
Online Failure Forecast for Fault-Tolerant Data
Stream Processing

Xiaohui Gu§, Spiros Papadimitriou‡, Philip S. Yu∗, Shu-Ping Chang‡

§North Carolina State University, Raleigh, NC
§gu@csc.ncsu.edu

‡IBM T.J. Watson Research Center, Hawthorne, NY
‡ {spapadim, spchang }@us.ibm.com

∗University of Illinois at Chicago, Chicago, IL
∗psyu@cs.uic.edu

Abstract— In this paper, we present a new online failure
forecast system to achieve predictive failure management for
fault-tolerant data stream processing. Different from previous
reactive or proactive approaches, predictive failure management
employs failure forecast to perform informed and just-in-time
preventive actions on abnormal components only. We employ
stream-based online learning methods to continuously classify
runtime operator state into normal, alert, or failure, based on
collected feature streams. We have implemented the online failure
forecast system as part of the IBM System S stream processing
system. Our experiments show that the on-line failure forecast
system can achieve good prediction accuracy for a range of
stream processing software failures, while imposing low overhead
to the stream system.

I. I NTRODUCTION

Data stream management systems can be useful for many
emerging applications such as sensor data analysis and net-
work traffic monitoring. Data stream processing requires
continuous system operation that makes automatic failure
management imperative for any stream management system.
On the other hand, stream processing applications are often
long-lived, which provides opportunities for the system to
observe processing patterns and perform meaningful failure
predictions.

Previous failure management work (e.g., [6], [2], [4])
can be classified into two categories: (1)reactive approach
that takes recovery actions after a failure happens, and (2)
proactiveapproach that takes advance preventive actions such
as backup forall system components atall time. The reactive
approach does not have any preventive cost but can incur
significant failure penalty (e.g., losing important query results)
for stream applications. The proactive approach offers better
fault tolerance but can be too costly for stream systems that
are often under resource constraint pressure. To address the
problem, we explore a newpredictive failure management
approach that employsonline failure forecastto perform
just-in-time, preventive actions (e.g., backup) on abnormal
components only instead of all components.

To predict failures, the system continuously monitors the
behavior of each component (e.g.., CQ operator) as captured
by a feature streamthat consists of periodically collected
system log data (e.g., available memory, free CPU time,

virtual memory page-in/page-out rates, etc.) and dynamically
generated software instrumentation data (e.g., tuple processing
time, buffer queue length, etc.). The failure forecast system
consists of a set of failure prediction models called predictors
that continuously classify received feature stream tuples into
three states:normal, alert andfailure. One way to describe the
failure state is via a failure predicate (e.g., “processing time>
50ms”) that characterizeswhat we are trying to predict. The
alert state corresponds to awarningregion where the predictor
will raise a failure alert, which may be used to trigger the
appropriate failure prevention actions. The warning region is
defined by a dynamically selectedpre-failure intervalwhich
“precedes” the failure.

We need to address a set of new challenges to achieve
efficient failure forecast for data stream processing systems.
First, failure forecast should belight-weightsince normal con-
tinuous query processing can be resource-intensive by itself.
Second, data stream processing demands anonline failure
forecast scheme, which can continuously learn the runtime
behavior of different operators to raise advance alert before a
failure actually happens. Third, dynamic stream environments
requireadaptivefailure forecasting that can achieve a desirable
tradeoff between correct predictions and false-alarms under
time-varying stream workloads and system conditions.

We employ stream-based decision tree classification meth-
ods to achieve light-weight, online failure forecast. The system
raises failure alerts when a set of consecutive feature tuples are
classified as alert or failure. Each decision tree is dynamically
updated using feedback from the system that provides true
labels (i.e., normal, alert, failure) for retained feature tuples.
We introduce online failure prediction adaptation methods
to cope with dynamic stream environments. Each failure
predictor maintains an ensemble of decision trees using a range
of pre-failure intervals. Each tree operates at different points in
the proactive/reactive spectrum and the predictor dynamically
switches to the best decision tree based on a failure forecast
reward function.

We have implemented the online failure forecast system
as part of the predictive failure management framework and
tested it on the IBM System S stream processing infrastruc-
ture [5]. We have implemented several query networks that



can process real data streams using different continuous query
(CQ) operators (e.g., join, split, merge). The experimental
results show that our online failure prediction schemes can
achieve good prediction accuracy for several common software
faults.

II. ONLINE FAILURE FORECAST

A. Approach Overview

To perform online failure forecast, the predictor continu-
ously collects feature metrics and classifies received feature
tuples into three possible states:normal, alert, and failure.
The failure state can be described with a predicate that
characterizeswhatwe are trying to predict and may be related
to SLO violations (e.g., “processing time> 50ms,” or “number
of output tuples< 100/sec.”). Thealert state corresponds to a
pre-failure intervalof durationPF that “precedes” the failure.
Everything else belongs to the normal state.

Our online failure forecast system mainly consists ofmon-
itoring and analysis components, illustrated by Figure 1.
The monitoring components are typically co-located with
query components and are responsible for collecting feature
streams by periodically sampling system log files and software
instrumentation sensors. The sampling rate is dynamically
adjusted based on the feedback (i.e., prediction result) from
the analysis components. The analysis components maintain a
compact training data set using reservoir sampling and perform
failure prediction by classifying received feature tuples into
different states. To achieve best failure prediction reward in
dynamic stream environments, the system labels training data
using different pre-failure intervalsPF to create an ensem-
ble of decision tree classifiers. These classifiers “compete”
by essentially operating at different trade-off points on the
reactive/proactive spectrum. At any given moment, the tree
with the largest reward value is selected as the primary
classifier. This scheme allows us to inexpensively switch to the
best classifier appropriate for the current stream conditions.
The analysis components can be located on a different host
from the monitored component for fault-tolerance and load
balancing. The failure forecast system generates alerts that
allow other predictive failure management components to take
preventive actions on abnormal components and, conversely,
receives feedback from them to calculate prediction accuracy
(i.e., AD andAF ) for performing adaptations.

B. Classification Method

Among many statistical machine learning methods such as
decision trees, Gaussian mixture models, or support vector
machines, we chose decision trees since they produce rules
with direct, intuitive interpretation by non-experts. Thus, the
predictor can not only raise advance failure alerts but also
provide cues for possible failure causes. Each decision tree
classifier is trained on historical measurement data, which are
appropriately labelled with “normal”, “alert”, or “failure”. The
system can label feature tuples as normal or failure based on
the failure predicate. Then, a set of points preceding the failure
incidents within the pre-failure interval are labelled as “alert”

Software

sensors

collection

adjust collection rate

Feature stream Failure alert

 classifier

training

Primary

decision tree

training dataset

decision tree classifier ensemble

reservoir

sampling

Optimal

classifier
selection

monitoring analysis

System

Logs

Fig. 1. Online failure forecast using stream-based learning methods.

The decision tree is trained using feature tuples from all three
states. Periodically, as the history grows based on feedback
from the system, the decision tree is updated if its accuracy
is low. For state classification, decision trees essentially apply
a sequence of threshold tests on the features. The inductive
bias of decision trees consists of a restriction to isothetic (i.e.,
axis-parallel) decision boundaries, as well as a preference for
the shortest trees. The first assumption is reasonable in our
context, since system state can be successfully characterized
by such isothetic boundaries (i.e., threshold tests). Addition-
ally, seeking the smallest set of such tests that can separate
the states is desirable for reasons of simplicity, interpretability
as well as performance.

C. Feature Selection

Examining a single metric in isolation is not desirable
because the metric(s) involved in the failure predicate may
be insufficient to capture “abnormal behavior” early enough
to issue an advance alert. For example, say we want to
issue an alert for query processing hot-spots, which might be
characterized by, e.g., “processing time> 50ms”, and which
may be due to memory or buffer exhaustion. The problem is
that this predicate is often violated suddenly. Consequently,
it is impossible, even for a human, to predict processing hot-
spots early enough by examining the processing time alone.
However, there are often other metrics that can provide early
indication of potential problems. In this example, available free
memory and buffer queue length are two such metrics, which
are gradually exhausted. Therefore, an intelligent predictor
wishing to predict processing hot-spots, would actually watch
out for suspect trends not in processing time, but in memory
utilization (and possibly other metrics, e.g., number of transac-
tions processed, etc). In order to effectively and automatically
discover the appropriate features for prediction, the classifier
has to incorporate multiple features in the early stages. Thus,
the initial set of features is a superset of those containing
information that can classify what is normal and what isn’t.
From an initial large set of features, we will select just those
appropriate for state classification. An additional benefit of
decision trees is that they inherently do this, by seeking the
shortest possible tree that explains the data. Additionally, we
employ ten-fold cross-validation to select those features with
best predictive power.



III. E XPERIMENTS

We have implemented the online failure forecast scheme in
the IBM System S distributed stream processing system [3].
The online decision tree classifier is implemented based on the
canonical C4.5 decision tree software package. The stream
processing system consists of about 250 IBM blade servers
connected by Gigabit networks. Each server host is equipped
with Intel Xeon 3.2GHZ CPU and 2 to 4 GB of memory.
All of our experiments are conducted on the stream process-
ing cluster. For failure prediction, the system continuously
collects system-level metrics (e.g., free CPU time, available
memory) and application-level metrics (e.g., input/output data
rate, input queue length, per-tuple processing time). Our case
study query networks are taken from the System S reference
application [3]. We have tested our system using a range of
software failures caused by common program bugs such as
memory leak bug, infinite loop bug, and buffer deletion bug.

We first use the query network to process the network traffic
data taken from the Internet Traffic Archive [1]. The software
faults are injected on a set of replicated join operators at
different time instants and under different workload conditions.
Figure 2(a) shows the detection rates (AD) and false-alarm
rates (AF ) achieved by different decision tree classifiers for
predicting the failures caused by the memory leak fault. These
decision trees are trained using different pre-failure intervals
ranging from 10 to 80 seconds. We also compare the perfor-
mance of the classifier using full training data with that of
the classifiers using 50% biased sampling (i.e., retaining half
of the training data) and 30% biased sampling (i.e., retaining
30% of the training data). We observe that for the network
traffic data, our failure prediction models can achieve almost
perfect predictions (i.e., 100% detection rate and 0% false-
alarm rate) by employing proper pre-failure intervals. We also
observe that bias-sampling can effectively maintain prediction
accuracy while greatly reducing the training overhead. It is
also interesting to note that the trees trained on the bias-
sampled data can sometimes achieve a higher detection rate
than the tree trained on the full data, without much change
in the false alarm rate. The increase inAD is because the
sampling is biased towards non-normal points, making the
classifiers less conservative in raising an alert. However,AF

does not increase correspondingly in this case because the
normal behavior is better separated from the faulty behavior
in the measurement space. Generally speaking, bias-sampling
can maintain the detection rates of different classifiers with a
slight increase in false-alarm rates for classifiers trained with
small pre-failure intervals.

We then conduct the second set of experiments using the
video stream data taken from the NIST TRECVID data set.
Figure 2(b) shows the prediction performance of different
decision tree classifiers using a range of pre-failure inter-
vals. We observe that our failure prediction models can still
achieve reasonably good prediction accuracy by choosing the
best classifiers with proper pre-failure intervals. However, the
prediction models are generally less perfect for the video

10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pre−failure interval

R
a

te

A
D
 − unsampled

A
F
 − unsampled

A
D
 − Biased 50%

A
F
 − Biased 50%

A
D
 − Biased 30%

A
F
 − Biased 30%

(a) Network Join Operator

10 20 30 40 50 60 70 80
0

0.5

1

1.5

Pre−failure interval

R
a

te

A
D
 − unsampled

A
F
 − unsampled

A
D
 − Biased 50%

A
F
 − Biased 50%

A
D
 − Biased 30%

A
F
 − Biased 30%

(b) Video Join Operator

Fig. 2. Prediction accuracy for faulty join operators with the memory
leak bug.

stream data than for the network traffic data. The reason is that
the differences between normal feature streams and abnormal
feature streams become more subtle under lower stream rates.

IV. CONCLUSION

In this paper, we have presented a novel failure forecast
system to enable predictive failure management for fault-
tolerant continuous stream processing. We view our work as
the first step toward providing light-weight failure forecast in
an online, streaming setting. We employ stream-based decision
tree classifiers for simple, fast and effective characterization of
failure and alert states. The classifiers can be continuously
updated, based on feedback from the failure management
framework. We have implemented a prototype of the online
failure forecast system as part of the predictive failure man-
agement framework for the IBM System S stream process-
ing system. The experimental results show that our failure
prediction schemes can achieve good prediction accuracy for
failures caused by several typical stream processing program
bugs, while imposing low overhead to the stream processing
system.

V. ACKNOWLEDGEMENT

The work was done when all authors are with IBM research.
We thank Nagui Halim, the principal investigator of the Sys-
tem S project, and Lisa Amini, the prototype technical leader,
for providing us with invaluable guidance throughout the
development of the system. We also thank Henrique Andrade,
Yoonho Park, Philippe L. Selo and Chitra Venkatramani for
their help.

REFERENCES

[1] Internet Traffic Archive.http://ita.ee.lbl.gov/.
[2] M. Balazinska, H. Balakrishnan, S. Madden, and M. Stonebraker. Fault-

Tolerance in the Borealis Distributed Stream Processing System.Proc.
of SIGMOD, 2005.

[3] K.-L. W. et al. Challenges and Experience in Prototyping a Multi-Modal
Stream Analytic and Monitoring Application on System S.Proc. of
VLDB, 2007.

[4] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M. Stonebraker,
and S. Zdonik. High Availability Algorithms for Distributed Stream
Processing.Proc. of ICDE, 2005.

[5] N. Jain and et al. Design, Implementation, and Evaluation of the Linear
Road Benchmark on the Stream Processing Core.Proc. of SIGMOD,
2006.

[6] M. Shah, J. Hellerstein, and E. Brewer. Highly-available, fault-tolerant,
parallel dataflows.Proc. of SIGMOD, 2004.


