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Abstract

In this paper, we present an adaptive load diffusion oper-
ator to enable scalable processing of Multiway Windowed
Stream Joins (MWSJs) using a cluster system. The load dif-
fusion is achieved by a set of novel semantics-preserving
tuple routing algorithms. Different from previous work, the
load diffusion operator can (1) preserve the MWSJ seman-
tics while spreading tuples to different hosts for parallel join
processing; (2) achieve fine-grained load balancing among
distributed hosts; and (3) perform semantics-preserving on-
line adaptations to maintain optimal performance in dy-
namic stream environments. We have implemented a pro-
totype of the distributed MWSJ framework on top of the
System S distributed stream processing system. Our experi-
ment results based on both real data streams and synthetic
workloads show that the load diffusion algorithms can effi-
ciently scale-up the performance of MWSJ processing with
low overhead.

1 Introduction

Data stream management systems (DSMS) represent
a vibrant and exciting research area [19, 13, 30, 3, 10].
One fundamental problem in DSMS is to process contin-
uous queries (CQ) over high-volume and time-varying data
streams under resource constraints. Our research focuses
on multi-way windowed stream join (MWSJ), a core op-
erator in CQ systems. The MWSJ operator can be used
to discover correlations across different streaming sources,
which has many important applications in video surveil-
lance, network intrusion detection, and sensor monitoring.
Given high stream rates and large sliding-windows, stream
joins often have large memory requirement [23]. Moreover,
some query processing such as video image similarity anal-
ysis can also be CPU-intensive [14]. Previous work has
proposed load shedding techniques (e.g., [25, 6, 23, 9]) to
handle the overload problem. In contrast, we propose a new
load diffusion approach, which can adaptively distribute ex-

cessive MWSJ workload among multiple hosts. Different
from coarse-grained load distribution solutions (e.g., [29]),
our scheme achieves adaptive, fine-grained load balancing
at tuple level, which allows a single MWSJ operator to uti-
lize aggregated resources of multiple hosts.

Different from other CQ operators, MWSJ presents sev-
eral new challenges to distributed stream processing sys-
tems. First, MWSJ requires the distribution scheme to ob-
serve a correlation constraint, that is, each tuple needs to
join with the tuples contained in the sliding-windows of all
the other streams. Thus, the load diffusion scheme needs to
consider not only load balancing requirements but also the
correlation constraint. Second, correlations among unstruc-
tured streaming information (i.e., video, audio and text) of-
ten need to evaluate complex join predicates. For example,
in our news video correlation application, the join predi-
cate is whether two video images are close to each other
in a multi-dimensional concept space. Thus, the load dif-
fusion scheme is desired to be generic, which should be
able to support both equijoins and non-equijoins. Third,
in dynamic stream environments where stream rates and
host load conditions can vary over time, the load diffusion
scheme must perform continuous on-line adaptations in or-
der to maintain efficient query processing.

In this paper, we present a novel adaptive load diffusion
operator to achieve scalable processing of MWSJ queries.
The diffusion operator performs semantics-preserving tuple
routing, which considers not only the load balancing goal
but also the correlation constraint for preserving join ac-
curacy. Dynamic tuple routing has shown to be effective
for adaptive CQ processing [2, 26, 7, 21, 8]. Previous tu-
ple routing schemes have been focusing on optimizing CQ
processing time. Our work provides a complementary tu-
ple routing framework, which can provide fine-grained load
diffusion for resource-intensive MWSJ queries. Existing tu-
ple routing schemes do not consider the routing constraints
(e.g., correlation constraint) imposed by the MWSJ seman-
tics, which however can affect the accuracy of join results
by routing two tuples that need to be joined to different
hosts. In contrast, our tuple routing algorithms consider



both query semantics and host load conditions to achieve
accurate scalable CQ processing. As the first step toward
a semantics-preserving tuple routing framework, this paper
focuses on the correlation constraint of MWSJ queries. By
explicitly observing MWSJ semantics, the load diffusion
operator achieves desired generality, which can (1) sup-
port both equijoins and non-equijoins; and (2) allow each
host to execute different stream join algorithms (e.g., load-
shedding-enabled stream joins [23], m-joins [28], and hash
joins). In contrast, previous value-based partition schemes
(e.g., Flux [22]) can only support equijoins. We summarize
the major contributions of this paper as follows:

• We propose the first semantics-preserving tuple rout-
ing framework to provide adaptive load diffusion for
processing MWSJ queries using cluster systems. We
have proved that a diffusion overhead (i.e., tuple repli-
cations and intermediate join result transferring) is un-
avoidable in any semantics-preserving tuple routing
solutions for MWSJ queries. This analysis introduces
an interesting new optimization problem, that is, how
to optimally route tuples to different hosts for join pro-
cessing with best load balancing and minimum diffu-
sion overhead.

• We present two semantics-preserving tuple routing al-
gorithms, aligned tuple routing (ATR) and coordinated
tuple routing (CTR), to accommodate different types
of MWSJ queries in terms of sliding-window sizes,
join selectivity and others. ATR performs one-hop
routing while CTR performs multi-hop routing by al-
lowing transmission of intermediate join results. Both
ATR and CTR are (1) scalable, which allow a single
MWSJ operator to utilize any number of hosts with
the same diffusion overhead; (2) semantics-preserving,
which do not miss any join results or generate dupli-
cate join results; and (3) adaptive, which can dynami-
cally adjust their algorithm behaviors to maintain best
performance in dynamic stream environments.

• We have implemented a prototype of the semantics-
preserving tuple routing framework on top of our
distributed stream processing infrastructure System
S [18] that consists of about 250 blade servers. We
conduct extensive experiments using both real data
streams and a range of synthetic workloads. Our exper-
iments show several interesting results: (1) the diffu-
sion algorithms can achieve much higher join through-
put than existing distribution schemes; (2) the diffu-
sion operator is light-weight and fast, which can route
a tuple within tens of micro-seconds on a server host;
and (3) on-line adaptations can effectively improve
join performance in dynamic stream environments. We
also evaluate our algorithms using different MWSJ
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Figure 1. Multi-way windowed stream join.

queries to illustrate the tradeoffs between ATR and
CTR.

The rest of the paper is organized as follows. Section
2 presents the system model, problem formulation and an
overview of our approach. Section 3 and 4 present the ATR
and CTR algorithms, respectively. Section 5 presents a thor-
ough experimental evaluation. Section 6 briefly reviews re-
lated work. Finally, the paper concludes in Section 7.

2 Model, Problem and Our Approach

The MWSJ operator performs continuous join compu-
tations over sliding-windows of multiple streams, which is
illustrated by Figure 1. A data stream Si consists of a se-
quence of tuples si ∈ Si. Let si〈t〉 denote a tuple arrived
on Si at time t, and ri denote the current mean arrival rate
of the stream Si. We assume that each tuple si ∈ Si car-
ries a time-stamp si.t in its header to denote the time when
the tuple si arrives at the stream Si. We use Si[Wi] to de-
note a sliding window on the stream Si, where Wi denotes
the length of the window in time units. At time t, we say
si belongs to Si[Wi] if si arrives at Si in the time interval
[t − Wi, t]. We consider the multi-way stream join query
among n input streams (n ≥ 2), denoted by Ji = S1[W1]
... �� Sn[Wn]. Figure 1 illustrates a three-way windowed
stream join operator S1[6] �� S2[3] �� S3[5]. The semantics
of our sliding-window join is consistent with the semantics
used in CQL [1]. Namely, the output of the MWSJ oper-
ator consists of all tuple groups (s1, s2, ..., sn), such that
∀si ∈ Si,∀sk ∈ Sk[Wk], 1 ≤ k ≤ n, k �= i at time si.t,
s1, ..., sn satisfy a pre-defined join predicate θ(s1, ..., sn).
We use Si[t, t + T ] to denote a segment of Si that includes
all the tuples arrived at Si within time [t, t + T ), where T
is called the segment length1. In Figure 1, the tuple s2〈8〉
needs to join with the tuples in S1[2, 9] and S3[3, 9].

The distributed MWSJ processing system consists of a
diffusion operator D, a set of distributed join operators Ji,k,
and a fusion operator F , illustrated by Figure 2. The diffu-
sion operator dynamically routes input tuples to different

1This definition is to avoid the overlapping between two consecutive
segments Si[t, t + T ] and Si[t + T, t + 2T ].
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Figure 2. Distributed MWSJ execution.

server hosts for join processing, while the fusion operator
aggregates dispersed join results into complete query an-
swers. Different from the join operator, the diffusion oper-
ator performs fast tuple routing computations and requires
little buffering of input streams. Thus, the diffusion opera-
tor is not the bottleneck in the system. The join operators
Ji,k at different hosts execute centralized sliding-window
join algorithms such as load-shedding-enabled stream joins
[23], m-joins [28] or hash-joins.

To preserve join accuracy, the diffusion operator need to
consider not only the load balancing goal but also the cor-
relation constraint: given an MWSJ query Ji = S1[W1] ��
... �� Sn[Wn], a group of tuples (s1, s2, ..., sn) that must
be correlated according to the MWSJ semantics, are pro-
cessed once and only once. For example, in Figure 1, the
tuple s2〈8〉 needs to join with the tuples s1〈2〉,..., s1〈8〉,
which can be routed to different hosts by the diffusion oper-
ator. Suppose the tuples s1〈4〉, s1〈5〉, s1〈6〉 are routed to v1

and s1〈5〉, s1〈6〉, s1〈7〉 are routed to v2. If we send s2〈8〉
to either v1 or v2, we miss some join results. If we send
s3〈8〉 to both v1 and v2, we can generate duplicate join re-
sults. Thus, to preserve join semantics, the tuple routing
scheme must be carefully designed to satisfy the correlation
constraint.

We have proved that any semantics-preserving tuple
routing algorithm for generic MWSJ queries (including
both equijoins and non-equijoins) needs to either replicate
some tuples on multiple hosts or route intermediate re-
sults between different hosts, which is called diffusion over-
head [14, 15]. Thus, the optimal load diffusion problem can
be defined as routing each input stream tuple to one or more
hosts via single or multiple hops such that (1) correlation
constraint is satisfied, (2) workload of different hosts is bal-
anced, and (3) diffusion overhead is minimized.

The diffusion operator spreads join workload by adap-
tively routing input stream tuples to different hosts for par-
allel join processing. To achieve realtime stream process-
ing, we strive to keep the diffusion operator fast, simple,
and light-weight. We propose two different semantics-
preserving tuple routing algorithms, aligned tuple routing
(ATR) and coordinated tuple routing (CTR), to accom-
modate different types of MWSJ queries. ATR dynam-

ically selects one stream as master stream whose tuples
are distributed merely based on host load conditions. All
the other streams align their tuple routing with the master
stream to meet the correlation constraint, which are called
slave streams. In contrast, CTR formulates the semantics-
preserving tuple routing problem into a weighted minimum
set cover problem, which routes each input tuple to a min-
imum set of least-loaded hosts that can cover all the corre-
lated tuples. After a tuple is routed to a host, the join opera-
tor on that host processes the tuple using a pre-defined cen-
tralized stream join algorithm (e.g., load-shedding-enabled
stream joins [23], m-joins [28], and hash joins). The join
order can be dynamically decided based on the estimated
join selectivity between different streams[28, 2, 26].

From the tuple routing point of view, ATR performs
one-hop semantics-preserving tuple routing without trans-
ferring any intermediate join results between hosts. In
contrast, CTR performs multi-hop semantics-preserving tu-
ple routing where intermediate join results may be trans-
ferred among different hosts to generate final join results.
From the workload partition point of view, ATR implements
stream partitions where each host only processes a subset
of input stream tuples. In contrast, CTR implements both
stream partitions and operator partitions, which allows an
m-way join query to be performed by a set of smaller k-
way join operators (k < m). We did not explore in-depth
the third alternative tuple routing solution that only imple-
ments operator partitions because (1) it cannot spread two-
way stream joins that can be resource-intensive as well [23];
and (2) it has an inherent limitation that an n-way MWSJ
query can only use at most (n-1) hosts. In contrast, both
ATR and CTR allow an MWSJ query to utilize any number
of hosts. To accommodate dynamic stream environments,
both ATR and CTR perform continuous on-line adaptations
to maintain optimal query processing performance .

3 Aligned Tuple Routing Algorithm

Given an MWSJ query S1[W1] �� S2[W2]... �� Sn[Wn],
ATR dynamically selects one input stream SM , 1 ≤ M ≤ n
as the master stream and aligns the tuple routing of the other
n − 1 streams called slave streams with the master stream
for preserving join semantics, illustrated by Figure 3.

Master stream routing. The master stream SM is par-
titioned into disjoint segments that are routed to different
hosts for join processing. In Figure 3, S1 is the master
stream before time t = 11 and S2 becomes the master
stream afterwards. When a master stream tuple sM ar-
rives, we first check whether sM belongs to the current seg-
ment according to its time-stamp. If so, we send sM to
the least-loaded host selected at the beginning of the seg-
ment (i.e., time t for the segment Si[t, t + T ]. Otherwise,
this tuple marks the start of a new segment and the cur-
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Figure 3. Aligned tuple routing scheme.

rent least-loaded host is selected as the routing destination
of the new segment. Our scheme comprehensively consid-
ers all important resources (i.e., CPU, memory, bandwidth)
in the distributed stream processing system by employing
a combined metric wi to represent the host load condi-
tion. For each resource type Ri, we define a load indicator
φRi

= URi

CRi
, where URi

and CRi
denote the usage and ca-

pacity of the resource Ri on the host vi, respectively. We
then define the load value wi as follows,

wi = ω1φcpu + ω2 · φmemory + ω3 · φbandwidth (1)

where
3∑

i=1

ωi = 1, 0 ≤ ωi ≤ 1 denotes the importance of

different resource types that can be dynamically configured
by the system2.

Slave stream routing. Each slave stream Si, 1 ≤ i ≤
n, i �= M is partitioned into overlapped segments to pre-
serve the MWSJ semantics, shown by Figure 3. For a mas-
ter stream segment SM [t, t + T ] whose tuples are routed
to a host vi, ATR routes the slave stream tuples in the seg-
ments Si[t − Wi, t + T + WM ], 1 ≤ i ≤ n, i �= M to
the same host vi

3. Similarly, if ATR sends the next master
stream segment SM [t + T, t + 2T ] to a host vj , ATR needs
to send Si[t + T − Wi, t + 2T + WM ] to the same host
vj . Thus, the tuples arrived at Si between the time period
[t+T −Wi, t+T +WM ] are replicated on both vi and vj .
For example, in Figure 3, the tuples in S2[4, 7] are routed to
both hosts V1 and V2.

The overhead of ATR is caused by the partial replication
of the slave streams. For every segment SM [t, t + T ], the

2We can assign higher weight to CPU resource if the join computa-
tion is CPU-bound or assign higher weight to network resource if network
bandwidth is limited.

3The diffusion operator needs to buffer the tuples in Si[t−Wi, t] since
its destination host is not selected until the time t (i.e., the beginning of the
master stream segment SM [t, t + T ]). We can eliminate this buffering
requirements for all slave streams by selecting the host for SM [t, t + T ]
at time t − Wmax instead of the time t, where Wmax denotes the largest
siding window among all slave streams.

total number of replicated tuples is
n∑

i=1,i �=M

(Wi +WM ) ·ri.

For an MWSJ query J = S1[W1] �� ... �� Sn[Wn], we
define the overhead of ATR (OATR) as the average num-
ber of extra tuples generated per time unit4, which can be
calculated as follows,

OATR =
n∑

i=1,i �=M

(Wi + WM )
T

· ri (2)

The above equation indicates that the master stream selec-
tion SM and segment length T can affect the ATR over-
head. In dynamic stream environments where input stream
rates can vary over time, ATR performs online adaptations
to maintain optimal query processing, which are briefly de-
scribed as follows due to the space limitation5.

Master stream switching. When input stream rates ex-
perience changes or the query modifies the sizes of sliding-
windows, ATR triggers a stream role switching algorithm to
elect the stream that can minimize OATR as the new mas-
ter stream. For example, in Figure 3, the master stream is
changed from S1 to S2 at time ts = 11. ATR employs a
transition algorithm to preserve join semantics while per-
forming dynamic stream role switching. Let ts denote the
switching time, SM denote the old master stream, and SN

denote the new master stream. The transition durations for
SM and SN are [ts, ts + WN ) and [ts, ts + WM ), respec-
tively. For any tuple of SM (or SN ) arrived during its transi-
tion phase, ATR sends a marked tuple s∗M (or s∗N ) to the host
selected for the old master stream segment SM [ts − T, ts]
and a marked tuple s#

M (or s#
N ) to the host selected for

the new master stream segment SN [ts, ts + T ]. Different
from unmarked tuples, s∗i only joins with tuples arrived
before ts and s#

i only joins with tuples arrived after ts.
For any other streams Si, i �= M,N , they follow the or-
dinary ATR algorithm except sending Si[ts − T −Wi, ts +
MAX(WM ,WN )] instead of Si[ts − T − Wi, ts + WM ]
to the hosts selected for the old master stream segment
SM [ts − T, ts]. We have proved that the above stream role
adaptation algorithm can preserve join accuracy [14, 15].

Segment length adaptation. Equation 2 indicates that
a larger segment incurs less diffusion overhead. However,
larger segment also implies coarser load balancing granu-
larity. Thus, the optimal segment length, denoted by T ∗,
should be dynamically decided to achieve best tradeoff be-
tween load balancing granularity and replication overhead.
Figure 4 shows the performance of the ATR algorithm as

4We can easily derive memory, CPU, and network bandwidth cost from
the overhead tuple number. For example, let α denote the average tuple
size. Then, ATR incurs on average α · OATR memory overhead in the
system.

5In [14], we presented detailed adaptation algorithms for two-way
stream joins, which is similar to the ATR algorithms.
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a function of segment length for two different join opera-
tors. Currently, ATR employs a sampling-based profiling
algorithm to find T ∗ as follows. Let T denote the current
segment length and ∆T denote the sampling step value.
ATR first changes the segment length to T + ∆T at the
end of the current segment. If the system performance (e.g.,
throughput) improves, ATR gradually increases the segment
length until the measured system performance reaches its
peak value. Otherwise, if T − ∆T produces better perfor-
mance, the system gradually decreases the segment length
to search for T ∗. We have proved that the online segment
length adaptation can preserve the accuracy of MWSJ query
results [14, 15].

4 Coordinated Tuple Routing Algorithm

CTR provides load diffusion for MWSJ queries by dy-
namically routing each input tuple to a minimum set of
least-loaded hosts that can cover all the correlated tuples,
illustrated by Figure 5. Different from ATR, CTR does not
require strict alignment among different streams. Instead,
each tuple si can independently choose its routing desti-
nations based on the placement of other stream tuples that
must be joined with si. Thus, CTR needs to maintain a
routing table recording the placement of previously routed
tuples. CTR groups tuples into segments and routes each
segment as a whole to different hosts to control the routing
table size and routing computation time. CTR calculates
the routing path for each segment at the beginning of that
segment. All the tuples in that segment follow the same
routing path. A segment entry is deleted from the routing
table if it does not needed by any other streams according
to the MWSJ semantics. Figure 6 shows the pseudo-code
of the CTR algorithm. When a tuple si arrives, CTR first
checks whether si belongs to the current segment according
to its time-stamp. If so, CTR retrieves the routing path P
for the segment from the routing table, inserts P into the
header of si, and routes si to a set of hosts according to the
routing path. Otherwise, the tuple si marks the start of a
new segment Si[t, t + T ]. CTR calculates the routing path
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Figure 5. Coordinated tuple routing scheme.

Procedure: CTR(S1[W1] �� ... �� Sn[Wn], {v1, ..., vm})
1. while receiving a tuple si ∈ Si

2. if si.t ≥ (t + T ) /*start a new segment*/
3. for a set of possible join orders Si1 [Wi1 ]→ ...Sin−1 [Win−1 ]
4. for k = 1 to n− 1
5. calculate minimum set cover Vk for Sik [Wik ]
6. derive one routing path Pi = V1 → ...Vn−1

7. select optimal P with minimum overhead (Equ. 3)
8. annotate P for duplication avoidance
9. set the routing path of Si[t, t + T ] as P
10. t← t + T /*update the segment start time*/
11. loc(Si[t, t + T ]) = V1 /*update routing table*/
12. else /* continue the current segment*/
13. annotate si with the routing path P
14. send a copy of si to each host in V1

Figure 6. Coordinated tuple routing algorithm.

for the new segment as follows,
Step 1: Lookup correlated tuples. According to the

MWSJ semantics, the tuples in Si[t, t+T ] need to join with
the sliding-windows of the other n− 1 streams Sik

[Wik
] =

Sk[t − Wk, t + T ], 1 ≤ k ≤ n, k �= i. To calculate the
optimal routing path for Si[t, t + T ], CTR first looks up the
locations of the correlated tuples contained in Sk[Wk], 1 ≤
k ≤ n, k �= i in the routing able. For example, in Figure
5, CTR computes the route for the segment S1[5, 7]. CTR
first gets the locations of all correlated tuples in S2[1, 7] and
S3[1, 7] (i.e., S2[1, 3] on two hosts {v1, v2}, S2[3, 5] on two
hosts {v2, v4}, etc.).

Step 2: Calculate optimal routing path. The goal of
the optimal routing path P � V1 → ...Vn−1 is to gener-
ate join results involving si ∈ Si[t, t + T ] with minimum
overhead. Given a join order (i.e., join probing sequence
[28]) si → Si1 [Wi1 ]... → Sin−1 [Wn−1], the k-th routing
hop Vk, 1 ≤ k ≤ n − 1 consists of a set of hosts that
can cover all the tuples contained in the sliding window



Sik
[Wik

]. For example, Figure 5 (c) shows a routing path
for the segment S1[5, 7]. Interestingly, the optimal routing
path calculation can be formulated into the weighted mini-
mum set cover problem [5]. The detailed algorithm about
this step will be presented in Section 4.1.

Step 3: Annotate the routing path to avoid duplicates.
After deriving the complete routing path P � V1 →
...Vn−1, CTR needs to add annotations in P to avoid re-
dundant join computations. Let us consider one routing
hop Vk. CTR needs to send a copy of χk−1 to each host
in Vk, where χ0 = si ∈ Si[t, t + T ] and χk = si ��
Si1 [Wi1 ]... �� Sik−1 [Wik−1 ], k > 1. If any segment
Sik

[tk, tk +T ] ⊆ Sik
[Wik

] is replicated on a set of hosts Uz

and there exist multiple common hosts between Vk and Uz

(i.e., |Vk ∩ Uz| ≥ 2), the join computations between χk−1

and Sik
[tk, tk + T ] are redundantly computed since tuples

in both χk−1 and Sik
[tk, tk + T ] are replicated on multiple

hosts. For example, in Figure 5 (c), the tuples in S1[5, 7] are
routed to {v2, v4} in the first routing hop and the segment
S2[3, 5] is replicated on both hosts v2 and v4. Thus, the
join computation between s1 �� S2[3, 5],∀s1 ∈ S1[5, 7] are
calculated twice on both hosts. To address this problem, we
annotate the routing path P to void some join computations.
For any segment Sik

[tk, tk +T ] ⊆ Sik
[Wik

], if |Vk ∩Uz| ≥
2, we select the least-loaded host vj ∈ Vk ∩ Uz to execute
the join computation between χi and Sik

[tk, tk + T ]. For
any other hosts v′

j ∈ Vk ∩ Uz , we annotate P with a flag
(v′

j/Sik
[tk, tk + T ]) to void the join computation between

χk−1 and Sik
[tk, tk + T ] on v′

j .
Step 4: Update routing table. CTR updates its routing

table to record the placement information of the segment
Si[t, t + T ]. Since the tuples in Si[t, t + T ] are first routed
to the hosts contained in V1, the routing table records that
the tuples in Si[t, t+T ] are located on the hosts in V1. Note
that the routing table does not record the locations of inter-
mediate join results since intermediate join results are not
stored. Alternatively, we may also selectively store some
intermediate results similar to the STAIR operator [8].

The overhead of CTR consists of two parts: (1) repli-
cation overhead by sending each tuple to multiple hosts
in V1; and (2) intermediate join result overhead by trans-
ferring intermediate join results χk from Vk−1 to V ′

k =
Vk − Vk ∩ Vk−1. Thus, for each segment Si[t, t + T ]
with a join order Si → Si1 [Wi1 ]... → Sin−1 [Win−1 ], a
routing path P � V1 → ...Vn−1, and join selectivity
σik−1,ik

, 1 ≤ k ≤ n, the number of extra data transferred
over networks by CTR, denoted by OCTR,P , can be calcu-
lated as follows,

OCTR,P = riT · (|V1| − 1 +
n−1∑

k=2

k−1∏

j=1

σij−1,ij
rij

Wij
|V ′

k|) (3)

For an MWSJ query J = S1[W1] �� ... �� Sn[Wn], we
define the average overhead of CTR (OCTR) as the average

number of extra data transferred over networks by CTR per
time unit, which can be calculated as follows,

OCTR =
n∑

i=1

ri(|V1| − 1 +
n−1∑

k=2

k−1∏

j=1

σij−1,ij
rij

Wij
|V ′

k|) (4)

The goal of the optimal routing path calculation is to
minimize the above load diffusion overhead, which will be
described in the next section. At the beginning when a few
tuples have been distributed, the host set Vk derived based
on the correlation constraint can be empty or include very
few hosts. During this warmup phase, the host set Vk is
filled with a set of hosts selected based on the load condi-
tion only6. Different from ATR, the segment length of CTR
does not affect its overhead (Equation 4). Thus, we should
use small segment length to achieve fine-grained load bal-
ancing. However, smaller segment lengths can increase the
routing table size and the minimum set cover computation
time. Thus, we should select the minimum segment length
according to the resource constraints of the diffusion opera-
tor. Similar to ATR, we can also dynamically adjust the seg-
ment length based on stream rate changes (e.g., use larger
segment lengths for slower-rate streams). Similar to ATR,
CTR also has provable correctness guarantee [15].

4.1 Optimal Routing Path Selection

The goal of the optimal routing path selection is to
produce join results with minimum overhead denoted by
OCTR, which can be formulated into the weighted mini-
mum set cover problem [5]. Suppose the join processing
between si and Sk[Wk], 1 ≤ k ≤ n, k �= i can be per-
formed in m different join orders. Let us consider one of
the join orders si → Si1 [Wi1 ]... → Sin−1 [Win−1 ]. The
k-th join probing is to produce all the join results between
χk−1 = si �� Si1 [Wi1 ]... �� Sik−1 [Wik−1 ] and Sik

[Wik
].

Thus, the k-th routing hop is to select an optimal host set
Vk as the routing destinations of χk−1, which needs to con-
sider several factors. First, the optimal host set Vk should
cover all the tuples in Sik

[Wik
] to preserve the completeness

of join results. Second, we want to find a minimum set of
hosts Vk that can cover all the tuples in Sik

[Wik
] to achieve

minimum diffusion overhead. Third, we want to route input
tuples to least-loaded hosts to achieve load balancing. Fi-
nally, we want to maximize the number of overlapping hosts
between two consecutive routing hops Vk−1 ∩ Vk to mini-
mize the overhead of transferring intermediate join results
between different hosts. Thus, when we calculate the k-th
routing hop, we first remove those segments in Sik

[Wik
]

that is covered by the previous hop Vk−1. We then calcu-
late the optimal host set cover for the remaining segments

6The number of hosts can affect the warmup speed. In our experiments,
we observe that 5 hosts can be sufficient to quickly utilize all hosts in a
100-node cluster.



in Sik
[Wik

]. For example, in Figure 5 (c), CTR decides to
route S1[5, 7] to the first set of hosts V1 = {v2, v4}. The
intermediate join results χ1 = S1[5, 7] �� S2[1, 7] produced
by the hosts {v2, v4} will be routed to V2 = {v2, v5, v6} to
join with S3[3, 5]. Since χ1 is already at v2, it can join with
S3[3, 5] directly without inter-host transferring.

We now formally define the optimal host set selection
problem. Let Eik

= {eik,1 = Sik
[t − Wik

, t − Wik
+

T ], eik,2 = Sik
[t − Wik

+ T, t − Wik
+ 2T ], ..., eik,J =

Sik
[t, t + T ]}, J = [Wik

/T ], denote the segments con-
tained in Sik

[Wik
] = Sik

[t − Wik
, t + T ]. CTR first re-

moves those segments that can be covered by the hosts
included in the previous routing hop Vk−1. Next, CTR
checks the routing table to retrieve the placement of all
the remaining segments in Eik

. CTR then transforms the
segment placement information into host coverage infor-
mation as follows: If a stream segment eik,j is placed on
a set of hosts Uj , we say that any host in Uj covers the
segment eik,j . For example, in Figure 5 (a), the segment
S2[1, 3] is placed on U1 = {v1, v2}. Thus, we say that
the hosts v1 and v2 cover the segment S2[1, 3]. Let us de-
note U =

⋃
1≤j≤J

Uj . Each host vj ∈ U covers a sub-

set of all segments, denoted by Aj ⊆ Eik
. For exam-

ple, in Figure 5 (a), the host v2 covers a segment subset
A2 = {S2[1, 3], S2[3, 5]} ⊂ {S2[1, 3], S2[3, 5], S2[5, 8]}.
For load balancing, we associate a weight value wi to each
subset Ai that is defined as the load value of the host vi

calculated by Equation 1. Thus, we can formulate the op-
timal host set selection problem into a weighted minimum
set cover problem: Given a stream segment set E, segment
subsets A1, ..., AK ⊆ E, and cost wj for each subset Aj ,
we want to find a minimum set cover I ⊆ {1, ...,K} such
that ∪j∈IAj = E and

∑
j∈I wj is minimum.

The minimum set cover problem is a well-known NP-
hard problem [5]. Thus, CTR uses a fast greedy heuristic
algorithm to find the minimum set cover [5]. The basic
idea is to select a subset Aj that has the minimum value
of wj

|Aj | , Aj �= ∅, where |Aj | denotes the cardinality of
the set Aj . We then add Aj into the set cover I and up-
date each remaining subsets by removing those elements
included in Aj . The above process is repeated until the
selected set cover I includes all the segments in E. The
optimal host set Vk should include those hosts whose in-
dices are included in I plus the reused hosts included in
the previous hop V ′

k−1. We repeat the optimal host set
calculation for all n − 1 routing hops to derive the rout-
ing path P � V1 → ...Vn−1 for the given join order
Si[t, t + T ] → Si1 [Wi1 ]... → Sin−1 [Win−1 ]. Using Equa-
tion 3, we can calculate the overhead of CTR using the rout-
ing path P . We repeat the above calculation for a set of pos-
sible join orders7 and select the best routing path that incurs

7The number of all possible join orders can be large given a large stream

minimum overhead.

5 Experimental Evaluation

We have implemented a prototype of the semantics-
preserving tuple routing framework on top of our distributed
stream processing infrastructure System S [18]. The cluster
system consists of about 250 blade servers connected by gi-
gabips networks. Each host has an Intel Xeon 3.2GHZ CPU
and 3G memory. We have implemented a video correlation
application [14] on top of our system to search similar video
shots across different news video streams for hot topic de-
tection.

We first use six hosts to process an MWSJ query J1 =
S1[60] �� S2[60] �� S3[60], where Si are real news video
streams taken from NIST TRECVID-2005 data set. Each
host executes a modified version of load-shedding-enabled
windowed stream join algorithm [23]. The diffusion and
fusion operators run on two other separate hosts. The join
predicate is whether two video images are close to each
other in a 40-dimensional concept space. Figure 7 shows
the throughput of total join results generated by different
algorithms during a 1200-second duration. The semantics-
unaware routing algorithm always routes tuples to least-
loaded hosts. The centralized algorithm executes the join
query on one host. The throughput value is sampled every
second where the total throughput at time t measures the
total number of join results generated by the system from
the beginning to the time t. We observe that both ATR and
CTR can achieve higher throughput than the other two al-
ternatives. ATR performs better than CTR for processing
J1. We then repeat the above experiment using a different
join operator J2 = S1[120] �� S2[120] �� S3[120]. Fig-
ure 8 shows the throughput results. We observe that both
ATR and CTR can still achieve much better performance
than other alternatives. CTR performs better than ATR in
this case since it has smaller overhead for stream joins with
large sliding-windows.

Figure 9 and Figure 8 show the computation overhead of
ATR and CTR during the two experiments. We observe that
both ATR and CTR have low computation overhead (i.e.,
tens of micro-seconds), which is several orders of magni-
tudes less than the join computations (i.e., tens of or hun-
dreds of milli-seconds). In terms of memory requirement.
ATR has no extra memory requirement except buffering in-
put tuples to correct out-of-order tuple arrivals due to net-
work delay jitter. CTR needs additional memory to store
the routing table, which is at most several Kilobytes in our
experiments.

We conduct more extensive simulation experiments us-
ing various join workloads. The simulator consists of a

number n. In that case, we can select a limited number of good join orders
based on estimated join selectivity between different streams.
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Figure 7. Through-
put results for J1.
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Figure 8. Through-
put results for J2.
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Figure 11. Scalabil-
ity results.
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Figure 12. Network
bandwidth results.

workload generator, diffusion operators, fusion operators,
and multiway stream join operators. All operators are fully
implemented. Only the hardware, network, and underly-
ing scheduler in the cluster system are simulated to en-
able easy control and large-scale experiments. We simu-
late a heterogeneous cluster system where the memory and
CPU capacity of each host is uniformly distributed in the
range of [500,1000] MB and [1000,5000] MIPS, respec-
tively. The network bandwidth between cluster nodes is in
the range of [100,1000] Mbps. The mean CPU time for re-
ceiving or sending a tuple from or to the network is 1 ms,
and one join probing takes on average 10 ms. To quantify
the effectiveness of our optimization algorithms, we also
implement ATR-unoptimized that does not perform mas-
ter stream switching and segment length optimization, and
CTR-unoptimized that performs random host set selection
for covering all correlated tuples. Unless otherwise spec-
ified, all simulation experiments are conducted on a ma-
chine with 1.6GHz Pentium CPU and 1GB physical mem-
ory. Each simulation run lasts 1000 seconds and has a cer-
tain warm-up period for the system to reach its stable per-
formance. We repeat each experiment 5 times with differ-
ent random seeds and report the average results. We use the
mean throughput as the performance metric that denotes the
average number of join results produced by the system per
second.
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Figure 13. Stream
number effect.

10 20 30 40 50
0

200

400

600

800

1000

1200

sliding−window size

m
e

a
n

 t
h

ro
u

g
h

p
u

t 

CTR
CTR−unoptimized
ATR
ATR−unoptimized
Semantics−unaware

Figure 14. Window
size effect.
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Figure 15. Join se-
lectivity effect.
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Figure 16. Stream
burstiness effect.

Figure 11 shows the scalability results of different algo-
rithms for processing J3 = S1[30] �� S2[30] �� S3[30] ��
S4[30] using different numbers of hosts. The tuple ar-
rivals of each input stream follow a Poisson process with
a stream rate ri uniformly distributed in the range [5,20] tu-
ples/second. The mean join selectivity is σ = 0.1 between
every two streams. We observe that both ATR and CTR
can achieve better scalability than the existing distribution
solution. The optimizations are effective, especially under
large clusters. Figure 12 shows the network bandwidth us-
age of different algorithms. The results show that both ATR
and CTR can have much lower bandwidth cost than their
un-optimized versions.



We now use different types of MWSJ queries to illustrate
the trade-offs between ATR and CTR. We first evaluate the
effect of stream number by running different join queries
Jk = S1[20] �� ... �� Sk[20], 2 ≤ k ≤ 6 on a 30-host
cluster, shown by Figure 13. The results show that ATR has
better performance for 2-way and 3-way join queries while
CTR works better for larger stream numbers. We then eval-
uate the effect of sliding-window size, shown by Figure 14.
We run a join query Ji = S1[Wi] �� S2[Wi] �� S3[Wi]
with different sliding-windows 10 ≤ Wi ≤ 50 on the
30-host cluster. We observe that ATR works better un-
der small sliding windows while CTR works better under
large sliding windows. The reason is that the overhead
of ATR is proportional to the sliding window size while
CTR is not. Moreover, CTR allows each stream to parti-
tion its sliding-window while ATR can only partition the
window of the master stream. We now study the perfor-
mance of ATR and CTR under different join selectivity,
shown by Figure 15. We execute a three-way join query
J = S1[30] �� S2[30] �� S3[30] on the same 30-node clus-
ter with an increasing join selectivity 0.2 ≤ σ ≤ 1.0. The
results show that CTR works better under low join selec-
tivity while ATR becomes better under high join selectivity.
The reason is that CTR has larger intermediate result over-
head under high join selectivity. Finally, we test our algo-
rithms under bursty streams. The tuple arrival in a bursty
stream follows a HIGH/LOW model while a burst of data
are generated during the HIGH-period with a high stream
rate and zero or a few data are generated during the LOW-
period. We define a bursty ratio metric θ, 0 ≤ θ ≤ 1. The
high rate and low rate are calculated by 1+θ

2 ri and 1−θ
2 ri,

respectively. When the bursty ratio is 0, the bursty stream
becomes a normal dynamic stream while if the bursty ra-
tio is 1, the bursty stream has ri high rate and 0 low rate,
which becomes conventional ON/OFF stream. We still use
the three-way join query J = S1[30] �� S2[30] �� S3[30]
executing on the 30-host cluster. We observe that CTR
can achieve better performance under bursty stream envi-
ronments. We also conduct the multi-operator experiments,
which show that our scheme can still achieve better perfor-
mance than existing distribution schemes. Due to the space
limitation, we omit the results here. In summary, both ATR
and CTR can consistently achieve better performance than
existing load distribution solutions and their un-optimized
versions for different join queries. The relative merit be-
tween ATR and CTR depends on a set of factors includ-
ing the join size (i.e., the number of input streams), sliding-
window size, join selectivity, and stream types.

6 Related Work
The original Eddies paper [2] proposes an aggressive op-

erator reordering mechanism by monitoring the dataflow
rates into and out of operators and routing tuples through

operators based on those observations. Tian et al. extend
the Eddies framework to the distributed environment. Mad-
den et al. [21] considers computation sharing across differ-
ent queries. A more recent Eddies paper [7] reduces runtime
overhead by routing tuples in batches. The STAIRs opera-
tor [8] allows the query engine to manipulate the state stored
inside the operators and undo the effects of past routing de-
cisions. Our tuple routing solution is inspired by the above
work but distinguishes itself by considering the MWSJ se-
mantics and using tuple routing to achieve fine-grained load
balancing in distributed stream processing systems.

The Flux operator [22] extends the Exchange opera-
tor [12] to support parallel CQ processing with dynamic
value-based load balancing. In contrast, our scheme pro-
vides value-independent load balancing, which has several
advantages: (1) avoid parsing stream tuple content to al-
low fast in-kernel implementation of a stream tuple router;
(2) do not have to deal with the data skew problem; and
(3) apply to both equijoins and non-equijoins. Ivanova and
Risch proposed a customizable parallel execution platform
for scientific stream queries [17]. Our work is similar to
the above work in terms of considering query semantics.
However, our work focuses on providing load balancing for
MWSJ queries and provides the first semantics-preserving
tuple routing framework. The Borealis project developed
a dynamic inter-operator load distribution algorithm utiliz-
ing the operators’ load variance coefficients [29]. In con-
trast, our work provides intra-operator load distribution for
MWSJ queries.

Golab et al evaluated various join algorithms over mul-
tiple streams, and developed a join ordering heuristic based
on a per-unit-time cost model [11]. The XJoin operator [27]
addresses the problem of the streaming inputs by replac-
ing blocking operators with streaming symmetric operators.
XJoin addresses the memory overflow problem by spilling
some inputs to disk. The MJoin operator [28] generalized
the streaming binary join algorithms and demonstrated that
multiway stream joins can be implemented in a more effi-
cient way than using a tree of binary join operators. Ham-
mad et al. proposed an efficient scheduling scheme to op-
timize multiple windowed joins over a common set of data
streams [16]. Babu et al. proposed an adaptive ordering al-
gorithm for multiway stream joins [4]. Tao et al. proposed
a rate-based progressive join (RPJ) algorithm to maximize
the stream join output rate according to the characteristics
of the join relations [24]. Early hash join is another fast join
algorithm that can achieve customizable tradeoff between
join output rate and overall execution time [20]. Our work
is different from the above work by providing adaptive load
diffusion for MWSJ query processing.



7 Conclusion

In this paper, we have presented a novel adaptive load
diffusion operator to achieve scalable processing of MWSJ
queries. We propose the first semantics-preserving tu-
ple routing framework that can dynamically distribute join
workload at fine granularity without losing join accuracy.
We have developed two different tuple routing algorithms,
aligned tuple routing (ATR) and coordinated tuple routing
(CTR), to accommodate different types of MWSJ queries.
Both ATR and CTR can scale-up MWSJ processing using
an arbitrary number of hosts, and perform on-line adapta-
tions to maintain optimal performance in dynamic stream
environments. Prototype experiments show that our algo-
rithms can efficiently scale-up MWSJ processing with low
overhead. We view our work as the first step towards em-
ploying semantics-preserving tuple routing to support scal-
able distributed CQ processing. Possible future work in-
cludes (1) generalizing the tuple routing framework to sup-
port other CQ semantics, and (2) extending the distributed
MWSJ framework to other distributed computing environ-
ments such as P2P networks and wireless sensor networks.
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