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Abstract

Distributed stream processing systems (DSPSs) have
many important applications such as sensor data analysis,
network security, and business intelligence. Failure man-
agement is essential for DSPSs that often require highly-
available system operations. In this paper, we explore a
new predictive failure management approach that employs
online failure prediction to achieve more efficient failure
management than previous reactive or proactive failure
management approaches. We employ light-weight stream-
based classification methods to perform online failure fore-
cast. Based on the prediction results, the system can take
differentiated failure preventions on abnormal components
only. Our failure prediction model is funable, which can
achieve a desired tradeoff between failure penalty reduction
and prevention cost based on a user-defined reward func-
tion. To achieve low-overhead online learning, we propose
adaptive data stream sampling schemes to adaptively adjust
measurement sampling rates based on the states of moni-
tored components, and maintain a limited size of historical
training data using reservoir sampling. We have imple-
mented an initial prototype of the predictive failure man-
agement framework within the IBM System S distributed
stream processing system. Experiment results show that
our system can achieve more efficient failure management
than conventional reactive and proactive approaches, while
imposing low overhead to the DSPS.

1 Introduction

Many emerging applications call for sophisticated real-
time processing over dynamic data streams such as sensor
data analysis and network traffic monitoring. Distributed
stream processing systems (DSPSs) have been developed to
achieve scalable continuous query (CQ) processing. How-
ever, today’s DSPSs are still vulnerable to various software
and hardware failures. For example, in the deployed IBM
System S stream processing system [16], the system log
records 69 significant failure incidents during one month
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period. Previous failure management work (e.g., [20, 4,
15, 14]) can be classified into two categories: (1) reactive
approach that takes recovery actions after a failure happens,
and (2) proactive approach that takes advance preventive
actions such as backup for all components (i.e., operators
or hosts) at all time. The reactive approach does not have
any preventive cost but can incur significant failure penalty
(e.g., query result loss, query processing interruption) for
stream applications. The proactive approach offers better
fault tolerance but can be impractical for load-intensive
DSPSs that often do not have enough resources to take pre-
ventive actions on all components. To address the problem,
this paper explores a new predictive failure management
approach that employs online failure prediction to achieve
selective, just-in-time, and informed failure prevention. By
“selective”, we mean that the system performs preventive
actions on failing components only. By “just-in-time”, we
mean that the preventive action is performed just before
the failure incident. By “informed”, we mean that the
system can take suitable preventive actions (e.g., backup,
isolation, or migration) based on the predicted failure type.
As a result, our system can achieve more resource-efficient
fault-tolerant stream processing than conventional reactive
or proactive approaches.

We need to address a set of new challenges to achieve
efficient predictive failure management. First, continu-
ous stream processing applications demand on-line failure
prediction [10] that can perform realtime analysis on col-
lected measurements and raise timely alerts before a failure
incident happens. Second, the failure learning schemes
should be light-weight since the normal query processing
can be resource-intensive by itself. Moreover, the failure
management for dynamic stream environments is desired to
be tunable, which should be able to adjust its behavior (i.e.,
detection rate, false-alarm rate) based on available resources
in the system and possible failure penalties. Third, we need
to provide new failure prevention schemes that can leverage
failure alerts to ensure continuous system operation.

In this paper, we present the design and implementation
of a novel predictive failure management system addressing
the above challenges. Each component is associated with a
feature stream that includes a set of periodically sampled



system-level and application-level metrics (e.g., available
memory, free CPU time, virtual memory page-in/page-out
rates, tuple processing time, buffer queue length). We
employ light-weight stream classifiers to achieve online
failure prediction, which continuously classifies received
feature samples into three states: normal, alert and failure.
The classifier raises failure alerts when the component state
falls into the alert or failure state. The classifier is con-
tinuously updated using labelled measurement data. Each
measurement is labelled with failure or normal based on
user-defined failure predicates [8] (e.g., processing time >
50ms, throughput < 100). The alert state corresponds to a
warning region where the predictor will raise a failure alert
to trigger a proper failure prevention action. Specifically,
this paper makes the following contributions:

e We design and implement the first online failure pre-
diction model using stream-based decision tree clas-
sification methods. Our prediction model is tunable,
which can achieve optimal trade-off between failure
penalty reduction and prevention cost based on a user-
defined reward function.

e We propose a new differentiated failure prevention
approach that uses failure alerts as guidance to perform
Jjust-in-time failure preventions (e.g., isolation, backup,
migration) on failing components only. The failure
prevention scheme includes an iterative component in-
spection algorithm that can overcome prediction errors
and provide feedback to the predictor for adapting to
dynamic stream environments.

e We propose adaptive data stream sampling schemes
to achieve low-overhead online failure learning. Each
monitoring component dynamically adjusts the sam-
pling rate based on the state of the monitored com-
ponent. Each analysis component employs reservoir
sampling [22] to incrementally maintain a limited
size of training data selected from the infinite feature
stream.

We have implemented an initial prototype of the predic-
tive failure management framework inside the IBM System
S stream processing system [16]. We conduct experiments
using real query networks taken from the System S refer-
ence applications [9] and real data stream workloads. The
experimental results show that i) our stream classification
schemes can achieve good prediction accuracy for a range
of software failures caused by common program bugs; ii)
the predictive failure management can achieve better cost-
efficiency (i.e., larger reward) than conventional reactive or
proactive approaches; and iii) the on-line failure learning
is feasible, which imposes low overhead to the stream pro-
cessing cluster.

The rest of the paper is organized as follows. Section
2 presents the system model. Section 3 presents the pre-
dictive failure management design and algorithms. Section
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4 presents the prototype implementation and experimental
results. Finally, the paper concludes in Section 5.

2 System Model

We consider large-scale, shared cluster systems exe-
cuting many stream processing applications concurrently.
Each stream application consists of a set of components
(i.e., query operators) connected into a directed acyclic
graph that can be placed at different hosts. These com-
ponents are typically provided by different application de-
velopers, which are often failure-prone. Drawing from
our experience on building the IBM System S, we observe
that most software failures are caused by common program
bugs such as memory leak, buffer management errors, and
CPU starvation caused by iterator update errors. Different
from instant failures (e.g., machine crash) that can be easily
detected, those software failures are often latent and hard to
detect. The focus of our work is to manage latent software
failures and minimize their negative impact on the system
operation.

Application developers or system administrators can use
failure predicate [8] to specify the failure type that should
be watched by the system. Common failure types include
service level objective violations [6] and system bottleneck
(i.e., full stream buffer). For each failure type, we create an
on-line failure forecast model called predictor, which can
continuously classify the state of a monitored component
into three states: normal, alert, and failure, illustrated by
Figure 1. The failure state is described using a given pred-
icate that characterizes what we are trying to predict. The
alert state corresponds to a set of values in a dynamically
defined time interval “preceding” the failure denoted by a
pre-failure interval PF'. The rest values correspond to the
normal state. The predictor will raise a failure alert when
the component state is classified as alert or failure.



Correspondingly, a component can operate under three
different modes: (1) working mode, (2) inspection mode,
and (3) repair mode, illustrated by Figure 2. When the
component state is classified as alert by a predictor, the
component is put into the inspection mode. Based on
the predicted failure type, we can take different preventive
actions accordingly, which will be discussed in Section 3.2.
Different from conventional proactive approach, the failure
prevention is performed in a just-in-time fashion.

Following the standard prediction accuracy measures,
we define the detection rate Ap and false alarm rate Ap
of a failure predictor as follows,

Definition 2.1. Given the number of true positive failure
predictions Ny, the number of false-negative failure pre-
dictions Ny, the number of false positive predictions Ny,
and the number of true negative predictions Ni,, the de-
tection rate Ap and false alarm rate Ap are defined in a
standard way as
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To quantify the efficiency of predictive failure manage-
ment, we allow the user to define a reward function that
denotes the net benefit of the predictive failure management
system. In our experiments, we denote the reward function
as follows !,

Definition 2.2 (Failure Prevention Reward Function).
Given a monitored component (i.e., operator or host) o; and
its associated failure predictor P;, let o; denote the mean
penalty reduction of each successfully predicted failure inci-
dent, let 3; denote the mean failure prevention cost caused
by each false-alarm, let Ap and A denote the detection
rate and false alarm rate achieved by the predictor, the
prediction reward R; for o; is defined by

Ri=Ap-o; — Ap - B )

Different from previous work, the predictive failure man-
agement provides a funable solution. We can tune the
predictor’s detection rate and false-alarm rate by adjusting
its pre-failure interval. The larger the pre-failure interval,
the more likely the predictor can raise an alert since more
measurements are incorporated into the alert state. At one
extreme, if we set PF' = 0, our scheme becomes con-
ventional reactive approach where the alert state is always
empty and no alerts will be generated by the predictor. At
the other extreme, if we set PF' = oo, our scheme becomes
traditional proactive approach that performs preventive ac-
tions unconditionally. However, in many cases, the optimal
solution lies in-between the two extremes. The goal of our
research is to provide tunable failure management system
that can dynamically adapt itself to achieve optimal tradeoff
between fault-tolerance benefit and cost.

'Our approach can be applied to other reward functions as well.
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Figure 3. Failure prediction using decision
trees.

3 Design and Algorithms

In this section, we present the design and algorithms of
our learning-based failure management system that includes
(1) online failure prediction model using stream-based de-
cision tree classification methods; (2) differentiated failure
prevention schemes using failure alerts; and (3) adaptive
feature stream sampling schemes to achieve light-weight,
low-overhead online failure learning.

3.1 Online Failure Prediction

Our system continuously collects feature metrics about
different components and classifies received feature tuples
to identify abnormal component behavior. In this work, we
chose decision tree classification methods [17] since they
produce rules with direct, intuitive interpretation by non-
experts. Thus, the predictor can not only raise advance
failure alerts but also provides cues for possible failure
causes. Each decision tree classifier is trained on histor-
ical measurement data, which are appropriately labelled
with “normal”, “alert”, or “failure”, illustrated by Figure
3. The points closely follow the memory leak scenario, but
are spread out for clearer visualization; the x-axis can be
thought of as available memory and the y-axis as page-
out rate. The system can label feature tuples as normal
or failure based on the failure predicate. Then, a set of
points preceding the failure incidents within the pre-failure
interval are labelled as “alert.” The decision tree is trained
using feature tuples from all three states. Periodically, as
the history grows based on feedback from the system, the
decision tree is updated if its accuracy is low. For state
classification, decision trees essentially apply a sequence of
threshold tests on the features. For example, in Figure 3, the
predicate that corresponds to the alert region is “X < m and
Y < p”, and can be determined by following the path in the
tree which leads to the leaf labelled “alert”. Our prediction
model incorporates multiple features and employs ten-fold
cross-validation to select those features with best predictive
power [10].

As mentioned in Section 2, we can tune the alertness
of the failure predictor by adjusting the pre-failure inter-
val length. Our experimental results have confirmed this
hypothesis, which will be shown in section 4. The system



updates the prediction performance counters (i.e., N, Ngp,
Nip, Nin) of the current predictor based on the feedback
from the system and calculates the reward value R. If
the reward value of the current predictor drops below a
pre-defined threshold, the system triggers the adaptation
algorithm to select a new decision tree that is more suitable
for the current environment.

3.2 Just-In-Time Failure Prevention

We now present the just-in-time failure prevention algo-
rithm that is triggered by the failure alert. As mentioned
in Section 2, a monitored system component (i.e., operator
or host) can operate under three different modes. The
component is said to be in the working mode if its state is
classified as normal by all predictors. When the component
state is classified as alert by any predictor, the component is
put into the inspection mode. If a failure does happen later
as predicted, the component transfers into the repair mode.
The system also sends a positive feedback to the prediction
model that it has predicted a failure successfully. If the com-
ponent state is classified as normal later or the inspection
times out, the system considers the prediction model issues
a false-alarm. The component under inspection returns to
the working mode and the prediction model is notified with
a feedback that it has made a false-positive error.

Prevention for failing operators If the failing compo-
nent is a query operator, we first isolate the failing operator
from the other operators running on the same host so that we
can confine the scope of the expected operator failure. The
isolation can be achieved by running the failing operator on
a separate virtual machine [5] from the other normal opera-
tors. We keep the operator’s input workload and computing
environment unchanged and use a higher sampling rate to
collect important pre-failure measurements for training the
failure prediction model.

To achieve fault tolerance, we also create a temporary
backup operator on a working host that processes the same
input stream(s) as the failing operator in parallel. De-
pending on the predicted failure type, the system may take
different preventive actions on the backup operator to min-
imize the failure impact. For example, we can increase the
resource allocation to the backup operator if the failure is
caused by insufficient resources. However, if the predicted
failure is caused by an internal software bug (e.g., memory
leak), the backup operator may experience the same failure
later. However, the backup operator may delay the failure
incident by starting from a clean state on a clean host [21],
which provides a window of opportunity for the system to
find corrective solutions.

If the failure happens on the inspected operator as pre-
dicted, the operator under the inspection mode enters the
repair mode. We can then perform failure diagnosis on the
failed operator using failure diagnosis tools (e.g., [7]) and
collected pre-failure measurements. Based on the diagnos-
tic result, we can take proper failure recovery actions (e.g.,

generating proper software patch and applying the path on
the backup operator) to avoid future failure incidents. If
the predicted failure does not happen, we say the predictor
issues a false alarm. The inspected operator returns to the
working mode. The system releases the isolation on the
inspected operator and removes the backcup operator from
the system. The downstream operator(s) will be notified to
receive data from the original operator.

Prevention for failing hosts. If the failing component
is a host running several operators, the preventive action
involves more steps. First, we want to migrate normal
operators from the failing host to a working host. An
operator is said to be normal if the system is sure that the
operator is not the cause of the host failure. By migrating
the normal operators out, we can avoid the penalty of the
anticipated host failure on those queries involving normal
operators. Second, we let those suspicious operators that
might be the cause of the host failure continue to run on
the failing host for collecting pre-failure information. In
parallel, we also create temporary backups for those suspi-
cious operators on working hosts to achieve fault tolerance.
Similar to the previous case, we take proper preventive
actions on the backup operators based on the predicted
failure type. If a predicted failure does happen, the host
transfers into the repair mode and those temporary backup
operators become permanent. Next, we can perform failure
diagnosis to identify the cause of the failure. If the host
failure is caused by the software bugs in some problematic
operators, we also need to perform software patch on their
backup operators to avoid future failure occurrences. If the
failure prediction model issues a false alarm, the host is
set back to working mode, which can provide resources for
existing or new operators. We also remove those temporary
backup operators from the system since they are no longer
needed.

3.3 Adaptive Data Sampling

To achieve accurate failure prediction, the analysis com-
ponent wishes to receive as much information as possible.
However, a large-scale stream system can concurrently host
thousands of operators. Each operator can be associated
with tens of feature metrics. Collecting feature metrics at a
fine time granularity can impose a considerable monitoring
overhead. Thus, we propose an adaptive sampling scheme
to reduce monitoring overhead with the help of prediction
feedback. The basic idea is to use a low sampling rate
when the analysis result is normal and switch to a high
sampling rate when the analysis result is abnormal. For each
monitored component whose state is classified as normal
by the prediction model, we use a low sampling rate to
reduce monitoring overhead since detailed measurement is
unnecessary. When the prediction model raises a failure
alarm on the component, we increase the sampling rate
to collect more precise information on the abnormal com-
ponent, which allows the prediction model to make more



accurate state classification. Later, if the predictor classifies
the component as normal based on the detailed information,
the sampling rate is reduced.

To achieve robust failure prediction in dynamic stream
environments, the predictor wishes to store the execution
behavior of a component under different stream workload
conditions. However, given limited buffer space, the pre-
dictor can only retain a subset of life-long historical data
as training data. To achieve compact prediction model, we
employ reservoir sampling [22] to incrementally maintain
a desired size of training data. We use non-uniform tuple
retention probabilities ps to keep the most important data.
For each time instant ¢, we observe a set of j measurements
(mag, ... , m;,) with a corresponding state label ¢; (i.e.,
normal, alert, or failure) based on diagnostic feedback and
the pre-failure interval. Generally, we should use higher
retention probability pg(¢;,m1y,...,m;) for more im-
portant tuples. The most significant factor determining
the importance of a set of measurements is its state label.
Failure and alert points are much rarer than normal points.
Thus, we use the probability of each state and employ the
biasing scheme of [18], where

_u_
El Nllfe

U is the number of tuples we wish to retain, and V; is the
number of tuples having label [. The exponente, 0 < e < 1,
determines the relative bias. For e = 0 the sampling is
unbiased (i.e., uniform random with the same probability
regardless of ;). For e = 1, we retain an equal number of
samples from each class, regardless of the original number
of points V; in each class. We should note that, for e > 0
and for finite datasets, the retention probabilities may be
larger than one for very rare classes. In this case, we set
them to 1 and proportionally increase the sampling prob-
abilities, so that the total number of points retained is U.
In the experiments, we set e = 0.5 and we tried ratios of
U/N = 50% and 30% , where N = ), N; is the total
number of measurement feature tuples.

ps(ly =1) := Nif’ with o =

4 Experiments

We have implemented the predictive failure management
framework within the IBM System S distributed stream pro-
cessing infrastructure and deployed on a commercial Linux
cluster system. The cluster system consists of about 250
blade servers connected by Gigabit Ethernet. Each server
host is equipped with Intel Xeon 3.2GHZ CPU and [2.4]
GB memory. All of our experiments are conducted on the
cluster system.

For failure prediction, the system continuously collect a
set of host-level and operator-level metrics, listed by Table
1. The host-level metrics include available memory, virtual
memory page in/out rate, free CPU time, free disk space,
which are collected by periodically querying the operating

Operator metric Description

INTUPLE num. of tuples received/sec
OUTTUPLE num. of tuples generated/sec
AVGPROCESSINGTIME | the mean per-tuple processing time
SAMPLEDTHROUGHPUT num. of query operations/sec
MEANQUEUELENGTH mean queue length
INPUTWORKLOAD num. of output tuples generated by

upstream operators per sec.

Host metric Description
FREECPU percentage of free CPU cycles
AVAILMEM available memory (MB)
PAGEIN virtual page in rate
PAGEIN virtual page out rate
FREEDISK free disk space (MB)

Table 1. Monitoring metrics.

system’s /proc interface. We also perform simple appli-
cation instrumentation on the tested query operators so that
we can continuously collect dynamic operator states.

In our experiments, the case study query network [12]
comprises eleven CQ operators including three source op-
erators, one load diffusion operator, six multi-way sliding-
window stream join operators, and one fusion operator.
Each source operator continuously produces a real appli-
cation data stream by replaying one of the following trace
files: wide-area TCP traffic streams taken from the Internet
Traffic Archive [2] or news video streams taken from NIST
TRECVID-2005 data set [3]. The load diffusion operator
dispatches input tuples to different join operators for paral-
lel processing of multi-way stream join. Each join operator
continuously correlate tuples from different streams using
a pre-defined join predicate. For video streams, the join
predicate is to find similar video images for hot topic detec-
tion [11]. For network traffic streams, the join predicate is to
find network packets with common source and destination
IP addresses. All join results are merged at the fusion
operator. Each operator runs at a different host.

The current implementation of our system focuses on
predicting query processing failures caused by common
program bugs. We have tested our system on the following
program bugs: (1) memory leak (memLeak) bug: the CQ
program forgets to free the allocated memory that is not
needed anymore. The memory consumption accumulates
as the program periodically executes the buggy memory
allocation code segments; (2) infinite loop (loopErr) bug:
the CQ program spawns a CPU-bounding thread that in-
cludes an infinite loop error (e.g., caused by iterator update
mistakes) where a CPU-intensive operation is repeatedly
executed; and (3) buffer update (bufferErr) bug: the CQ
program forgets to delete a processed tuple from its buffer.
These program bugs are the most common bugs we found
in our real stream processing applications. The on-line de-
cision tree classifier is implemented based on the canonical
C4.5 decision tree software package [1].

To test our failure prediction algorithms, we activate
the buggy code segments in different CQ operators. Each
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experiment run lasts 1000-1400 seconds. The buggy code
is executed at different time instants to test the applicability
of our failure prediction model for time-varying stream
workloads. Each fault lasts 50 seconds, which means we
activate the buggy code at time ¢ and remove the buggy
code at time ¢ + 50. Each prediction model maintains
an ensemble of eight classifiers using different pre-failure
intervals PF = 10, 20, 30, 40, 50, 60, 70, and 80. We
always use standard ten-fold cross-validation during clas-
sifier training. Each experiment was repeated, using the
complete measurement traces, as well as selected samples
(with measurement retention probabilities as described in
Section 3.3) that retained 50% and 30% of the total mea-
surements. In order to determine failure detection and false
alarm rates, we divided each test trace into consecutive
segments of 100 seconds. Each segment was labelled ei-
ther as “failure event” or “normal operation,” depending on
whether it contained an injected fault or not. We raised
failure alerts based on the criterion explained in Section 3.1.

Each of the segments in the test trace was labelled as “alert
raised” or “no alert” depending on whether an alert was
raised or not at any time instant within that interval. Based
on this information, we calculated Ny, Ny, Npp, and Ny,
for each failure prediction model. We can then calculate
the detection rate Ap and false-alarm rate Ay according to
Definition 2.1.

We first conduct a set of experiments using the con-
tinuous query network processing the network traffic data.
Figure 4, Figure 6, and Figure 8 show the detection rate
(Ap) and false-alarm rate (Ar) achieved by different deci-
sion tree classifiers for predicting the failures caused by the
memory leak bug, infinite loop bug, and buffer update bug,
respectively. These decision trees are trained using different
pre-failure intervals ranging from 10 to 80 seconds. We
also compare the performance of the classifier using full
training data, denoted by “Ap - unsampled” and “Ap -
unsampled”, with that of the classifiers using 50% biased
sampling (i.e., retaining 50% of the original complete train-
ing data), denoted by “Ap - Biased 50%” and “ A - Biased
50%”, and 30% biased sampling (i.e., retaining 30% of
the original complete training data), denoted by “Ap -
Biased 30%” and “Afr - Biased 30%” We observe that for
the network traffic data, our failure prediction models can
achieve almost perfect predictions (i.e., 100% detection rate
and 0% false-alarm rate). The results indicate that the multi-
way sliding-window join operators under the network traffic
exhibit easily distinguishable difference between normal
executions and faulty executions.

We also observe that bias-sampling can effectively main-
tain prediction accuracy while greatly reducing the sam-
pling overhead. It is also interesting to note that the trees
trained on the bias-sampled data can sometimes achieve a
higher detection rate than the tree trained on the full data,
without much change in false alarm rate. The increase in
Ap is because the sampling is biased towards non-normal
points, making the classifiers less conservative in raising an
alert. However, Ar does not increase correspondingly in
this case because the normal behavior is better separated
from the faulty behavior in the measurement space. Gen-
erally speaking, bias-sampling can maintain the detection
rates of different classifiers with a slight increase in false-
alarm rates for classifiers trained with small pre-failure in-
tervals. Another interesting observation is that Ay initially
decreases significantly. This is because we raise the alert
based on the majority voting criterion described in Section
3.1. When pre-failure interval is small, the majority voting
window (e.g., W = [0.1PF| = 1, PF = 10) is fairly
small. Thus, a misclassification of one point may lead to a
false alarm. However, the voting mechanism quickly helps
reduce the false alarm rate when PF > 30. Moreover, as
we increase pre-failure interval, the false-alarm rate did not
show noticeable increase since the alarm raising becomes
more “patient” with bigger majority voting windows. These
results are encouraging since we can raise early alerts with-
out increasing false-alarms, which can provide the system
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with sufficient time to take the preventive actions.

One important advantage of our approach is its tunabil-
ity compared to conventional reactive and proactive ap-
proaches. The system can maximize its failure management
reward by tuning its prediction models using pre-failure
interval. Figures 5, 7 and 9 show the reward values achieved
by different prediction models for predicting three different
types of failures? The reward value is calculated according
to Definition 2.2. We also used different reward function pa-
rameters to show their effects on prediction model selection.
The first reward function (R; = 2- Ap —1- Ar) uses a high
prevention reward (o = 2) and low prevention cost (G = 1)
while the second reward function (R = 1-Ap—2-AF) uses
a low prevention reward (o« = 1) and high prevention cost
(B = 2). The reactive approach always achieve zero reward
independent of the reward function definition since it does

2For our algorithm, we only show the results of the prediction models
using 50% biased sampling since other alternatives of our algorithm (i.e.,
unsampled or 30% sampled) show similar trend.

perform any failure prevention (i.e.,Ap = 0, Ap = 0). The
proactive approach goes to the other extreme that always
takes preventive actions with Ap = 1, Ap = 1. In this
case, the reward of the proactive approachis R; = 2« Ap —
1*Ap = land Ry = 1xAp—2xAr = —1. In contrast, our
approach employs online failure prediction to achieve more
efficient failure preventions. From Figures 5, 7 and 9, we
observe that our approach can consistently achieve higher
failure management reward than conventional reactive and
proactive approaches. Since our prediction models can
achieve near-perfect prediction for the network traffic data,
different prediction models have similar reward. In this
case, we may want to choose the prediction model that can
raise failure alerts just early enough for the system to take
proper preventive actions.

We then conduct the second set of experiments using the
video stream data that have much lower stream rates than
the network data but demand more resource-intensive join
computations. Figures 10, 12 and 14 show the detection
rates and false-alarm rates achieved by eight decision tree
classifiers using different pre-failure intervals for three dif-
ferent faults, respectively. We observe that our failure pre-
diction models can still achieve reasonably good prediction
accuracy by choosing the optimal classifiers with proper
pre-failure intervals. However, the prediction models are
generally less perfect for the video stream data than for the
network traffic data. The reason is that the difference be-
tween normal feature streams and abnormal feature streams
become more subtle under lower stream rates.

Figures 11, 13 and 15 shows the reward values achieved
by different failure management algorithms using two dif-
ferent reward functions (R = 2- Ap —1- Ap witha = 5,
B=1land Ro =1-Ap —2-Ap witha =1, 8 = b)
for three different program bugs, respectively. The reward
values of different prediction models show more variance
than previous set of experiments since the accuracy of dif-
ferent prediction model has larger difference. However, we
observe that our algorithm can still achieve better failure
management reward than conventional proactive and reac-
tive approaches by choosing a proper pre-failure interval.

We now evaluate the overhead of our approach. Each
box plot in Figure 16 summarizes the distribution of per-
tuple overheads including feature tuple collection time,
feature tuple classification time, and prediction classifier
training time. The solid line inside each box is the median
per-tuple overhead (i.e., 50% quantile), in milliseconds.
The bottom and top of each box correspond to the 25%
and 75% quantiles, respectively, and the whiskers show the
full extent (minimum to maximum) of the values. The
first two plots in Figure 16 show the measured time for
collecting system log stream (i.e., host-level metrics) and
application instrumentation data stream (i.e., operator-level
metrics). We observe that each log stream sampling needs
about 25ms, which involves disk operation to read from
system log files. However, the system log data only need
to be collected once for one host and shared among all
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Figure 16. Failure learning overhead.

the operators on the host. Thus, the system log collection
overhead is amortized over all co-located operators. In con-
trast, each instrumentation data collection only needs about
0.15-0.2ms. However, both log stream and instrumentation
stream collection time is small compared to the stream
sampling rate that is one sample per 10 to 20 seconds.
The third plot in Figure 16 shows the prediction time for
classifying each feature stream tuple using the decision tree,
which is very quick (0.02-0.06ms). Finally, the prediction
model training time amortized over the number of tuples
retained in the training set after reservoir sampling. This
includes ten-fold cross-validation; the overhead without
cross-validation is ten times less, as expected. Still, even
for 1000 training samples with cross-validation, the predic-
tion model training takes only about 220ms (or, 0.2ms per
sample). Moreover, the model training is typically triggered
relatively infrequently.

5 Conclusion

In this paper, we have presented a new predictive failure
management framework for distributed stream processing
systems. Different from previous reactive or proactive fail-
ure management schemes, our approach provides a tunable
failure management solution that enables the data stream
management system to achieve optimal tradeoff between
fault tolerance and resource cost based on user-defined re-
ward functions. We first present the online failure prediction
scheme using stream-based decision tree learning methods.
We then describe the just-in-time failure prevention scheme
that uses failure alerts as guidance to achieve selective fail-
ure prevention on abnormal components only. The preven-
tion scheme includes an iterative component inspection al-
gorithm to overcome prediction errors and provide feedback
to failure predictors. To reduce online failure learning over-
head, we propose adaptive data stream sampling techniques
that adjust measurement metric sampling rates based on
the states of monitored components, and maintain a limited
size of historical training data using reservoir sampling.
We have implemented an initial prototype of the predictive
failure management framework within IBM System S dis-
tributed stream processing system. The experimental results
show that our failure prediction schemes can achieve more
efficient failure management than conventional reactive and
proactive approaches while imposing low overhead to the
stream processing system.
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