted by vi. The
peer host often has constrained resources such as limited
memory for buffering audio packets received from
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Fig. 2. Decoupled MVoIP service delivery model.



networks and low outbound bandwidth (for example,
cable/DSL networks). However, multistream audio proces-
sing is often resource intensive (for example, large buffer
requirements for many streams and large bandwidth
requirement for sending/receiving packets), especially for
large-scale MVoIP service sessions involving many partici-
pants. Thus, centralized stream processing becomes inap-
plicable in P2P environments since no single peer host can
meet the resource requirements. To address the problem,
the peerTalk system employs multiple peer hosts to
collectively fulfill the task of audio stream processing. The
peerTalk system first connects a number of mixers into a
mixing tree, illustrated by the upper level tree in Fig. 2. The
leaf nodes of the mixing tree consist of all participating peer
hosts. We assume that each peer host performs silence
suppression to save resources. If a peer host is a leaf node in
the mixing tree, it generates an audio stream only if the local
participant produces any sound. The internal nodes of the
mixing tree consist of serving peer hosts that provide audio
mixing functions. Since the number of active speakers can
dynamically change, the audio mixing workload varies over
time. The peerTalk system can dynamically grow or shrink
the mixing tree to adapt to the number of active speakers.
For the distribution phase, we leverage the existing overlay
multicast solution (for example, [14] and [15]) to construct a
distribution tree to disseminate the mixed audio stream from
the root of the mixing tree to all listening participants,
shown by the lower level tree in Fig. 2. Note that the
internal nodesMi andDi in the mixing tree and distribution
tree can be instantiated on peer hosts that belong to
different VoIP sessions. In this paper, we assume that peers
are willing to share their resources when they join the
system. Some research work has addressed the problem of
enforcing fair resource sharing [25], [11] in P2P systems,
which, however, is not the focus of this paper. We also
assume that peer hosts are trustworthy, and secure audio
transmissions can be achieved using cryptography schemes.

Compared to the multicast approach, our scheme has an
extra mixing delay. However, the audio mixing phase can
greatly reduce the network traffic and the stream proces-
sing load by reducing the number of concurrent streams
each peer has to handle and distribute across networks. On
the other hand, the height of the mixing tree is often much
smaller than that of the distribution tree since the active
speakers often constitute a small subset of all participants.
The mixing tree delay is thus relatively small compared to
the distribution tree delay that needs to cover all partici-
pants. Moreover, different from the multicast approach that
has to use different multicast trees rooted at active speakers,
peerTalk always uses the optimal multicast tree that has the
smallest distribution delay. As a result, peerTalk can be
more efficient than the multicast approach, especially for
highly active large-scale sessions with many active speakers
and participants.

3 PEER-TO-PEER VOICE-OVER-IP
SERVICE PROVISIONING

We now present a fully distributed algorithm for dynami-
cally constructing and adapting the audio mixing trees in

P2P environments. The basic idea of our approach is to
adaptively distribute the dynamic audio stream mixing
workload among different peer hosts while continuously
optimizing the service quality of different MVoIP sessions.

3.1 Service Provisioning Protocol

We now present the VoIP service session provisioning
protocol in the peerTalk system, illustrated in Fig. 3. At a
session beginning, all participants of the session run an
election protocol to select the best peer as the rendezvous
point that serves as the root of both mixing tree and
distribution tree. Different from the multicast approach
where each active speaker uses a different tree to
disseminate the audio stream to all participants, peerTalk
only uses one distribution tree to send the mixed audio
stream to all participants. This provides an optimization
opportunity for the system to employ the best multicast tree
for the distribution phase. Thus, we want to place the
rendezvous point on the peer host that is the source of the
best multicast tree. In the current peerTalk system, the best
multicast tree is the one that has the minimum average
delay between the source and all other participants.1 When
two multicast trees have similar distribution delays, we
choose the one that has a larger mixing capacity. Specifi-
cally, all peers concurrently run the DVMRP algorithm to
construct multicast trees rooted at themselves. Each peer
measures the average delay of its own multicast tree and
then propagates the delay information plus its mixing
capacity to all other members via the overlay mesh. All
peers then select the same best peer as the rendezvous
point. For example, in Fig. 3a, all eight participants initiate
the multicast tree construction algorithm and then select the
peer b as the rendezvous point.

Initially, the mixing tree only includes the root mixer
instantiated on the rendezvous point, illustrated in Fig. 3b.
All participants are connected to the root mixer as its
children. During runtime, the system adaptively grows or
shrinks the mixing tree based on the dynamic mixing
workload changes using a fully distributed algorithm. First,
the root mixer monitors the number of active speakers
among all participants. If the number of active speakers is
larger than the number that the root mixer can handle, it
spawns new child mixers on other peer hosts to offload the
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1. We can use different criteria for selecting the root mixer. We use the
distribution tree delay as the primary selection criteria because the
distribution delay often accounts for a major part in the end-to-end voice
packet delay. We can also use different composite metrics based on the
network conditions and audio mixing requirements.

Fig. 3. MVoIP service session setup protocol. (a) Optimal distribution

tree selection. (b) Setup initial mixing and distribution trees.



audio mixing workload. The basic idea of mixing tree
adaptation is that each mixer can either split itself if it is
overloaded or merge with its sibling mixers if it is under-
loaded. The mixer is also dynamically migrated among
different peer hosts to achieve improved service quality. We
now describe the distributed algorithms for mixer splitting,
mixer merging, and mixer migration, respectively.

3.2 Mixer Splitting

Each mixer Mi in the mixing tree monitors the number of
audio streams that concurrently arrived at its input ports.
Since peers can perform silence suppression, a leaf node on
the mixing tree generates an audio stream only if the local
participant produces any sound. An internal node on the
mixing tree generates an output audio stream if any of its
input ports receives an input stream. Suppose the mixer Mi

has n input ports denoted by I1; I2; . . . ; In. We use time
series Ak, 1 # k # n, to describe the data arrival pattern at
the input port Ik. The time series Ak consist of a sequence of
time-stamped numbers denoted by ak 2 Ak. At time t, we
set ak ¼ 1 if there are data arriving at the input port Ik or
ak ¼ 0 if no data arrives. Hence, the total number of audio
streams that concurrently arrived at the mixer Mi at time t,
denoted by !iðtÞ, can be calculated as !iðtÞ ¼

Pn
k¼1 ak. To

achieve stability, we use the moving average value of the
total audio stream number at time t, denoted by Ni;t. Ni;t

can be computed by the exponential smoothing algorithm
as follows:

Ni;t ¼ ! 'Ni;t(1 þ ð1( !Þ ' !iðtÞ; 0 < !< 1: ð1Þ

For conciseness, we omit the t inNi;t and useNi to represent
the moving average value of the total audio stream number
at current time t.

Since peer hosts are often resource constrained, they can
only process a limited number of audio streams while
keeping up with the input stream rate without dropping
data. Let us consider the mixerMi located on the peer host vi
that can process atmostCi streams. ThemixerMi triggers the
splitting process if the number of arriving audio streams
exceeds its processing limit, that is, Ni > Ci. If the over-
loaded mixer Mi is not the root mixer, it splits itself into
two mixers Mi;1 and Mi;2, illustrated in Fig. 4a. One of them
Mi;1 remains on the host vi and is assigned a subset of the
children of Mi whose aggregate workload is dCi

2 e. The rest of
the children are assigned to the newmixerMi;2. The peer host
vi then selects its most lightly loaded neighbor vj to hostMi;2.
If the workload ofMi;2 still exceeds the processing limit of vj,
the mixer Mi;2 continues to split itself until the workload of
each new mixer is within the processing limit of its hosting
peer. Note that the above process may trigger the parent
of Mi to split since the number of its children is increased.

If the overloaded mixer Mi is the root mixer, that is,
Mi ¼ M0, the peer host vi first creates a new mixer M1 and
transfers all the children of M0 to M1, illustrated in Fig. 4b.
The new mixer M1 then becomes the only child ofM0 and is
migrated to one of the neighbors of vi that has the largest
available stream processing capacity. By doing so, the
height of the mixing tree is thus increased by one. Let us
assume that M1 is placed on the peer host vj. If the
workload of M1 still exceeds the capacity of vj, M1 performs
the same splitting as the previous case since M1 is not the

root mixer. All spawned new mixers become the children of
the root mixer M0. To minimize the average workload for
all input streams, we distribute the children of Mi to each
new spawned mixers Mi;1 . . . ;Mi;k based on the data arrival
time series A1; . . . ; An. We calculate the correlation coeffi-
cient between every two data arrival time series Ai and Aj,
which indicates the possibility of concurrent data arrivals
on the input ports Ii and Ij. We then allocate the least
correlated input streams to the same mixer to minimize the
average aggregate workload at each mixer.

3.3 Mixer Merging
We now present the mixer merging algorithm illustrated in
Fig. 4. The mixer merging process can effectively shrink the
mixing tree to avoid excessive audio mixing overhead
(delay and packet loss) by minimizing the number of mixers
traversed by the audio streams. Similar to the mixer
splitting process, each mixer Mi monitors the number of
audio streams that concurrently arrived at its input ports. If
the total workload Ni is significantly less than the mixer’s
processing capacity Ci (for example, Ni < bCi

2 c), the mixer
seeks to merge with its succeeding sibling Mj in the mixing
tree. If the aggregate workload of Mi and Mj is within
the processing limit of a single mixer, that is,
Ni þNj # maxðCi; CjÞ, we merge the two mixers into one
mixer. If Ci # Cj, we delete Mi and connect the children of
Mi to Mj. Otherwise, we delete Mj and connect the children
of Mj to Mi. Note that the above process may trigger the
parent of Mi and Mj to perform mixer merging since the
input stream number of the parent mixer decreases. If a
mixer Mi becomes the only child of its parent mixer Mp, we
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Fig. 4. Mixer splitting and merging operations. (a) Nonroot mixer
splitting. (b) Root mixer splitting. (c) Nonroot mixer merging. (d) Root
mixer merging.



can merge Mi with Mp to reduce the height of the mixing
tree. The situation occurs when the children of Mp merge
with each other into one mixer. Fig. 5 shows the
pseudocode of the mixer merging algorithm. To avoid
system thrashing between mixer splitting and mixer
merging, peerTalk requires that mixer merging cannot be
triggered within a certain time threshold if the mixer is just
partitioned from the other mixer.

3.4 Mixer Migration
The peerTalk system performs dynamic mixer migration
to continuously optimize the audio mixing process. We
can migrate a mixer Mi from a peer host vi to one of the
neighbors of vi if the neighbor peer is better in terms of
1) a larger stream processing capacity because of more
abundant CPU, memory, and network bandwidth re-
sources, 2) better network connection (that is, less delay
or packet loss) from the children of Mi to Mi and then
from Mi to the parent of Mi, and 3) higher availability
[9]. Each of these criteria can lead to different peer host
comparison results. Thus, the peerTalk system allows the
upper level application to prioritize these different criteria
for customized decision making. For illustration, let us
assume that criteria 1, 2, and 3 have decreasing priorities.

Each mixer Mi on the peer host vi periodically probes
the neighbor hosts of vi in the overlay mesh to decide
whether migration should be triggered. Let us assume that
vi has k neighbors v1; . . . ; vk. The mixer Mi sends the
addresses of its parent Mp and children M1; . . . ;Mn to all of
its neighbor hosts vj, 1 # j # k. The mixer Mi then asks
each neighbor to return a set of information including 1) the
current stream processing capacity, 2) the average delay/
packet loss from M1; . . . ;Mn to vj and from vj to Mp, and
3) the failure probability of vj. The mixer Mi first selects
qualified neighbor hosts whose processing capacity can
satisfy the current workload of Mi. If qualified neighbor
hosts exist, Mi further selects the best neighbor host that
has 1) the minimum worst case delay/packet loss and
2) the lowest failure/departure probability. If the best
neighbor host is significantly better than the current host vi,
the mixer Mi is migrated to the selected neighbor host.2

To achieve smooth mixer migration, the system first
creates a new mixer M 0

i on the selected neighbor host and
connects M 0

i to the parent of Mi and the children of Mi. In
the meantime, the system still uses Mi to serve the current
MVoIP session. When M 0

i finishes the setup, the children of
Mi is notified to send audio streams toM 0

i. The old mixerMi

is then deleted. Since the mixer M 0
i may be instantiated on a

more powerful peer host, the mixer migration can trigger a
mixer merging process. Hence, mixer migration can not
only improve the performance of the current mixing tree
but also help to consolidate the mixing tree so as to reduce
intermediate mixers during the stream mixing process.

4 FAILURE RESILIENCE MANAGEMENT

We now present a set of lightweight schemes to improve the
system’s resilience to peer failures and churns. By failure
resilience, we mean that the system should be able to
quickly recover an MVoIP session from end-system or
network failures with minimum service interruption.
Compared to dedicated servers, peer hosts are more prone
to failures. Hence, failure resilience management becomes
particularly important in P2P environments.3

4.1 Mixer Replication

We design a proactive replication-based failure recovery
mechanism to tolerate fail-stop failures of networks and
peer hosts, illustrated in Fig. 6. Different from a reactive
approach that dynamically finds a replacement for the
primary upon failure, our replication-based approach is
proactive by maintaining a number of backups in advance.
For example, in Fig. 6, each of the three mixers M0, M1, and
M2 maintains one backup mixer for itself. During the VoIP
session, no audio data are sent to the backup mixer.
However, the primary mixer needs to periodically probe
its backup mixers to monitor their liveness and resource
availability. The motivation of the proactive approach is
twofold. First, P2P environments provide plentiful redun-
dant resources for hosting backup replicas. Second, the
proactive approach can avoid constructing a new mixing
tree on the fly if backup mixers are still usable. Thus, we can
achieve fast failure recovery for time-sensitive VoIP services.
Each mixer in the mixing tree, called the primary, maintains
a number of backup replicas on different peer hosts.
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Fig. 5. Mixer merging algorithm.

2. For stability, mixer migration is triggered only if the performance of
the neighbor host is better than that of the current host by a certain
threshold value.

3. We can leverage previous resilient overlay multicast solutions (for
example, [8] and [34]) to achieve failure resilience in the distribution phase.
Thus, our research focuses on the mixing phase of MVoIP service delivery.

Fig. 6. Failure recovery in a mixing tree.



Let us assume that a primary mixer wants to maintain
k backup mixers. As we mentioned before, each mixer
periodically probes its neighbor hosts to decide whether
one of them is better for hosting the mixer. At the same
time, the primary mixer can identify k qualified peer hosts
to host replicas. If less than k qualified peer hosts are
found, the primary mixer probes the neighbors of its
neighbors until k replicas are instantiated. During runtime,
the primary mixer periodically probes its replicas to check
their liveness and update the states of all replicas. If one of
the replicas becomes unavailable, the primary mixer tries
to find another qualified peer host in its nearby neighbor-
hood to host the replica. When the primary mixer is
migrated to a new peer host, the replicas are also migrated
to the neighbors of the new peer host to assure that
backups are still close to the primary for localized replica
maintenance.

The number of replicas represents the trade-off between
failure resilience and replication overhead. If the primary
maintains k replicas up all the time, the primary can survive
k( 1 concurrent replica failures. Note that the roles of
different mixers are nonuniform to the failure resilience of
the mixing tree. The higher level mixers in the mixing tree
are more important than the lower level mixers because
they are responsible for aggregating the output streams of
those lower level mixers. Thus, we propose a differentiated
mixer replication scheme to maintain more replicas for
higher level mixers in the mixing tree. The motivation of
differentiated replication is to maximize the overall failure
resilience of the MVoIP service under limited replication
overhead.

4.2 Failure Detection

The failure of the mixing tree can be caused by either
network failures between peer hosts or end-system failures.
We do not distinguish graceful failures (quitting with
notification) from fail-stop failures (crashes/quiet leaving),
although the graceful failures can be handled more
efficiently. For example, we can request the quitting peer
to continue working until the system finishes switching to
one of its replicas.

When replicas stop receiving the heartbeat messages
from the primary, they assume that the primary fails.4

Replicas then execute an election algorithm to reach a
consensus on which replica should take over based on a
predefined election criteria (for example, smallest peer
identifier). The elected replica then contacts the parent
and the children of the failed primary mixer. The parent
and the children of the failed mixer then drop the
connections to the failed primary mixer and connect to
the new primary mixer.5 For example, in Fig. 6, when the
primary mixer M2 fails, the replica M 0

2 takes over the
audio mixing process for the participants e, f , and g and
connects to the parent mixer M0.

4.3 Churn Management

In contrast to conventional client-server systems, P2P
systems exhibit a high rate of continuous node arrivals
and departures, which is called churn. The peerTalk system
reacts to churn according to the different roles of peers in
the MVoIP service:

1. Participant. This produces and receives audio
streams.

2. Overlay router. This provides application-level for-
warding in the overlay mesh.

3. Mixer. This provides the audio mixing service.
4. Distributor. This distributes audio streams to multi-

ple receivers.
5. Backup. This hosts mixer replicas.

Peer joins. When a peer wants to join an existing MVoIP
session, it is first incorporated into the P2P overlay mesh by
an out-of-band bootstrap mechanism [15]. The peer selects a
few peer hosts provided by the bootstrap service as
neighbors and also requests a few other peers to add itself
as a neighbor. After the peer successfully joins the overlay
mesh, it becomes an overlay router that can forward packets
for its neighbors. The peer then broadcasts a message to
other peers via the overlay mesh requesting to join the
MVoIP session. The peer can acquire the session ID from the
bootstrap service. If any peer that is already in the session
receives the requesting message, it replies to the message
with the address of the mixer Mi to which it is connected.
The peer then connects to the mixer Mi according to the
first reply it receives and ignores other later replies. Thus,
the peer is successfully added into the mixing tree by
becoming a child ofMi. The overlay multicast algorithm can
connect the new peer into the distribution tree. While the
peer stays in the system, the peer can be selected to play the
role of a mixer, a distributor, or a backup.

Peer departures. When a peer vi leaves the system
without prior notice (that is, crash/disconnection), the
system first needs to repair the overlay mesh and updates
membership lists on other live peers. The neighbors of vi
can detect the departure of vi after they stop receiving
the heartbeat messages from vi for an extended period. The
system then updates the mesh by deleting vi from the
neighbor lists of all other live peers. The mesh can become
partitioned because of the departure of vi. The system can
repair the partitioned mesh by adding more overlay links at
partitioned peers [15]. If vi also hosts a primary mixer Mi,
the departure of vi triggers dynamic failure recovery to
repair the mixing tree with a replica ofMi. If vi only acts as a
backup for a primary mixer Mi, the departure of vi causes
Mi to create a new backup replica.

5 EXPERIMENTAL EVALUATION

We now present an experimental evaluation of the peerTalk
system. We ran large-scale experiments on a network
simulation environment and prototype experiments on the
PlanetLab Internet testbed [27]. Our results demonstrate that
1) peerTalk that employs DDP can achieve better MVoIP
service quality than CDP and overlay multicast, two existing
state-of-the-art schemes, 2) peerTalk can simultaneously
achieve both low resource contention and a short network
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4. The heartbeat messages are small messages sent with high frequency
to ensure timely failure detection.

5. The session transition may cause VoIP service glitch. To further reduce
the failure impact, we can incorporate the failure prediction mechanism into
the system to initiate the session transition protocol before the primary fails,
which however is beyond the scope of this paper.



delay, whereas CDP has a long network delay, and overlay
multicast tends to incur high bandwidth congestion, and
3) peerTalk can achieve failure resilience under P2P system
churn by just maintaining a few backup mixers.

5.1 Evaluation Methodology

We have implemented a prototype of the peerTalk system
and tested it on both simulation environments and the
PlanetLab Internet testbed [27]. The simulator performs
packet-level discrete-event network simulation. The simula-
tor uses thedegree-based Internet topologygenerator Inet-3.0
[41], [39] to generate a 5,120-node power-law graph to
represent the IP physical network. The delay of each physical
link is distributed in the range of [8, 12] ms similar to [15],
which is proportional to the euclidean distance between
two end points. The bandwidth of each edge network link is
distributed in the range of [256k, 10M] bps according to the
capacity of current residential access networks (for example,
ADSL and cable networks). We also emulate asymmetric
residential access networks (for example, ADSL, cable
networks) where the upload bandwidth is smaller than the
download bandwidth. The inbound or outbound bandwidth
of a core network node is proportional to the number of its
inbound or outbound physical links. We have conducted
experiments on different physical networks where link
bandwidth follows either a uniform or a Zipf distribution.

To emulate mixer processing delays and peer relaying
delays, each overlay node is configuredwith a certainmixing
or relaying capacity denoting the amount of data the overlay
node can mix or relay per second. We assign varied capacity
values to different hosts to emulate heterogeneous environ-
ments. We then randomly select a number of stub nodes as
application end points (that is, peer hosts). Each peer host is
randomly connected to [5, 10] other peers as neighbors to
emulate a scalable overlay mesh with low node degrees. The
overlay topology is connected using the short-long algorithm
presented in [31]. The simulator emulates packet routing at
both the IP layer and the overlay layer using the Dijkstra
shortest path algorithm based on the delay metric.

To demonstrate the efficiency of peerTalk, we compare
our approach with CDP [28], [22], [10] and overlay multicast
[15]. The CDP algorithm first selects the best multicast tree
among all peers similar to the peerTalk system. However,
the CDP algorithm uses the same tree for both stream
mixing and stream distribution. The overlay multicast uses
the DVMRP algorithm [16] to construct multicast trees on
top of the overlay mesh.

A previous study indicates that delay and loss are the
key factors that decide the user’s perception about the voice
quality [23]. Hence, we use the following metrics to evaluate
the service quality of an MVoIP service session:

1. Link stress. This is the link stress over all utilized
physical links where the link stress of one physical
link is defined as RequiredBandwidth

AvaliableBandwidth . Higher link stress
implies a larger network queuing delay and loss
probability.

2. Node stress. This is the node stress over all utilized
peer hosts where the node stress of one peer host is
defined as the total amount of audio data the peer
host needs to process over its processing capacity.

Larger node stress implies a larger stream proces-
sing delay and loss probability at peer hosts.

3. Propagation delay of an MVoIP session. This is
defined as the mean propagation delay from all
active speakers to all listeners where each propaga-
tion delay denotes the network propagation delay
over the network path for each voice packet
travelling from one speaker to one listener.

4. Service delay of an MVoIP session. This is defined as
the mean service delay from all active speakers to all
listeners where each service delay includes network
propagation delays, peer mixing delays, and peer
distribution delays.6

We use a range of different workloads to evaluate the
performance of the peerTalk system. The voice encodings
follow the G.711 standard [23] with 64-Kbps codec bit rate,
80-byte codec sample size, and 10-ms codec sample interval
Each packet includes 40 bytes for IP/UDP/RTP headers
and 160 bytes for voice payload. The stream rate is
50 packets per second. Thus, the total bandwidth per
connection is 80-Kbps. We use two different models to
emulate the speaking activities:

1. ExplicitON/OFFmodel. Thismodel directly adjusts the
number of active speakers to reflect speaking activity
changes. The activity of each active speaker alternates
betweenONperiods andOFFperiods.During theON
period, a stream of voice packets is generated,
whereas no data is generated during the OFF period.
The durations of the ON period and the OFF period
are generated from two exponential distributions
based on a previous experimental study [23].

2. Real VoIP conversation data. These use real telephony
conversations from switchboard data [17], which
consist of 500 pairs of conversations for a total of
1,000 voice streams. Each conversation session lasts
300 seconds. The original voice data have been
converted to VoIP packets and consisted of multiple
pairs of users conversing on diverse topics. Unless
otherwise specified, each simulation run lasts
300 seconds and has a certain warm-up period for
the system to reach its stable performance.

5.2 Simulation Results

In the first set of experiments,we evaluate the performance of
the peerTalk system under different session sizes, illustrated
in Figs. 7, 8, 9, and 10. The overlay network consists of
800 peers.We instantiate threeMVoIP sessions concurrently,
where the session size ranges from [50, 500] peers. The
workload is generated using the explicit ON/OFFmodel that
randomly selects 10 percent of session members as active
speakers.7 Fig. 7 shows the average link stress on all the
physical links used by the three running MVoIP sessions
underdifferent algorithms.We conducted experimentsusing
both uniform and Zipf network bandwidth distributions.
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6. The simulator emulates the propagation delay on physical links but
does not emulate the queuing delay, packet losses, or cross traffic for
achieving large-scale simulations.

7. The advantage of peerTalk is even more prominent under heavier
stream workload with a larger number of active speakers, which is shown
by the second set of experimental results.



Weobserve that althoughpeerTalk typically employs smaller
mixing trees than CDP, peerTalk can achieve similar link
stress as CDP by employing explicit load balancing. Both
approaches can achieve much lower link stress than the
multicast algorithm, especially under large session sizes. The
link stress reduction is evenmore prominent for the network
with Zipf bandwidth distribution. The reason is that both
peerTalk andCDPemploy amultistreamaudiomixingphase
that can greatly reduce the number of concurrent audio
streams distributed across networks. This result indicates
that both peerTalk and CDP incur much lower network
congestion than the multicast approach, which implies a
lower network queuing delay and packet loss rate. Similarly,
both peerTalk and CDP imposemuch lower node stress than
the multicast approach, shown in Fig. 8. Compared to the
multicast scheme, both peerTalk and CDP have an extra
mixing phase.Weneed to evaluatewhether themixing phase
causes a significant increase to the network propagation
delay during the audio stream delivery. Fig. 9 shows the
average network propagation delays achieved by different

algorithms. The average network propagation delay is
calculated among all the audio packets that are transmitted
from all speakers to all listeners. We observe that peerTalk
has amuch lower propagation delay than the CDP algorithm
by using separate trees for mixing and distribution phases.
Fig. 10 shows the average service delay achieved by different
algorithms as we increase the session size. The service delay
includes the network propagation delay, peer mixing delay,
and peer distribution delay. The results show that peerTalk
consistently achieves a lower service delay than the CDP and
multicast approaches. Note that the real service delay of the
multicast approach will be higher if we add the network
queuing delay, which can be induced from the link stress
results. The results show the advantage of the decoupled
processing model and the adaptive stream mixing scheme
employed by the peerTalk system.

Our second set of experiments compare the performance
of different algorithms under different numbers of active
speakers, shown in Figs. 11, 12, 13, and 14. The number of
active speakers is controlled by a speaker ratio that denotes
the percentage of session members as active speakers. Every
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Fig. 7. Link stress under different session sizes.

Fig. 8. Node stress under different session sizes.

Fig. 9. Propagation delay under different session sizes.

Fig. 10. Service delay under different session sizes.

Fig. 11. Link stress under different speaker ratios.

Fig. 12. Node stress under different speaker ratios.

Fig. 13. Propagation delay under different speaker ratios.

Fig. 14. Service delay under different speaker ratios.



10 seconds, we randomly select a number of session
members as active speakers. Similar to the first set of
experiments, we use an 800-node overlay network and
concurrently run three MVoIP sessions. Each session
includes 100 peers with [5 percent, 30 percent] randomly
selected active speakers. Fig. 11 shows that both peerTalk
and CDP have much lower link stress than multicast by
employing audio mixing, especially under high speaker
ratios. In Fig. 12, we observe that peerTalk can achieve lower
node stress than CDP because of its inherent load balancing
capability. Fig. 13 shows that peerTalk has a much lower
network propagation delay than CDP and adaptively
expands the mixing tree as the speaker ratio increases.
Finally, Fig. 14 shows the total service delay achieved by
different algorithms. We observe that peerTalk can consis-
tently achieve a lower service delay than CDP and multicast
approaches. Under low speaker ratios, peerTalk can employ
a small mixing tree to avoid excessive mixing delays; under
high speaker ratios, peerTalk can adaptively expand the
mixing tree to handle high stream workloads.

Our third set of experiments studies how different
algorithms scale as we gradually increase the number of
concurrent sessions running on top of the overlay system,
illustrated in Figs. 15, 16, 17, and 18. In this set of experiments,
we use an 800-node overlay network. Each session includes
50 randomly selected peers with 10 percent randomly
selected peers as active speakers. Similar to the previous
two experiments, both peerTalk and CDP incur lower link
stress and node stress than the multicast approach. Further,
peerTalk achieves lower node stress thanCDPbyperforming

explicit load balancing using mixer migration. Overall,
peerTalk consistently achieves a lower service delay than
CDP and multicast. We also observe that the service delay of
the multicast approach increases much faster than those of
peerTalk and CDP as more sessions are created on top of the
overlay system. This results show that audio mixing is
necessary in order to achieve scalable MVoIP services over
P2P overlay networks.

We have also compared the performance of different
algorithms using real VoIP conversation data. We use a
400-node overlay network and instantiate three MVoIP
sessions concurrently on top of the overlay network. Each
session consists of 20 peers. The speaking activity of each
peer pair is the playback of one conversation trace selected
from the 500 pairs of conversation trace files. Figs. 19 and 20
show the link stress and the total service delay of different
algorithms under real workloads. The results show a similar
trend as the results under synthetic workloads. Both
peerTalk and CDP can significantly reduce the link stress
using audio mixing compared to the multicast approach.
Overall, peerTalk consistently achieves lower service a delay
than the other two approaches.

We now evaluate the proactive failure recovery schemes
of the peerTalk system under P2P network churn where a
number of peers dynamically leave or join the system,
illustrated in Figs. 21 and 22. The algorithm “backup-k”
means that we maintain k backup mixers for each primary
mixer. We use a 1,000-node overlay network and instantiate
three MVoIP sessions concurrently on top of the overlay
network. Each session consists of 100 randomly selected
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Fig. 15. Link stress under different session numbers.

Fig. 16. Node stress under different session numbers.

Fig. 17. Propagation delay under different session numbers.

Fig. 18. Service delay under different session numbers.

Fig. 19. Link stress under real VoIP workloads.

Fig. 20. Service delay under real VoIP workloads.



peers with 10 percent speaking ratio. The system randomly
selects a number of departure nodes every 5 seconds
according to a specified churn rate. During each 300-second
simulation run, we start from a low-churning system with
" ¼ 10 percent churn rate (that is, 10 percent of the total
system peers randomly leave the system8), then increase the
churn rate to 20 percent at time 100, and further increase the
churn rate to 30 percent of all nodes at time 200. The system
reconstructs the distribution tree using the DVMRP algo-
rithm and repairs the overlay mesh partition by randomly
adding neighbors to the peers with few neighbors left. In
Fig. 21, the y-axis shows the accumulated number of failures
that cannot be recovered by the maintained backup mixers.
In Fig. 22, the y-axis shows the failure frequency that denotes
the number of failures that cannot be recovered by the
peerTalk backup scheme every second. The “backup-0”
algorithm represents the reactive failure recovery approach
that takes no prevention action (that is, no backup mixers/
distributors). The fault tolerance improvement (that is,
failure number reduction) from “backup-0” to “backup-1”
and from “backup-1” to “backup-2” is much larger than that
from “backup-2” to “backup-3” and from “backup-3” to
“backup-4.” We observe that by maintaining four backup
mixers, the system can recovermost failures even under high
system churn (that is, up to 30 percent random failing peers).

5.3 PlanetLab Results

To evaluate the feasibility and performance of our approach
under a real Internet environment, we have deployed and
evaluated the peerTalk system on the PlanetLab wide area
network testbed [27]. The peerTalk software at each
PlanetLab host includes five major modules:

1. Mixer manager. This executes the mixer splitting,
mixer merging, and mixer migration algorithms.

2. Overlay topology manager. This maintains the overlay
mesh network.

3. Monitoring module. This is responsible for monitoring
the network/service states of neighbors (for exam-
ple, network delays).

4. Session manager. This maintains the peer membership
information about all VoIP sessions, which is built
on top of the DHT system [33], [38], [30].

5. Data transmission module. This is responsible for
sending, receiving, and forwarding audio data.

We used the SCRIBE software [14] to realize a P2P overlay
multicast. To evaluate the feasibility of adaptive mixing, we
have measured the average time of basic mixer adaptation
operations (that is, mixer splitting, mixer merging, and
mixer migration) in the real Internet setting. Our initial
results indicate that peerTalk can finish the basic mixer
adaptation operations between PlanetLab hosts within a
few milliseconds.

Different from the simulation that uses an explicit model
to generate the workload, the prototype experiments used
the ON/OFF workload model. We dynamically adjust the
mean duration values of the ON period and the OFF period
to emulate different speaking activities. The audio packets
follow the standard G.711 codec requirements described in
Section 5.1. Our experiments used about 50 PlanetLab hosts
that spread across the US. We instantiate two peerTalk
nodes on each PlanetLab host. At the beginning, each peer
sends a probe message to all other peers via the SCRIBE
multicast interface and measures the average delay between
itself and all other peers. All peers then exchange with each
other the average delay from themselves to all other peers.
All peers then select the best multicast tree that has the
minimum average delay as the optimal distribution tree.
The CDP uses the optimal tree for both mixing and
distribution. peerTalk uses the optimal tree for distribution
and constructs the mixing tree using the adaptive stream
mixing algorithm. The overlay multicast scheme uses
SCRIBE to perform multistream distribution from all active
speakers to all group members.

We first test the three different algorithms under a light
workload condition with few concurrent active speakers.
Fig. 23 shows the cumulative distribution of total delays
between all pairs of communicating participants using the
three different algorithms. Different from the simulation that
only models network propagation delay, the packet delay
measured on PlanetLab reflects all the processing and
queuing delays at both peer hosts and Internet connections.
Weobserve that peerTalk achieves the best performance (that
is, shortest service delays), whereas CDP has the worst
performance. The reason is that under a light workload
condition, the advantage of audio mixing is not significant,
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8. Some nodes will be dynamically added back to the system to keep the
number of live nodes in the system at a constant level of ð1( "Þ 'N .

Fig. 21. Total failure number under system churn.

Fig. 22. Failure frequency under system churn.

Fig. 23. Packet delays under a light workload.



and CDP suffers from a large mixing delay. Besides packet
delays, the quality of VoIP services is also affected by the
interpacket delay jitter [23]. The delay jitter describes the
variations of interpacket delays. Thus, we also measured
the delay jitter result during the above experiment, which is
illustrated in Fig. 24. We observe that peerTalk can also
achieve better delay jitters than the other two schemes.

We then increase the system workload by increasing the
number of concurrent active speakers. Figs. 25 and 26 show
the cumulative distribution of total delays and delay jitters
achieved by different algorithms under a heavy workload.
We observe that the effect of audio mixing becomes
significant, and peerTalk can achieve a much lower delay
than the other two alternatives. The multicast approach is
completely overloaded by the number of concurrent
streams, which have excessive total delays. The experi-
mental results validate our hypothesis that adaptive audio
mixing can greatly reduce network and stream processing
delays by reducing the link stress and node stress. Such an
improvement can offset the small extra mixing delay with a
large margin in most cases compared to the multicast
approach. Since peerTalk tends to perform more adapta-
tions under a heavy workload, peerTalk has slightly larger
delay jitters than the other two schemes. However, such
difference is marginal. Thus, we conclude that peerTalk can
perform better than the two state-of-the-art approaches in
real Internet environments.

6 RELATED WORK

In this section, we compare peerTalk with related work that
is classified into three major categories: 1) VoIP systems,
2) P2P systems, and 3) distributed multimedia systems.

VoIP systems. Recently, VoIP systems have received a lot
of research attention. Much of previous work has been
devoted to evaluating and improving the quality of
two-party VoIP services (for example, [23] and [40]).
Ren et al. [32] proposed an Autonomous-System-aware
peer relay protocol to improve two-party VoIP quality.
People have also studied the MVoIP services that present
more challenges. For example, Rangan et al. proposed
hierarchical Media Mixing architectures for supporting
large-scale audio conferencing [29]. Lennox and Schulzrinne
developed a reliable MVoIP system using a full mesh
topology [22]. Radenkosvic and GreenHalgh proposed a
Distributed Partial Mixing approach to supporting MVoIP
services with TCP fairness [28]. Different from previous
work, the peerTalk system focuses on providing MVoIP
services in P2P environments, which provides a purely
application-level solution with unique features of

self-organization, adaptation to workload, and failure
resilience. In [18], we have presented the basic adaptive
mixer splitting and merging algorithms. This paper presents
the complete peerTalk framework including the new
algorithms for rendezvous point election, mixer migration,
and failure resilience management.

P2P systems. With the popularity of P2P file sharing
systems, P2P systems have drawn much research attention.
One salient advantage of P2P systems is that they can
aggregate a tremendous amount of resources in a failure-
resilient and cost-efficient fashion. Previous work has
addressed the problems of scalable data lookup using
distributed hash tables (DHTs) (for example, [33], [38], and
[30]) and incentive engineering (for example, [25] and [11])
for providing efficient P2P data sharing. Inspired by P2P file
sharing systems, researchers have proposed many other
P2P applications such as P2P content delivery (for example,
[21], [13], and [12]), P2P file systems (for example, [3]), and
P2P storage systems (for example, [4]). While peerTalk can
benefit from many previous P2P research results, our
research is orthogonal to previous work. Our work more
focuses on exploring the specific properties and require-
ments of MVoIP services. To the best of our knowledge, our
work is the first study on using P2P stream processing for
MVoIP services, which we believe could be a new killer
application for the P2P technology.

Distributed multimedia systems. Much multimedia
processing needs to be performed in a distributed fashion.
For example, Amir et al. [5] proposed the active service
framework and applied it on a media transcoding gateway
service. In [26], Ooi and Renesse proposed a framework to
decompose a computation into subcomputations and assign
them to multiple gateways. In [24], Nahrstedt et al.
proposed an Hourglass-based system to deliver composite
multimedia content to users in pervasive computing
environments. The peerTalk system is similar to the above
work in terms of distributing media processing among
multiple hosts. However, instead of considering generic
media processing, our work more focuses on P2P audio
stream processing for providing MVoIP services. Thus, the
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Fig. 24. Delay jitters under a light workload. Fig. 25. Packet delays under a heavy workload.

Fig. 26. Delay jitters under a heavy workload.



new contribution of the peerTalk system is to organize and
adapt the audio stream processing based on the unique
features of MVoIP services.

7 CONCLUSION

Traditionally, MVoIP services use a collection of multicast
trees or a centralized audio mixing server. In this paper, we
argue that a P2P MVoIP system can achieve better
scalability and cost-effectiveness by adaptively and effi-
ciently distributing the stream processing workload among
different peers. To the best of our knowledge, this is the first
work that studied the P2P system design for the MVoIP
application, which we believe could be a new killer
application for the P2P technology. Specifically, this paper
makes the following contributions: 1) we propose a novel
decoupled stream processing model that can better explore the
asymmetric property of MVoIP services and optimize the
stream mixing and distribution processes separately, 2) we
provide localized mixer splitting/merging/migration algo-
rithms to continuously optimize the quality of the MVoIP
services according to speaking activity changes, and 3) we
propose lightweight backup schemes to make peerTalk
resilient to peer failures/departures by utilizing redundant
resources in P2P environments. We have implemented a
prototype of the peerTalk system that are evaluated in both
real-world wide area networks and simulated P2P net-
works. Our results show that peerTalk can combine the
advantages of two state-of-the-art approaches (that is,
multicast and audio mixing) while overcoming their
disadvantages for providing MVoIP services.
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