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Distributed Multimedia Service Composition With
Statistical QoS Assurances

Xiaohui Gu, Member, IEEE, and Klara Nahrstedt, Member, IEEE

Abstract—Service composition allows multimedia services to be
automatically composed from atomic service components based on
dynamic service requirements. Previous work falls short for dis-
tributed multimedia service composition in terms of scalability,
flexibility and quality-of-service (QoS) management. In this paper,
we present a fully decentralized service composition framework,
called SpiderNet, to address the challenges. We have implemented
a prototype of SpiderNet and conducted experiments on both wide-
area networks and a simulation testbed. Our experimental results
show the feasibility and efficiency of the SpiderNet service compo-
sition framework.

Index Terms—Middleware, quality-of-service (QoS), service
composition, service overlay network.

I. INTRODUCTION

EMERGING advanced distributed multimedia services,
such as voice-over-IP conferencing [10] and ubiqui-

tous multimedia streaming, demands a scalable, robust, and
adaptive multimedia service infrastructure. The conven-
tional client-server system model has become inadequate for
next-generation multimedia service provisioning due to its
poor scalability, customizability, manageability, and reliability.
Thus, we propose a compositional approach to multimedia
service provisioning, which can dynamically create multimedia
services using distributed service components. To support
efficient service composition, we propose a service overlay
network model where thousands of media servers and proxies
are connected into an application-level overlay network.

Recently, several research projects (e.g., [3], [14], [15], and
[]) have addressed the service composition problem. How-
ever, existing solutions present three major limitations. First,
they all adopt a centralized approach to service composition,
which has scalability limitation. Second, they lack systematic
quality-of-service (QoS) management that are especially im-
portant for multimedia applications. On the other hand, existing
QoS solutions (e.g., [4]–[7] and [19]) are not readily applicable
to service composition due to its application-specific service
requirements (e.g., service function requirements, inter-service
dependency constraints). Third, previous work only supports
linear composition topology and fixed composition order,
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which greatly limits the applicability and efficiency of service
composition.

In this paper, we present a QoS-aware service composition
framework called SpiderNet to address the above challenges.
SpiderNet provides a novel bounded composition probing
(BCP) scheme to achieve QoS-aware service composition in
a scalable and efficient fashion. The basic idea of BCP is to
intelligently examine a small subset of good candidate com-
positions according to users service requirements and current
system conditions. The BCP scheme executes a hop-by-hop
distributed composition protocol to achieve three goals. First,
it discovers available service components that match the users
service function requirements (e.g., transcoding, image scaling,
caption embedding). Second, it checks statistical QoS condition
(e.g., mean service time), resource availability, and inter-service
dependency/commutative relations to select qualified service
components. Third, it collects statistical QoS and resource
state information from selected candidate service components.
Finally, the best service composition is selected based on the
probing results, users QoS/resource requirements, and global
load balancing objective function.

The SpiderNet service composition approach has three
unique features. First, it provides multiconstrained statistical
QoS assurances [13] for the composed distributed multimedia
services. Second, SpiderNet achieves good load balancing
in the SON to improve overall resource utilization. Third,
SpiderNet supports directed acyclic graph (DAG) composition
topologies and exchangeable composition orders. Thus, the
composed services can be more efficient with parallel execution
of service functions instead of strict pipelined chaining of ser-
vice functions. By exploring exchangeable composition orders,
SpiderNet can improve the QoS provisioning and resource
utilization in service composition. We have implemented a
prototype of SpiderNet and conducted extensive experiments
by evaluating the prototype on both large-scale simulation
testbed and wide-area network testbed PlanetLab [1]. The
experimental results show that SpiderNet can achieve near-op-
timal QoS-aware service composition performance with low
overhead.

The rest of the paper is organized as follows. In Section II,
we present the SpiderNet system model. In Section III, we
present the distributed service composition design in detail. In
Section IV, we present experimental results. Finally, the paper
concludes in Section V.

II. SYSTEM MODEL

In this section, we first introduce the SpiderNet three-tier
system model illustrated by Fig. 1. Then, we formally define
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Fig. 1. SpiderNet system architecture.

the QoS-aware service composition problem. We summarize the
notations in Table I for later references.

A. Abstract Service Layer

The abstract service layer consists of users composite service
requirements (e.g., secure mobile video-on-demand). The user
can specify a composite service request using a function graph

and a QoS requirement vector . The function graph
specifies required service functions and inter-service de-
pendency and commutative relations, which is illustrated by the
top tier in Fig. 1. The dependency relation from to means
that the output of will be used as the input by , which is
denoted by . The commutative relation between to

means that the composition order of and can be ex-
changed without affecting the composite services function. We
formally define the function graph as follows.

Definition 2.1: A function graph is defined as
, ,

,
, where , , and represent the cardinalities

of the set , , and , respectively.
We use to define the

users statistical QoS requirements for the composed service,
where specifies the bound and the satisfaction
probability1 for the metric that represents a QoS metric
such as delay and loss rate. Users can either directly specify
the composite service request using extensible markup language
(XML) or use visual specification tools [12].

B. Instantiated Service Layer

The instantiated service layer consists of distributed multi-
media services that are dynamically composed from existing

1The satisfaction probability is defined as the probability when the random
variable q is less or equal to C , assuming q is minimum-optimal.

TABLE I
NOTATIONS

service components. A multimedia service component is
a self-contained multimedia application unit providing a certain
functionality (e.g., media transcoding), which is illustrated by
Fig. 2(a). Each service component has several input and output
ports for receiving input messages and sending output messages,
respectively. Each input port is associated with a message queue
for asynchronous communication between service components.
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Fig. 2. Service composition model.

Each service component consists of four items: 1) function
name, describing the service function provided by the service
component; 2) service code, representing the service implemen-
tation; 3) static meta-data; and 4) dynamic meta-data. The static
meta-data of a service component consists of three parts: 1)
the location of ; 2) input quality requirements of the service
component such as media format, frame rate, which is denoted
by , and output quality properties of the
service component, denoted by ; and 3)
adaptation policies , where is expressed by
an if-condition-then-action construct. The dynamic meta-data of
a service component describe its fluctuating performance condi-
tions, such as recent service delay. We use statistical QoS vector

to characterize the dynamic QoS metrics of
the service component. Each QoS metric , is rep-
resented by a random variable, whose histogram is constructed
from a number of recent sample values. Based on the histogram,
we can estimate the probability density function (pdf) of , de-
noted by . We use to define the satisfaction
probability that the dynamic value of is no larger than the re-
quired upper bound .

When we compose two service components, we need to ad-
dress two key issues, illustrated by Fig. 2(b). First, we need to
check the QoS consistencies between two different service com-
ponents since they can be developed by different third-party ser-
vice providers. The QoS consistency includes two aspects. First,
we check whether and of the two composed service
components are consistent. Second, we check whether the adap-
tation policies of the two service components conflict with each
other. The second issue is to derive the dynamic QoS values of
the composed service from those of constituent service compo-
nents and the network connection between them. Because we

use statistical QoS metrics, the accumulation of QoS metrics
means convolution [18] between them.2

We describe a composite distributed multimedia service using
a DAG called ServFlow , illustrated by the middle tier in
Fig. 1. The nodes in the ServFlow represent the service compo-
nents and the links in the ServFlow represent application-level
connections called service link. Each service link is mapped
to an overlay path by the overlay data routing layer. For ex-
ample, in Fig. 1, the service link is mapped to the overlay
path . We formally define the ServFlow
as follows.

Definition 2.2: A ServFlow is defined as ,
, .

For example, the ServFlow shown in Fig. 1 can be described as
,

where , , , , and
. If an overlay node contributes multimedia services on

a ServFlow , it is called a service node. If an overlay node only
performs application-level data relaying on , it is called a relay
node.

To quantify the load balancing property of an instantiated
ServFlow, we define a resource cost aggregation metric, denoted
by , which is the weighted sum of ratios between resource
requirements of the service components/service links between
resource availabilities on the hosting overlay nodes/overlay
paths. We use and to represent the resource requirement
threshold and satisfaction probability of the service component

for the th end-system resource type (e.g., CPU, memory,
disk storage), respectively. Similarly, we use and to
denote the required threshold and satisfaction probability for
the network bandwidth on the service link , respectively.

2For simplicity, we assume that all QoS metrics are additive since a mul-
tiplicative metric (e.g., loss rate) can be transformed into additive parameters
using logarithmic function. We also assume that all QoS metrics of different
service components and network links are independent.
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Fig. 3. QoS-aware service composition problem illustration.

The resource requirements of a service component depend on
its implementations and the current workload. In contrast to the
conventional data routing path, the resource requirements along
a ServFlow are no longer uniform due to the nonuniform ser-
vice functionalities on the ServFlow. Different service compo-
nents can have different resource requirements due to heteroge-
neous functions and implementations. The bandwidth require-
ments also vary among different service links since the value-
added service instances can change the original media content
(e.g., image scaling, color filter, information embedding). We
use to denote mean availability of th end-system resource
type on the overlay node .

We use to denote the mean availability of the bandwidth
on the overlay path , which is defined as the minimum mean
available bandwidth among all overlay links . The mean
values can be calculated from the pdfs of the corresponding sta-
tistical metrics. Hence, the resource cost aggregation metric
is defined as follows:

(1)

, represents the importance of different re-
source types.3 We can customize by assigning higher weights
to more critical resource types. The ServFlow with smaller re-
source cost aggregation value has a better load-balancing prop-
erty because the resource availabilities exceed the resource re-
quirements by a larger margin.

C. Service Overlay Network Layer

The substrate tier of the SpiderNet system is a service
overlay network that consists of distributed overlay nodes

connected by application-level connections called overlay

3Some services are computationally intensive (e.g., image analysis), which
require low network bandwidth. However, some services require high network
bandwidth and low CPU (e.g., forwarding service).

links . Each overlay node can provide one or more multi-
media service components. The overlay network topology can
be formed by connecting each overlay node with a number
of other nodes called neighbors via overlay links. Applica-
tion-level data relaying [2] is required between two overlay
nodes that are not directly connected. For example, in Fig. 1, the
data sent by to needs to be relayed by . The QoS-aware
service composition is then performed on top of the overlay
data routing layer.

Each node is associated with a statistical resource avail-
ability vector , where is a random variable de-
scribing the statistical availability for the th end-system re-
source type (e.g. CPU, memory, disk storage). We use a his-
togram to estimate the pdf of the random variable . Thus, we
do not need to make any assumption about the distribution of the
random variable. The histogram is constructed from a number
of recent sample values. For example, if the total sample size of
the histogram is and the number of sample values in the bin

is , then we have .
Each node also maintains statistical bandwidth availability

for its adjacent overlay links . For scalability, each node
maintains the above histograms locally, which are not dissemi-
nated to other overlay nodes.

D. Problem Description

We formulate QoS-aware service composition as a two-di-
mensional graph mapping problem illustrated by Fig. 3. In one
dimension, we can derive different composition patterns from
the original function graph by considering the commutative
links. In the other dimension, we can map each service function
into different duplicated service components in the SON. These
duplicated service components provide the same functionality
but can have different QoS properties (e.g., service time) and
available resources on the local peer host (e.g., CPU, memory).
For example, in Fig. 3, function can be mapped to two du-
plicated service components and . We can derive different
ServFlows from the function graph by considering the above
two dimensions. Thus, the QoS-aware service composition
problem (QSC) is to find the best mapping from the function



GU AND NAHRSTEDT: DISTRIBUTED MULTIMEDIA SERVICE COMPOSITION 5

graph to the best qualified ServFlow that satisfies the users
multiconstrained QoS requirements and achieves best
load balancing in the current multimedia service overlay. We
formally define the QSC problem as follows.

Definition 2.3 QoS-Aware Service Composition (QSC)
Problem: Given a composite service request
and a multimedia service overlay , the QSC
problem is to map into the best qualified ServFlow , such
that minimizes subject to the following constraints:

(2)

(3)

(4)

Theorem 2.1: QSC problem is NP-hard.
Readers are referred to [9] for proof details.

III. SYSTEM DESIGN

In this section, we present the bounded composition probing
protocol, concepts of probing budget and probing quota, per-hop
probe processing algorithm, and optimal service composition
selection. Finally, we discuss several enhancements to the basic
distributed service composition scheme.

A. BCP Protocol

SpiderNet executes a BCP protocol to perform distributed
service composition. Given a service composition request, the
source node invokes the BCP protocol,4 which includes four
major steps.

Step 1. Initialize the probe. The source first generates a
composition probing message, called probe. The
probe carries the information of function graph and
the users QoS/resource requirements. The probe
can spawn new probes in order to concurrently
examine multiple next-hop choices. To control the
number of spawned probes, the probe carries a
probing budget that defines how many probes
we could use for a composition request. We will
introduce the probing budget in more detail in
Section III-B.

Step 2. Hop-by-hop probe processing. Each peer pro-
cesses a probe independently using only local
information. The goal of hop-by-hop distributed
probe processing is to collect needed information
and perform intelligent parallel searching of mul-
tiple candidate ServFlows. We will describe this
step in detail in Section III-D.

Step 3. Optimal composition selection. The destination
collects the probes for a request with certain timeout
period. It then selects the best qualified ServFlow
based on the resource and QoS states collected by
the probes. We will discuss this step in detail in Sec-
tion III-E.

Step 4. Setup service session. Finally, the destination
sends an acknowledge message along the reversed

4The BCP initiator can also be the destination or a third-party overlay node.

Fig. 4. Distributed service composition algorithm.

selected ServFlow to confirm resource allocations
and initialize service components at each inter-
mediate peer. Then the application sender starts
to send application data stream along the selected
ServFlow. If no qualified ServFlow is found, the
destination returns a failure message to the source
directly. Fig. 4 shows the pseudocode of the dis-
tributed service composition algorithm.

B. Probing Budget

We introduce the concept of probing budget that allows us to
precisely control the number of probes used for each compo-
sition request. The probing budget represents the trade-off be-
tween the probing overhead and composition optimality. Larger
probing budget allows us to examine more candidate ServFlows,
which allows us to find a better qualified ServFlow. Different
from previous work, SpiderNet can provide an adaptive compo-
sition solution with tunable performance by properly adjusting
the probing budget. For example, we can use larger probing
budget for the request with: 1) higher priority; 2) stricter QoS
constraints; or 3) more complex function graph. We can also
adaptively adjust the probing budget based on user feedbacks
and historical information.

C. Probing Quota

Although the probing budget could control the total probing
overhead, it cannot guarantee the fair sharing of the probing
budget among different service functions. If there are many can-
didate service components for a service function, dividing
among all candidate service components can quickly use up the
probing budget. To address the problem, we associate a probing
quota with each service function to limit the number
of probes used for . In the basic distributed service composi-
tion algorithm, we assume that all service functions are equally
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important. We will describe the differentiated probing quota al-
location in Section III-F. Let us assume that we are given a func-
tion graph includes branch paths , each of which
includes service functions with alter-
native permutations (i.e., composition patterns). If each service
function is associated with the same probing quota , the total
probes generated on the branch path with service functions
and permutations is . Thus, we can derive based
on the following inequalities:

(5)

For example, in Fig. 3, the function graph includes two branch
paths. The first branch has two permutations that can generate

probes if BCP uses probes for each function. The second
branch can generate probes. According to (5), we have

and . Thus, the upper-bound of is
.

D. Per-Hop Probe Processing

We now describe the details of the per-hop probe processing
steps that mainly includes six steps.

a) Resource/QoS check and soft resource allocation.
When a service node receives a probe, it first checks
whether the QoS and resource values of the probed
ServFlow already violate the users requirements. If the
accumulated QoS and resource values already violate
the users requirements, the probe is dropped imme-
diately. Otherwise, the peer will temporarily allocate
required resources to the expected application session.
However, the resource allocation is soft since it will be
cancelled after certain timeout period if the peer does
not receive a confirmation message. The purpose of this
soft resource allocation is to avoid conflicted resource
admission caused by concurrent probe processing. Thus,
we can guarantee that probed available resources are still
available at the end of the probing process.

b) Derive next-hop service functions. Next, the service
node derives the next-hop service functions according
to the dependency and commutative relations in the
function graph. All the functions dependent on the cur-
rent function are considered as next-hop functions. For
each next-hop function derived above, if there is a
exchange link between and , is also a possible
next-hop function. The probing budget is proportionally
distributed among next-hop functions according to their
probing quotas. To avoid incorrect loops in the compo-
sition probing, we modify the functions graphs in the
new probes destined to the two exchangeable service
functions and . In the probe for , we modify its
function graph by replacing with . In
the probe for , we modify its function graph by first
replacing with , and then letting
inherit all the relations of . More details can be found
in [9].

Step 2.3: Discover candidate service components. The ser-
vice node discovers candidate service components

for all next-hop functions derived above. For scal-
ability, we implement a decentralized service dis-
covery based on the distributed hash table (DHT)
system [17]. Readers are referred to [11] for de-
tailed description.

Step 2.4: Check QoS consistency. Based on the service dis-
covery results, the service node then performs QoS
consistency check between the current service com-
ponent and next-hop candidate service components.
The QoS consistency check includes two aspects:
(1) the consistencies between output QoS param-
eters of the current service component and
input QoS parameters of the next-hop ser-
vice component; and (2) the compatibility between
the adaptation policies of two connected service
components. Unlike the IP-layer network where all
routers provide a uniform data forwarding service,
the node in the multimedia service overlay can pro-
vide different multimedia services, which makes it
necessary to perform QoS consistency check be-
tween two connected service components. We first
check the parametric consistency based on the fol-
lowing definitions,

Definition 3.1: Parametric consistency relation
. Given two service components and , if

and only if , , , : 1) , if
is a single value and 2) , if is a range value.

In addition, we also check whether the adaptation policies
of the two service components are compatible with each other.
Generally, we can express an adaptation policy using an if-con-
dition-then-action construct. For example, a video tracking ser-
vice can have the following adaptation policy, if CPU is below
40% and bandwidth is below 100 kbps, then use RGB8\_color.
We say two adaptation policies are compatible if their actions
will not cause any parametric in-consistency. For example, an
adaptation policy of a service component specifies that the ser-
vice component changes output media format from MPEGII
to JPEG when the available CPU is lower than 40%. If the
components successor specifies that the required input media
format must be MPEGII, then the adaptation policy will poten-
tially cause parametric in-consistency between the two service
components. We use hyper-cube to model adaptation condi-
tions, where each condition attribute (e.g., CPU and bandwidth
in the visual tracking example) represents one dimension of the
hyper-cube. We check the compatibility of two adaptation poli-
cies based on the relations of their condition hypercubes (e.g.,
equal, disjoint, overlapping), which is formally defined as fol-
lows,

Definition 3.2: Adaptation Rule Set Compatibility Relation
. We use and to represent the

new and after the service component is changed by
its adaptation policy . Given two adaptation policy sets

and , we define that two
adaptation policy sets are compatible, denoted by ,
if and only if , : 1)

; 2)
; 3)
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; 4)
; 5)

.
Based on the above two definitions, we define the inter-com-

ponent QoS consistency relation as follows,
Definition 3.3: Inter-component QoS consistency
. Given two service components and , their static

meta-data items and .
We define that is QoS consistent with , if and
only if (1) and (2) .

In SpiderNet, static meta-data items are described using the
XML-based markup language HQML [12]. SpiderNet check
the QoS consistency between two service components using
the HQML syntactic and semantic parsers [12] according to
the above Inter-component QoS consistency definitions. The
computation complexity of the parametric consistency check is

, where is the dimension of the vectors and .
If the adaptation condition requires a K-dimensional space,
then we can decide the relation of two condition hypercubes
in . Thus, the computation complexity of checking the
compatibility of two adaptation policy sets is ,
where defines the size of rule set of , defines the size
of rule set of . The computation complexity of the com-
plete inter-component QoS consistency check algorithm is

.

Step 2.5: Select next-hop service components. Due to the
probing budget and probing quota constraints, the
service node may not be able to probe all the qual-
ified next-hop service components. Thus, selects
a subset of most promising next-hop candidate ser-
vice components to probe. Suppose we find qual-
ified candidate service components for the next-hop
function . Let denote the available probing
budget for decided by step 2.2. Let define the
probing quota for . Thus, the number of probes
that can be used by is . If

, then the service node spawns new
probes from the received probe to examine all
candidate service components. Each new probe has
a probing budget . However, if , then
we do not have enough probing budget to probe
all the candidate service components. In this
case, selects most promising next-hop service
components from the candidates based on the
local available information. To meet our multicon-
strained QoS and resource management goals,
selects the best next-hop service components based
on a combined metric that comprehensively con-
siders all local states information such as the net-
work delays retrieved from the overlay data routing
layer and average service delays of the candidate
service component retrieved from the static meta-
data. Finally, spawns a new probe for each se-
lected next-hop service component. Each new probe
has a probing budget .

Step 2.6: Update probe with statistical local states. In the
last step, the service node sets the content of each

new probe based on the content of the re-
ceived probe and its local statistical information.
First, updates the pdfs of the accumulated QoS
values of the probed ServFlow using the con-
volution between its old values recorded in and

of the current service component as follows:

(6)

Second, updates the resource requirements of the
probed ServFlow with the CPU resource require-
ment of and the bandwidth require-
ment for the service link between
and the selected next-hop service instance in .
Third, calculates the mean resource availability
value and the resource satisfaction probability

for the end-system resource as
follows:

(7)

(8)

Fourth, derives the first overlay link to the
selected next-hop service instance according to the
local overlay data routing table. Then, updates
the values of using the convolution between old

values and

(9)

then updates average available bandwidth on the
overlay path to the next-hop as follows:

(10)

The bandwidth satisfaction probability
is updated as follows:

(11)

We have presented the per-hop probe processing algorithm
at a service node. In contrast, the per-hop probe processing at
a relay node is much simpler since it does not provide any ser-
vice components but only performs application-level data for-
warding in the overlay network. The relay node does not spawn
new probes. It only updates the content of the received probe
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with the local statistical information about the overlay link
toward the next-hop service node specified in .

E. Optimal Service Composition Selection

At the destination node, SpiderNet selects the best qualified
ServFlow based on the information collected by the received
probes. If the function graph has a linear path structure, each
probe records a complete service composition. However, if the
function graph has a DAG structure, each probe only collects the
information for one composition branch. For example, in Fig. 5,
each probe traverses either the branch path

or . Hence, we need to first merge
the examined branch paths into complete DAG ServFlows. We
briefly describe the merging algorithm as follows. First, we clas-
sify all the received branch paths into sets according to their
provisioned service functions. All branch paths within one set
should include the same set of service functions. For example,
in Fig. 5, we classify the four received branch paths into two
sets. Second, we merge every combinable branch paths, one
from each of the sets, into a complete DAG ServFlow. Two
branch paths are combinable if and only if their common service
functions are performed by the same service component. For ex-
ample, in Fig. 5, we can derive two candidate DAG ServFlows
from the received four branch paths.

When we merge two branch paths, we need to calculate the
statistical resource and QoS values of the DAG ServFlow from
its constituent branch paths. The mean values of resource avail-
abilities (i.e., , ) of the DAG ServFlow are the union
of its constituent branch paths. The statistical QoS values
of the DAG ServFlow is defined as the “bottleneck” value be-
tween the two branch paths (e.g., longer delay). If the non-
linear ServFlow includes more than two branch paths, the statis-
tical QoS values are calculated recursively between every two
branch paths. More details about the QoS calculation for the
DAG ServFlow can be found in [9].

Using the aggregated statistical resource and QoS states,
SpiderNet first selects all qualified ServFlows according the
users QoS requirements (i.e., (2) in Section II) and resource
requirements (i.e., (3) in Section II). Then, SpiderNet sorts all
the qualified ServFlows in the increasing order of the resource
cost aggregation metric (i.e., (1) in Section II). The qualified
ServFlow with the smallest value is regarded as the best
qualified ServFlow.

F. Algorithm Enhancements

We now present several enhancements to the basic distributed
service composition scheme.

• Caching composition probing results. Each overlay
node can cache the qualified ServFlows found by recent
composition probing operations. When a node receives
a composite service request with the same abstract func-
tion, it can avoid invoking the composition probing to
find a new ServFlow if the cached ServFlow can satisfy
the users QoS constraints. Each cached ServFlow is only
kept for a short period of time to assure the validity and
optimality of the cached ServFlow. Moreover, before

Fig. 5. Merge branch paths into DAG ServFlows.

we use the cached ServFlow, we can send a single com-
position probe5 along the cached ServFlow to validate
whether it is still qualified. Thus, we can greatly reduce
the composition probing overhead by eliminating unnec-
essary composition probing operations.

• Pruning unqualified candidate ServFlows. We now
describe how to reduce the probing overhead by pruning
the searching branches along unqualified candidate
ServFlows. When an overlay node receives a probe, it
compares the current accumulated QoS and resource
metric values with the user required QoS and resource
constraints. If the satisfaction probabilities of the ac-
cumulated QoS metrics or the resource metrics already
violate the users requirements, the probe is dropped im-
mediately.6 Specifically, the overlay node drops a probe
if: 1) , , or 2)

; or (3) .
Thus, we can greatly reduce the probing overhead by
cutting off probe forwarding and spawning along those
unqualified searching branches. If all probes are dropped
during BCP, the probing source will automatically
timeout and assume no qualified ServFlow can be found
to satisfy the users composite service request.

• Differentiated probing quota allocation. In Sec-
tion III-B, we have described the uniform probing quota
allocation scheme, which assumes that all service func-
tions and branch paths are equally important. We now
describe a differentiated probing quota allocation scheme,
which considers the differences among service functions
and branch paths in the function graph. First, we decide
the probing quota ratios among different service func-
tions. Suppose the function graph includes service
functions, . We use , , to
represent the probing quota allocated to the service func-
tion , where is the probing quota weight associated
with the service function . We can decide the value of

based on different policies. For example, we can as-
sign a higher weight to the service function that has more
candidate service instances since it needs more probes to
search different alternatives. Suppose a service function

can be mapped to different service instances. We

5If the ServFlow has k branch paths, then we need k composition probes to
examine the ServFlow.

6Because the composition probing follows the function constraints specified
by the function graph and QoS constraints are minimum optimal, the satisfaction
probabilities will not be increased by further accumulations.
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Fig. 6. Customizable video streaming using SpiderNet.

can calculate as . If all service
functions have the same number of duplicated service
instances, we can assign larger to more critical service
functions. We can achieve more efficient consumption of
the probing budget by partitioning differentially
among various service functions.

Second, we need to decide to how to share the probing budget
among different branch paths in the nonlinear ServFlow compo-
sition. We use , , to represent the probing
budget allocated to the branch path , where represents
the weight assigned to the branch path . Suppose the func-
tion graph includes branch paths . Each
branch path includes service functions
with permutations. The number of probes spawned on each
branch path is , which should be no larger than
its probing budget share . Thus, we can solve and ,

based on one equation and inequal-
ities: , . Then, we can
decide the probing quota allocated to each service function by

.
To implement the above differentiated probing quota allo-

cation in the distributed service composition, we replace the
uniform probing budget partition scheme, presented in Sec-
tion III-D, with a proportional probing budget partition scheme,
which is described as follows. When a service node receives
a probe whose probing budget is and there are next-hop ser-
vice functions , proportionally divides among

next-hop service functions as follows. Suppose there are
branch paths that are rooted at the service function , which
are denoted by . Then, the probing budget allocated

to is decided by ,
which means that the proportion of the probing budget allocated
to is decided by the ratio between weight sum of all branch
paths rooted at and the weight sum of all branch paths rooted

at all next-hop service functions . We now prove
that the above proportional probing budget partition scheme
can guarantee that each branch path receives its share of
probing budget .

Theorem 3.1: Suppose the function graph includes
branch paths , . The proportional probing
budget partition scheme can guarantee that each branch path
is allocated with probing budget, .

Readers are referred to [9] for the proof details.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of SpiderNet
using both large-scale simulations and prototype running in
wide-area network testbed PlanetLab [1].

A. Prototype Implementation and Evaluation

The SpiderNet prototype software is a multithreaded running
system written in about 13 K lines of java code. There are six
major modules: 1) the service lookup agent is responsible for
discovering the list of service instances, which is implemented
on top of the Pastry software [17]; 2) the ServFlow generator
module executes the BCP protocol for QoS-aware service com-
position; 3) the session manager maintains session information
for current active sessions; 4) the data transmission module is
responsible for sending, receiving, and forwarding application
data; 5) the overlay topology manager maintains the neighbor
set; and 6) the monitoring module is responsible for monitoring
the network/service states of neighbors. As a proof-of-concept,
we also implemented a set of multimedia service components to
populate our P2P service overlay. Each service component pro-
vide one of the following six functions: 1) embedding weather
forecast ticker; 2) embedding stock ticker; 3) up-scaling video
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frames; 4) down-scaling video frames; 5) extracting subimage;
and 6) re-quantification of video frames.

Our experiments use 102 Planetlab hosts that are distributed
across U.S. and Europe. The average replication degree of each
multimedia service is about 15. We implement a customizable
video streaming application on top of the SpiderNet service
composition system. The customizable video streaming applica-
tion allows the user to perform wide-area video streaming with
desired transformations and enriched content. Fig. 6 shows the
screen shot of the customized video streaming application. Our
experiments on the PlanetLab indicate that current SpiderNet
prototype can setup a composite service session within several
seconds, which is acceptable for long-lived streaming applica-
tions that usually lasts tens of minutes or several hours. The
above service setup time can be reduced with further implemen-
tation improvement.

B. Simulation Results

In our simulation experiments, we first use the degree-based
Internet topology generator Inet-3.0 [20] to generate a
power-law graph with 3200 nodes to represent the Internet
topology. We then randomly select a number of nodes as
overlay nodes and connect them into a SON. The average node
degree is . Once the node degrees are chosen, the
nodes are connected into a topologically-aware overlay network
using the Short-Long algorithm presented in [16]. To simulate
the dynamic QoS values, we generate the dynamic QoS values
using either uniform distribution function or normal distribution
function. The histogram for each random variable includes 30
sample values and ten bins. We choose the mean and deviation
values based on real-world Internet service-level agreement
contracts and the profiling results of fully implemented mul-
timedia services. We simulate the IP-layer and overlay-layer
data routing using the shortest path routing algorithm.

Each overlay node provides two service components. Each
service component performs a service function that is randomly
selected from service functions. Thus, the average
service duplication ratio is , which con-
forms to our assumption that a service function can be mapped
to a limited number of service instances. The function graph

of the request is randomly selected from 200 pre-defined
templates, which include two to five service functions with one
or two branches. The statistical resource and QoS requirements
are uniformly distributed. The service session time is uniformly
distributed within certain range. A QoS-aware service com-
position is said to be successful, if and only if the composed
ServFlow: (1) satisfies the function graph requirements; 2)
satisfies the users resource requirements (e.g., CPU, network
bandwidth); and 3) satisfies the users QoS requirements (e.g.,
delay, data loss rate). The composition success rate is calculated
by .

For comparison, we also implement three other common
approaches: optimal, random, and static algorithms. The
optimal algorithm uses unbounded network flooding, which
exhaustively searches all candidate ServFlows to find the best
qualified ServFlow. The random algorithm randomly selects a
functionally qualified service component for each function node
in the function graph. The static algorithm uses pre-defined

Fig. 7. Performance comparison.

Fig. 8. Overhead comparison.

service component for each service function in the function
graph. Both random and static algorithms do not consider the
users QoS and resource requirements.

Fig. 7 shows the composition success rate achieved by
different algorithms on the three different multimedia service
overlays. The results illustrate that SpiderNet can consistently
achieve near-optimal performance (i.e., 95% of the optimal
performance) on the three different service overlays. Compared
to the random and static algorithms, SpiderNet can achieve
as much as 300% better performance than the random algo-
rithm and 400% better performance than the static algorithm.
Moreover, SpiderNet presents much better scaling property
than the random and static algorithms. When we increase the
service overlay size from 200 nodes to 500 nodes, SpiderNet
can achieve as much as 130% performance improvements by
efficiently utilizing added resources while the random and
static algorithm can achieve at most 50% improvements. The
improvements from 500 nodes to 1000 nodes are not too much
since the system resources of 500 nodes already meet the
resource requirements of the workload. Fig. 8 illustrates the
overhead comparison between the optimal algorithm and the
SpiderNet algorithm in the above experiment. The probing
overhead is measured by the total number of probing messages
generated per time unit. The results show that SpiderNet has
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much lower overhead than the optimal algorithm. The overhead
increasing rate of the SpiderNet algorithm is also slower than
that of the optimal algorithm as we increase the size of SON.
More simulation results can be found in [9].

V. CONCLUSION

In this paper, we have presented SpiderNet, a fully decentral-
ized QoS-aware multimedia service composition framework.
SpiderNet integrates statistical QoS provisioning and automatic
load balancing into the distributed service composition opera-
tion. Moreover, SpiderNet achieves expressive service compo-
sition by supporting directed acyclic graph composition topolo-
gies and exchangeable composition orders. Our prototype im-
plementation demonstrated the feasibility and efficiency of the
SpiderNet framework. In the future, we intend to investigate
the probing budget tuning scheme to realize self-adaptive QoS-
aware service composition. We also plan to extend the Spi-
derNet framework to support more composition relationships
such as conditional branch, exclusive OR, and conditional loop.
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