
Supporting Multi-Party Voice-Over-IP Services with
Peer-to-Peer Stream Processing

Xiaohui Gu, Zhen Wen, Philip S. Yu, Zon-Yin Shae
IBM T. J. Watson Research Center

Hawthorne, NY 10532

{xiaohui, zhenwen, psyu, zshae}@ us.ibm.com

ABSTRACT
Multi-party voice-over-IP (MVoIP) services provide econom-
ical and natural group communication mechanisms for many
emerging applications such as on-line gaming, distance col-
laboration, and tele-immersion. In this paper, we present a
novel peer-to-peer (P2P) stream processing system called
peerTalk to provide resource-efficient and failure-resilient
MVoIP services. Different from previous work, our solu-
tion is fully distributed and self-organizing without requiring
specialized servers or IP multicast support. Particularly,
we decouple the stream processing in MVoIP services into
two phases: (1) aggregation phase that mixes audio streams
from active speakers into a single stream; and (2) distribu-
tion phase that distributes the mixed audio stream to all
listeners. The decoupled model allows us to optimize and
adapt the P2P stream mixing and distribution processes
separately. Specifically, we can adaptively spread stream
mixing workload among resource-constrained peer hosts ac-
cording to current speaking activities. We have implemented
a prototype of the peerTalk system and conducted experi-
ments in real-world wide-area networks. The results show
that peerTalk can achieve lower resource contention and
better service quality than previous common solutions.

Categories and Subject Descriptors: C.2.4: Distributed
applications

General Terms: Design, Performance, Algorithm

1. INTRODUCTION
Internet has evolved into an indispensable service delivery

infrastructure instead of merely providing host connectivity.
IP telephony [1, 7, 8] is one of the most promising Inter-
net services that can greatly reduce the cost of traditional
telephony services. A simple IP telephony system includes
two participants, where the original voice signal is period-
ically sampled, encoded into a bit stream, and sent over
the Internet to the receiving end. However, many emerg-
ing applications call for multi-party voice-over-IP (MVoIP)
services that can include three or more participants. Such

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’05, November 6–11, 2005, Singapore.
Copyright 2005 ACM 1-59593-044-2/05/0011 ...$5.00.

application examples include multi-player Internet gaming
[6], distance collaboration systems, and on-line chatting.
In Internet gaming, MVoIP services allow game players to
easily communicate with each other for deploying strategies,
and game spectators to cheer up players. Distance collabo-
ration systems allow people to work as a team without costly
travel expenses, where MVoIP services can provide natural
communication mechanisms. Different from conventional
conferencing systems that impose explicit or implicit floor
controls, the emerging applications demand more flexible
MVoIP services that allow any participants to “speak” at
anytime. By speaking, we mean not only uttering words, but
also nonverbal activities such as shouting, singing, cheering,
and laughing that are common in interactive and sponta-
neous applications.

Traditional conferencing systems often employ IP multi-
cast (e.g., [4]) or overlay multicast (e.g., [5, 3]), illustrated by
Figure 1 (a). The system needs to distribute multiple audio
streams concurrently through different multicast trees from
all active speakers to all listeners. Although the multicast
approach is well suited for broadcast applications that usu-
ally involve one active speaker, it becomes inefficient for in-
teractive and spontaneous applications (e.g., Internet gam-
ing, chatting) that often include many simultaneous speak-
ers. Alternatively, we can employ a centralized approach
that first mixes the audio streams of all active speakers into
a single stream and then distributes the mixed stream to all
participants, illustrated by Figure 1 (b). Stream mixing can
effectively reduce network traffic by reducing the number
of audio streams distributed across networks. However, the
centralized approach lacks scalability and resilience that are
required by the P2P applications. The most popular real-
world P2P VoIP system Skype can only support conferenc-
ing sessions with at most five people[1]. Distributed audio
mixing (e.g., [8, 7]) has been proposed to provide MVoIP
services, illustrated by Figure 1 (c). The distributed audio
mixing approach mingles the stream mixing process with
the stream distribution process, which is called coupled dis-
tributed processing (CDP) in this paper. However, CDP can
be sub-optimal since it fails to explore the asymmetric prop-
erties of MVoIP services such as distinct speaking/listening
activities and unequal in-bound and out-bound bandwidth
at each peer host.

In this paper, we propose a new P2P audio stream pro-
cessing system called peerTalk to provide resource-efficient
and failure-resilient MVoIP services. Compared to previous
work, our solution presents three unique features. First,
we decouple the audio stream processing into two phases,

(d) Decoupled distributed

procesing

(a) Overlay multicast
 (b) Centralized mixing
 (c) Coupled distributed

processing

speaker

a
 b

c

e

d

g

f

h

a
 b

c

e

d

g

f

h

a
 b

c

e

d

g

f

h

a
 b

c

e

d

g

f

h

speaker

speaker

speaker

speaker

speaker
 speaker

speaker

speaker

speaker
 speaker

speaker

speaker

speaker
 speaker

speaker

Figure 1: Different implementations of P2P MVoIP services.

illustrated by Figure 1 (d): (1) aggregation phase that mixes
audio streams of all active speakers into a single stream via
a mixing tree; and (2) distribution phase that distributes
the mixed audio stream to all listeners via a distribution
tree. The decoupled processing model allows us to opti-
mize and adapt the stream mixing process and stream dis-
tribution process separately by fully exploring the asym-
metric properties of MVoIP services. Second, the peerTalk
system is fully distributed and self-organizing, which does
not require any specialized servers or IP multicast support.
The system provides scalable MVoIP services by aggregat-
ing resources of all peer hosts in the system. Thus, the
peerTalk system can naturally scale up as more peers join
the system. Third, the peerTalk system is adaptive, which
can dynamically distribute the audio processing workload
among different peer hosts. The system performs continuous
optimization to adaptively improve the quality of MVoIP
services. To achieve failure resilience, the peerTalk system
adopts an overlay-based approach for failure resilience. We
first connect peer hosts into an overlay mesh on top of IP
network. The mixing and distribution trees are then built
on top of the overlay mesh.

We have implemented a prototype of the peerTalk sys-
tem and conducted extensive experiments in both wide-
area networks PlanetLab [2] and simulated P2P networks.
Our experiments reveal several interesting results. First,
peerTalk can greatly reduce resource contentions in P2P
environments compared to the overlay multicast approach
[5], especially for MVoIP sessions with large group sizes and
heavy workloads. Second, peerTalk achieves much lower
service delay than the CDP approach by separating the
stream mixing process from the distribution process. Third,
peerTalk can quickly recover MVoIP service failures while
maintaining low resource contention and service delay among
live peers as long as the overlay mesh is connected.

The rest of this paper is organized as follows. Section 2
introduces the adaptive stream mixing algorithm. Section
3 presents the experimental results. Finally, the paper con-
cludes in Section 4.

2. ADAPTIVE STREAM MIXING
We now present a fully distributed algorithm for dynam-

ically constructing and adapting the mixing tree used by
a MVoIP service session. The basic idea of our approach
is to adaptively distribute the multi-stream audio mixing
workload among multiple selected peer hosts. Different from
the stream distribution workload that is proportional to the
number of listeners, the workload of audio mixing is de-

cided by the number of active speakers that can dynamically
change over time. Thus, our scheme continuously monitors
the number of active speakers and dynamically adjust the
mixing tree to adapt to the changing workload.

At the beginning of a MVoIP service session, the mixing
tree contains a single mixer called the root mixer M0. All
participants are initially assigned as the children of the root
mixer. The system runs an election algorithm to make
all participants initially connected to the same root mixer.
Since the root mixer is also the root of the distribution tree,
we place the root mixer on the peer host that is the source of
the best multicast tree with the minimum worst-case delay
between the source and all other participates. Specifically,
all peers concurrently run the DVMRP algorithm to con-
struct multicast trees rooted at themselves. Each peer then
calculates the worst-case delay of its own multicast tree and
then propagates the information to all other members via
the overlay mesh. All peers then select the same best peer
as the root mixer whose multicast tree has the minimum
worst-case delay.

During runtime, the system adaptively grows or shrinks
the mixing tree based on the audio mixing workload using a
fully distributed algorithm. First, the root mixer monitors
the number of active speakers among all participants. If
the number of active speakers exceeds the capacity of the
root mixer, the root mixer spawns new child mixers on
other peer hosts to offload the audio mixing workload. The
basic idea of mixing tree adaptation is that each mixer can
either split itself if it is overloaded or merge with its sibling
mixers if it is under-loaded. The mixer is also dynamically
migrated among different peer hosts to achieve improved
service quality. We now describe the distributed algorithms
for mixer splitting, mixer merging, and mixer migration,
respectively.

2.0.1 Mixer Splitting
Each mixer Mi in the mixing tree monitors the number

of audio streams concurrently arrived at its input ports.
Since peers can perform silence suppression, a leaf node
on the mixing tree generates an audio stream only if the
local participant produces any sound. An internal node on
the mixing tree generates an output audio stream if any
of its input ports receives an input stream. Suppose the
mixer Mi has n input ports denoted by I1, I2, ..., In. We
use time-serials Ak, 1 ≤ k ≤ n to describe the data arrival
pattern at the input port Ik. The time-serials Ak consist of
a sequence of time-stamped number denoted by ak ∈ Ak.
At time t, we set ak = 1 if there are data arriving at the
input port Ik, or ak = 0 if no data arrives. Hence, the

speaker

M

0

a
 b
 c
 d

speaker
 speaker
 speaker

speaker

split

M

0

M

1,1
 M

1,2

a
 b
 c
 d

speaker
 speaker
 speaker
speaker

M

1

a
 b
 c
 d

speaker
 speaker
 speaker

M

0

(b) Root mixer splitting

(a) Non-root mixer splitting

speaker

M

0

M

i
 M

j

a
 b
 c
 e

speaker
 speaker
 speaker

d

speaker
 speaker

M

0

M
i,1
 M
j

a
 b
 c
 e

speaker
 speaker
 speaker

d

speaker

M
i,2

split

Figure 2: Mixer splitting operation.

total number of audio streams, denoted by Ni, concurrently
arrived at the mixer Mi at time t can be calculated by

Ni(t) =
nP

k=1

ak. To achieve stability, we use the exponential

smoothing algorithm to update the value of Ni at periodical
intervals, i.e., Ni = α ·Ni + (1− α) ·Ni(t), 0 < α < 1. The
length of the period can be decided based on the trade-off
between stability and responsiveness.

Since peer hosts are often resource constrained, they can
only process a limited number of audio streams while keep-
ing up with the input stream rate. Let us consider the mixer
Mi located on the peer host vi that can process at most Ci

streams. If the number of arriving audio streams exceeds
its processing limit, i.e., Ni > Ci, the mixer Mi triggers
the splitting process. If the overloaded mixer Mi is not the
root mixer, it splits itself into two mixers Mi,1 and Mi,2,
illustrated by Figure 2 (a). One of them Mi,1 remains on the
host vi and is assigned a subset of the children of Mi whose
aggregate workload is within Ci. The rest of the children
are assigned to the new mixer Mi,2. The peer host vi then
selects one of its neighbors vj with the largest processing
capacity to host Mi,2. If the workload of Mi,2 still exceeds
the processing limit of vj , the mixer Mi,2 continues to split
itself until the workload of each new mixer is within the pro-
cessing limit of its hosting peer. Note that the above process
may trigger the parent of Mi to split since the number of its
children is increased.

If the overloaded mixer Mi is the root mixer, i.e., Mi =
M0, the peer host vi first creates a new mixer M1 and
transfers all of M0’s children to M1, illustrated by Figure
2 (b). The new mixer M1 then becomes the only child of
M0 and is migrated on one of the neighbors of vi that has the
largest stream processing capacity. By doing so, the height
of the mixing tree is thus increased by one. Let us assume
M1 is placed on the peer host vj . If the workload of M1 still
exceeds the capacity of vj , M1 performs the splitting as the
previous case since M1 is not the root mixer. All spawned
new mixers become the children of the root mixer M0.

To minimize the average workload for all input streams,
we distribute the children of Mi to each new spawned mixers
Mi,1..., Mi,k based on the data arrival time serials A1, ..., An.
We calculate the correlation coefficient between every two

M

0

M

1
 M

2

a
 b
 d
 d

merge

speaker
 speaker

M

0

M

1

a
 b
 c
 d

merge

speaker
 speaker

speaker

M

0

a
 b
 c
 d

speaker

Figure 3: Mixer merging operation.

Merge Mi with Mj , Mp: parent of Mi and Mj

1 if (Ni < [Ci
2

]) ∧ (Ni + Nj ≤ max(Ci, Cj))
2 if Ci ≤ Cj

3 then delete Mi

4 else delete Mj

Operations when Mi is the only child of Mp

5 if Mp is not the root mixer
6 if Mp can handle all workload
7 then delete Mi

8 else if Mi can handle all workload
7 then delete Mp

9 if Mp is the root mixer ∧ (Ni + Np ≤ Cp)
10 then delete Mi

Figure 4: Mixer merging algorithm.

data arrival time serials Ai and Aj , which indicates the pos-
sibility of concurrent data arrivals on the input ports Ii and
Ij . We then allocate the least-correlated input streams to
the same mixer to minimize the average aggregate workload
at each mixer.

2.0.2 Mixer Merging
We now present the mixer merging algorithm illustrated

by Figure 3. The mixer merging process can effectively
shrink the mixing tree to avoid excessive audio mixing over-
head (delay, packet loss) by minimizing the number of mix-
ers traversed by the audio streams. Similar to the mixer
splitting process, each mixer Mi monitors the number of
audio streams concurrently arrived at its input ports. If
the total workload Ni is significantly less than the mixer’s
processing capacity Ci (e.g., Ni < [Ci

2
]), the mixer seeks to

merge with its succeeding sibling Mj in the mixing tree1. If
the aggregate workload of Mi and Mj is within the process-
ing limit of a single mixer, i.e., Ni + Nj ≤ max(Ci, Cj), we
merge the two mixers into one mixer. If Ci ≤ Cj , we delete
Mi and connect the children of Mi to Mj . Otherwise, we
delete Mj and connect the children of Mj to Mi. Note that
the above process may trigger the parent of Mi and Mj

to perform mixer merging since the parent’s input stream
number decreases. If a mixer Mi becomes the only child of
its parent mixer Mp, we can merge Mi with Mp to reduce
the height of the mixing tree. The situation occurs when the
children of Mp merge with each other into one mixer. Figure
4 shows the psudo-code of the mixer merging algorithm.

1We organize the children list as a circular queue to avoid
redundant merging (e.g., M1 wants to merge with M2 and
M2 wants to merge with M1)

0 200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay (ms)

C
um

ul
at

iv
e

di
st

rib
ut

io
n

of
 d

el
ay

peerTalk
Overlay Multicast

Figure 5: Cumulative distribution of delay with
small number of speakers.

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay (ms)

C
um

ul
at

iv
e

di
st

rib
ut

io
n

of
 d

el
ay

peerTalk
Overlay Multicast

Figure 6: Cumulative distribution of delay with
large number of speakers.

3. PROTOTYPE EXPERIMENTS
The peerTalk system prototype is a multi-threaded dis-

tributed software system written in Java. The software at
each node includes five major modules: (1) mixer manager
executes the mixer splitting, the mixer merging, and mixer
migration algorithms; (2) overlay topology manager main-
tains the neighbor set; (3) monitoring module is responsible
for monitoring the network/service states of neighbors; (4)
session manager maintains membership information about
each active MVoIP service session; (5) data transmission
module is responsible for sending, receiving, and forwarding
audio data. We leverage the SCRIBE software [3] to realize
P2P overlay multicast.

Our experiments use 51 Planetlab hosts that spread across
U.S. and Europe. At the beginning, each peer sends a probe
message to all other peers via the SCRIBE multicast inter-
face and measures average delay between itself and all other
peers. All peers then exchange with each other the worst-
case delay from themselves to all other peers. All peers
then select the best peer that has the minimum worst-case
delay as the root mixer. We adopt the standard ON/OFF
model to emulate the speaking activity. Each peer generates
audio data when it is in ON state and generates no data
when it is in OFF state. Each peer switches from ON
state to OFF state with a probability P1 and switches from
OFF state to ON state with a probability P2. The audio
encodings are all 8KHz, 8bit, Ulaw, and mono. Our first set
of experiments uses P1 = 0.6 and P2 = 0.4. Figure 5 plots
the cumulative distribution of delays between all pairs of
communicating participants using the peerTalk system and

the SCRIBE overlay multicast system, respectively. Our
second set of experiments uses P1 = 0.35 and P2 = 0.65 to
emulate a more active MVoIP session, illustrated by Figure
6. We observe that peerTalk achieves smaller service delays
than the overlay multicast approach, especially for highly
interactive MVoIP sessions. The reason is that the peerTalk
selects the best multicast tree for distributing streams and
the audio mixing can effectively reduce resource contentions
leading to less queuing delays.

4. CONCLUSION
In this paper, we have presented peerTalk, a P2P stream

processing system supporting multi-party VoIP (MVoIP)
services. Different from conventional VoIP systems, peerTalk
is fully distributed and self-organizing without requiring any
specialized servers or IP multicast support. To the best
of our knowledge, this is the first work that studied the
P2P stream processing problem in the MVoIP application
domain. This paper makes three major contributions. First,
we propose a fully distributed, decoupled stream process-
ing model to provide efficient MVoIP services by separating
the audio mixing and distribution processes. Second, we
provide audio mixing adaptation algorithms to adjust the
audio mixing process according to speaking activity changes.
Third, we present the stream processing component mi-
gration algorithm to continuously optimize the quality of
MVoIP services in dynamic P2P environments. We have im-
plemented a prototype of the peerTalk system that are eval-
uated in both real-world wide-area networks and simulated
P2P networks. Our results show that peerTalk outperforms
previous common solutions in terms of resource contentions
and service delays, especially for MVoIP sessions with large
group sizes and heavy workload conditions.

5. ACKNOWLEDGMENT
We would like to thank Dr. Fan Ye at IBM T.J. Watson

research center for his helpful input to our work.

6. REFERENCES
[1] Skype Internet telephony. http://www.skype.com/.
[2] the PlanetLab. http://www.planet-lab.org/.
[3] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron.

SCRIBE: A large-scale and decentralized application-level
multicast infrastructure. IEEE JSAC, 20(8), Oct. 2002.

[4] S. Deering. Multicast routing in internetworks and extended
lans. Proc. of ACM SIGCOMM, Stanford, CA, Aug. 1988.

[5] Y. h. Chu, S. G. Rao, S. Seshan, and H. Zhang. Enabling
Conferencing Applications on the Internet using an Overlay
Multicast Architecture. Proc. of ACM SIGCOMM, San
Diego, CA, Aug. 2001.

[6] B. Knutsson, H. Lu, W. Xu, and B. Hopkins. Peer-to-Peer
Support for Massively Multiplayer Games. Proc. of IEEE
INFOCOM 2004, Hong Kong, Mar. 2004.

[7] J. Lennox and H. Schulzrinne. A Protocol for Reliable
Decentralized Conferencing. Proc. of ACM NOSSDAV,
Monterey, CA, June 2003.

[8] M. Radenkosvic and C. GreenHalgh. Multi-party
Distributed Audio Service with TCP Fairness. Proc. of ACM
Multimedia 2002, Juan-les-Pins, France, Dec. 2002.

