The Internet of Things and Multiagent Systems Tutorial

Munindar P. Singh and Amit K. Chopra

North Carolina State University Lancaster University

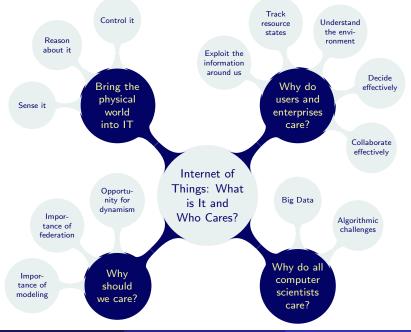
July 2016

Introduction to the Internet of Things

Representative Applications of IoT

Architectures for the IoT

Discovery and Selection

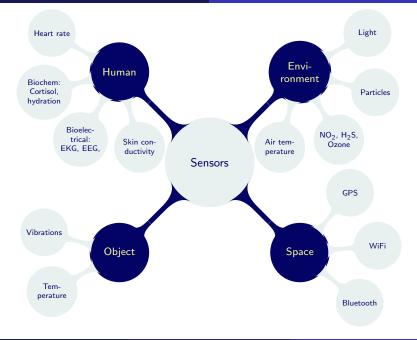

Achieving Coherence and Cooperation

Decentralization and Interaction for IoT

Governing Interactions in the IoT

Synthesis

© Singh & Chopra (NCSU & Lancaster)

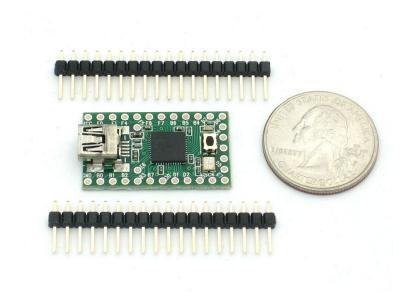

IoT Federation Levels

Each level offers abstractions for what transpires at or flows across that level

Governance	Negotiation	Governance
Services	Value	Services
Ontology	Meaning	Ontology
Connectivity	Information	Connectivity
Thing		Thing

Introduction to the Internet of Things

Core: Connectivity Combination of low and high-bandwidth


- Low-bandwidth connectivity
 - Between RFID tags and readers
 - Between sensors and base stations
- High-bandwidth
 - Wireless, with aggregator nodes such as smartphones and Arduino devices
 - Broadband, from aggregator nodes to store data in the cloud

Core: Passive and Low Power Technologies

Many dimensions

- Passive (batteryless)
 - No power
 - ▶ Require a proximal (within ~10 cm) reader
- Active, battery-based
 - Can send information
 - Can last years but need battery replacement
- Active, self-powered
 - Harvest power from the
 - Environment, e.g., solar
 - Human body, temperature differential
 - Human body, movement
 - Enough power to transmit to a local, e.g., on-body, hub
 - Low-power radio: $10^{-7} W$ (versus Bluetooth: $10^{-3} W$)
 - Can potentially last "forever"

Microcontrollers for Programmably Controlling Actuators

Constrained Node Networks

Data and communication

Class	RAM (data)	Flash (code)	Access
C0	$\ll 10 \text{KiB}$	$\ll 100 \text{KiB}$	Via others
C1	10 KiB	100 KiB	Constrained protocols, e.g., CoAP
C2	50 KiB	250 KiB	Capable, but prefer lightweight

Credit: IETF RFC 7228, May 2014, $\langle \texttt{http://tools.ietf.org/html/rfc7228} \rangle$

Constrained Node Networks

Power

Name	Energy limitation	Example power source
E0	Event	Event-based harvesting
E1	Period	Battery: recharge or replace
E2	Lifetime	Nonreplaceable battery
E9	None	Mains power

Credit: IETF RFC 7228, May 2014, (http://tools.ietf.org/html/rfc7228)

Constrained Node Networks

Communication strategy

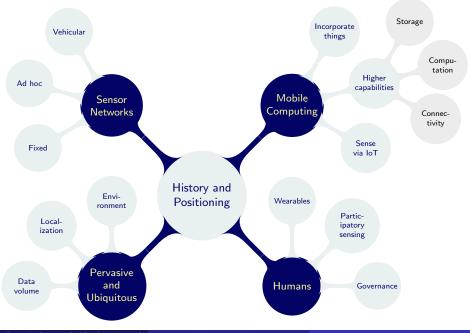
Name Energy limitation Strategy

- P0 Normally off Reattach on demand
- P1 Low power Appears connected: high latency possible
- P9 Always on Always connected

Credit: IETF RFC 7228, May 2014, (http://tools.ietf.org/html/rfc7228)

Power Effectiveness: Processors

	Prototype	Commercial 1	Commercial 2
	NCSU ASSIST	EnOcean STM 31×C	Semtech SX1282
Voltage	0.5 V	2.1 V	1.0V to $1.6V$
Processor	16b MSP430	Custom	8b CoolRISC
Power consumption	${<}1\mu\mathrm{W}$ @200 kHz	5.1 mA @3–5 V	1.2 μW 32 kHz; 600 <i>mu</i> W typical
Power harvesting	RF, solar thermoelectric	Yes	No


Credit: ASSIST Center, NCSU, http://assist.ncsu.edu/>

Power Effectiveness: Radios

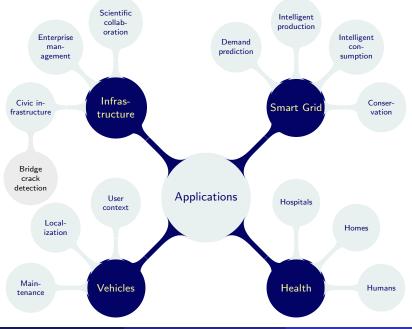
	Prototype	Commercial 1	Commercial 2
	NCSU ASSIST	EnOcean STM 31×C	Semtech SX1282
Voltage	0.5V to $1.0V$	2.1 V	1.0V to $1.6V$
Transmission power	$6\mu W$ @200 kbps	30 mW @125 kbps	\sim 40 mW
Reception power	200 µW WBAN Rx 120 nW @12.5 kbps Wake Up	40 mW	$\sim \! 12 \mathrm{mW}$

Credit: ASSIST Center, NCSU, http://assist.ncsu.edu/>

Introduction to the Internet of Things

Introduction to the Internet of Things

Representative Applications of IoT


Architectures for the IoT

Discovery and Selection

Achieving Coherence and Cooperation


Decentralization and Interaction for IoT

Governing Interactions in the IoT

© Singh & Chopra (NCSU & Lancaster)

Vehicle Sensors

Vehicle Actuators

Over the air modification of Tesla chassis elevation

Internet of Homes and Hotels?

© Munindar P. Singh

C Nest.com

Internet of Trails Crabtree Lake Trail near Raleigh, North Carolina

Internet of Oceans: Global Hybrid Profile Mooring Launch

© Singh & Chopra (NCSU & Lancaster)

Internet of Oceans: Glider Being Launched

Smart Grid

EU project Scanergy's demo setup at AAMAS 2015 http://scanergy-project.eu C Munindar P. Singh

Internet of Lakes Crabtree Lake near Raleigh, North Carolina

Internet of Dogs Tagged stray dog in Istanbul

Internet of Monuments?

From the Acropolis; appears to be a visual reader, not an IoT sensor

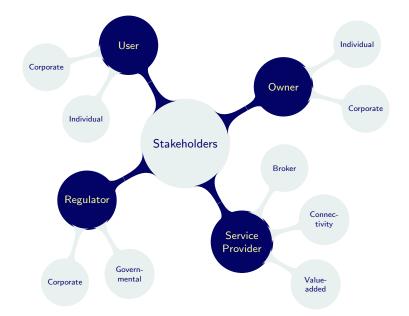
Introduction to the Internet of Things

Representative Applications of IoT

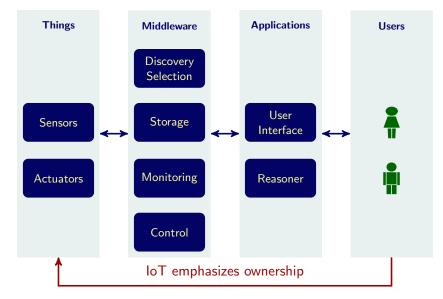
Architectures for the IoT

Enabler: Communication Enabler: Cloud Enabler: Data Technologies Challenges in Realizing the IoT

Discovery and Selection

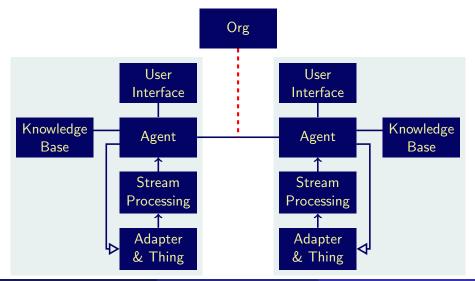

Achieving Coherence and Cooperation

Decentralization and Interaction for IoT

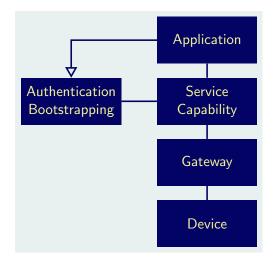

Governing Interactions in the IoT

Synthesis

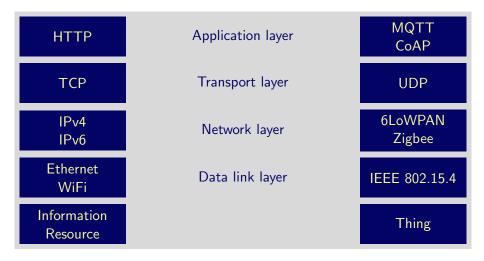
Architectures for the IoT



Main Architectural Elements


Decentralization Calls for a Multiagent Architecture

Each agent represents an autonomous party, contains a reasoner; interact within Org

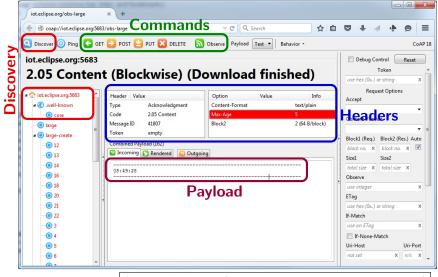

© Singh & Chopra (NCSU & Lancaster)

Emerging Standards Support Decentralization in Principle

Based on ETSI draft TS 102 690, May 2014, (http://docbox.etsi.org/smartM2M/Open/Latest_Drafts/)

Comparing Traditional Web and IoT Protocols From ReST to Constrained RESTful Environments (CoRE)

Protocol: MQTT

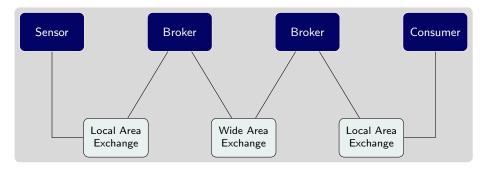

Née Message Queue Telemetry Transport

- OASIS standard as of November 2014, v3.1.1
- Focused on machine-to-machine communications
- Asynchronous
- Data parsimonious
- Small set of primitives, including
 - Publish
 - Subscribe
 - Create and cancel subscriptions
 - Configure "last will and testament" (LWT) notifications
- Detect disconnections without a DISCONNECT message
 - Send configured LWT notifications
- Three QoS levels (separately specified by sender and receiver)
 - 0 At most once; message: PUBLISH; no message ID needed
 - 1 At least once; resend with $\ensuremath{\operatorname{DUP}}$ bit until $\ensuremath{\operatorname{PUBACK}}$ received
 - 2 Exactly once; server stores, then forwards to receivers

CoAP: Constrained Application Protocol

- IETF RFC 7252, June 2014
- Asynchronous
- Data parsimonious
- Supports URIs
- Supports resource discovery from server
- ▶ HTTP-like verbs: GET, PUT, POST, DELETE
- Small set of request and response types
- Communication patterns
 - Caching
 - Block transfer of large content
- QoS support (message types)
 - Confirmable CON: require acknowledgment
 - Nonconfirmable NON: do not require acknowledgment
 - Duplicates to be ignored by receiver

CoAP Tooling: Copper Plugin for Firefox



 ${\tt Credit: Matthias Kovatsch, \langle {\tt http://people.inf.ethz.ch/~mkovatsc/copper.php} \rangle}$

AMQP: Advanced Message Queuing Protocol

- OASIS standard as of October 2012, v1.0
- Protocol—distinguish from an API such as JMS
- Decouples communications from destination address
- Long-lived conversations
- Variety of communication patterns
 - Intercept
 - Delegate
 - Multiplex and demultiplex
- Upcoming improvements
 - Traffic flow and QoS
 - Decentralized deployment and governance
 - Multiple underlying protocols

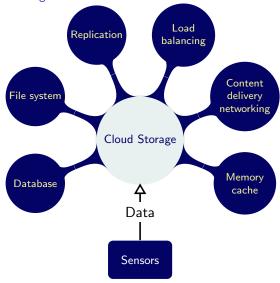
AMQP Exchange Space Abstraction

Based on work with Ocean Observatories Initiative, UCSD Scripps

XMPP: Extensible Messaging and Presence Protocol

Originally meant for collaboration and content sharing

- Adapted and enhanced for IoT via XMPP Extension Protocols
- ► XEP-0323: Internet of Things Sensor Data, v0.4, March 2015
- Describes protocols and data formats for variety of needs
 - Request sensor reading and responses thereto
 - Requests with multiple responses
 - Requests to multiple things
 - Discovery: what *features* (including services) a thing supports
 - Different from discovery of a thing
- Specification of quality of data value (termed QoS), e.g.,
 - Missing, estimated, manually read, delayed, invoiced, ...


XMPP: Extensible Messaging and Presence Protocol

- ► XEP-0347: Internet of Things Discovery, v0.3, November 2014
- ▶ Uses JID or Jabber ID or an XMPP address for various resources
 - Registries
 - Provisioning servers
 - Things
- Specifies protocols and data formats for
 - Finding a registry
 - Registering a thing: a thing registers itself
 - Specifies secret data for registration
 - May provide the same data via a sticker (QR-code) on a physical thing
 - Public things remain searchable after being claimed
 - Owner claiming a thing (by supplying the secrets)
 - Only claimed, currently owned, things can be searched
 - Removing a thing from a registry
 - Disowning or relinquishing a thing

Cloud Storage

Eliminate need to set up complex storage services from scratch

- On demand
- Variety of data services
- NoSQL (and NewSQL) databases
 - Alternative to ACID databases
 - Tradeoff strong consistency for low latency

Cloud Services

Querying and transforming data

- Structured Query Language (SQL)
- Rule engines
- Complex event processing (CEP)
- Streaming SQL
 - Continuous queries
 - SQL-interface for event processing
- MapReduce programming
- Hosting and executing custom programs

ETSI's Service Capability Layer

On top of connectivity: holdall for functional, security, and governance aspects

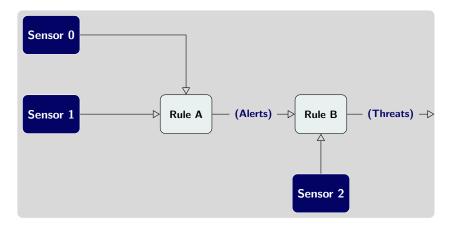
Communication

- Semisynchronous: quick ack followed by full answer
- Asynchronous
- Works on top of another protocol, e.g., HTTP and CoAP

Service capabilities

- Registration
- Access control
- Authentication
- Data transfer
- Subscribe and notify
- Handling groups

Fog Computing


Cisco's term for decentralized or "ground-level" variant of cloud computing

- Intermediary between things and the cloud (data centers)
- Place computing, storage, services near the edge
- Process data closer to where it originates
 - Many devices talk to one another
 - Improve latency and throughput
- Improves treatment of autonomy with gains in
 - Local governance
 - Security

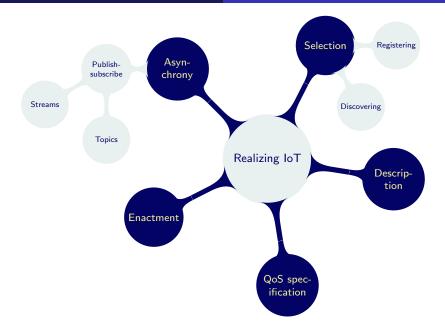
Event-Driven Architecture

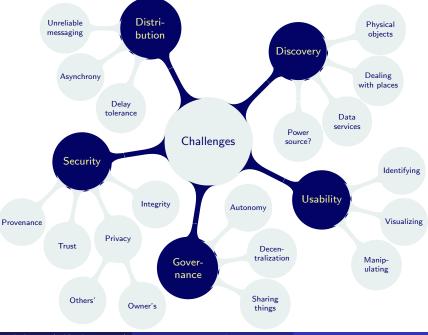
Consume and produce event streams

Event attributes: ID, timestamp, and content values

Linked Data Highlights

Web-based identity and network


- URIs identify resources
- Deferencing a URI produces a resource description
- Resources link to other resources
- Web-based semantics
 - Encoded in a Semantic Web language, such as the Resource Description Framework, RDF
- Exploit underlying architecture, e.g., Domain Name System and Web servers, to locate resources


Linked Data for IoT

Sensor data is worthless unless linked to something else!

Describe things

- Link thing descriptions to one another
- Enable thing discovery
- Describe the information produced by things
- Describe how to configure things
- Enable things to exchange semantic information
 - Facilitate reasoning
 - Promote interoperability
- Supported by standards that incorporate URIs
 - CoAP, ETSI's Service Capability Layer

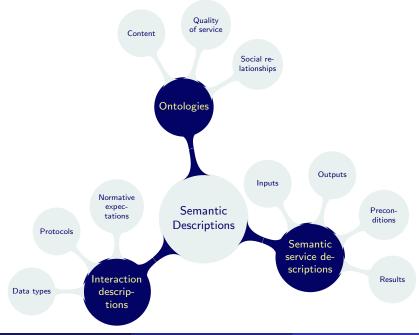
Introduction to the Internet of Things

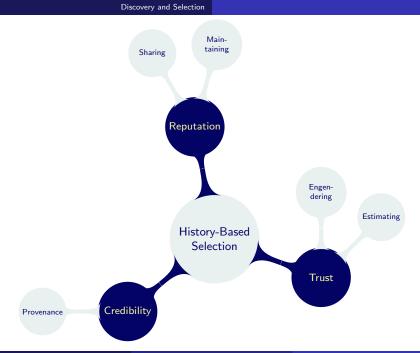
Representative Applications of IoT

Architectures for the IoT

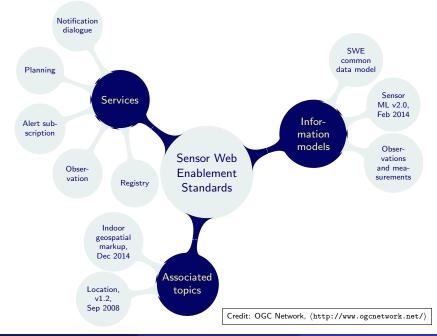
Discovery and Selection

Achieving Coherence and Cooperation


Decentralization and Interaction for IoT


Governing Interactions in the IoT

Discovery and Selection



Discovery and Selection

Discovery and Selection

Introduction to the Internet of Things

Representative Applications of IoT

Architectures for the IoT

Discovery and Selection

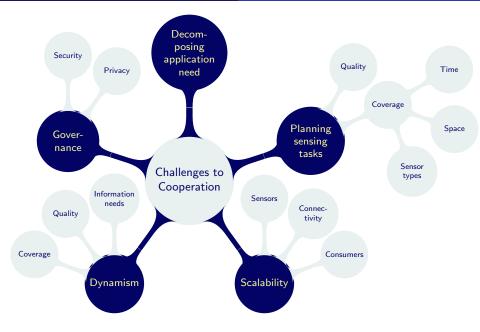
Achieving Coherence and Cooperation

Decentralization and Interaction for IoT

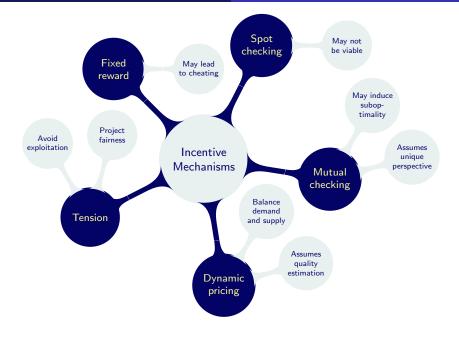
Governing Interactions in the IoT

Synthesis

Sharing, Fusing, and Revising Information

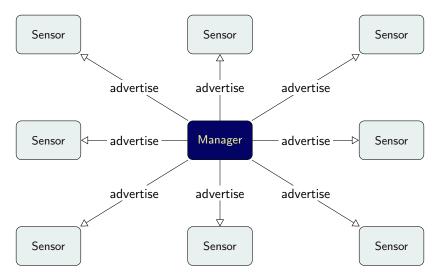

Inspired by social computing

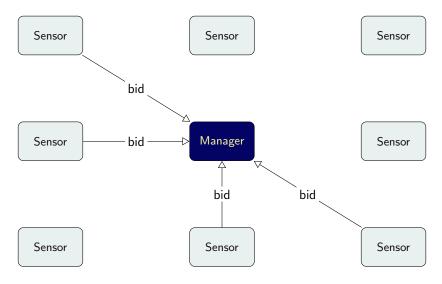
- Folk wisdom about aggregating knowledge
- Galton's Vox Populi
 - Median of many estimates represents the voice of the people
 - Underlying intuition of crowdsourcing
- Condorcet Jury Theorem
 - ▶ If each information source is better than 50% accurate (binary case)
 - Then their majority is even more accurate (depending on how many)
- Participatory or community sensing
 - Usually based on phone sensors rather than things as such
 - Includes explicit user actions, e.g., sending a picture


Assumptions in Participatory Sensing

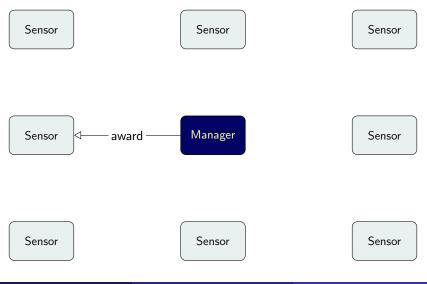
Why would anyone participate honestly?

- > Sensor owners bear a cost when the sensors provide data
 - Energy
 - Bandwidth
 - Installation and maintenance
- Sensor owners may
 - Refuse to participate
 - Configure their sensors to provide low quality results
 - Instruct their sensors to falsify results
- Majority or central estimates work when
 - ▶ The user (consumer) owns and controls all sensors
 - Incentives promote cooperation and verification
 - Other aspects induce prosocial behavior




Contract Net Protocol: 1

Announce


Contract Net Protocol: 2

Bid

Contract Net Protocol: 3

Award

Contract Net Protocol Evaluated

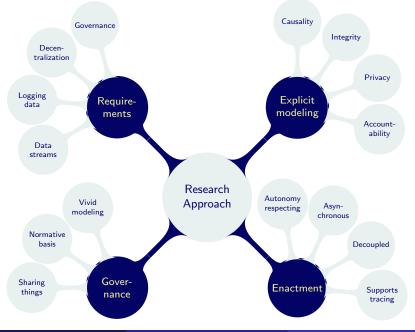
Generic protocol

- Can apply recursively
- Supports important properties
 - Robustness against sensor failure
 - Robustness against connectivity failure
 - Incorporating economic features
- Not well specified
 - Confuses interaction and internal reasoning
 - Limited to two-party interactions

Introduction to the Internet of Things

Representative Applications of IoT

Architectures for the IoT


Discovery and Selection

Achieving Coherence and Cooperation

Decentralization and Interaction for IoT

Governing Interactions in the IoT

Synthesis

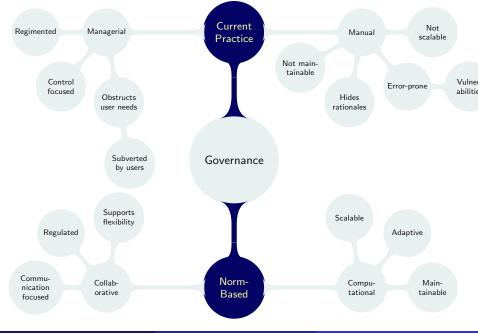
The Contract Net Protocol BSPL (afternoon tutorial tomorrow)

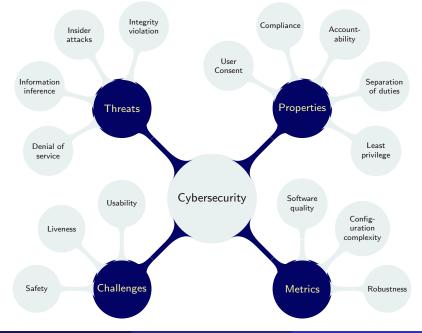
```
Contract Net {
  role Manager uni, Bidder ⊒ Winner uni
  parameter out ID key, out request, out response, out decision
  Manager → Bidder: CfB[out ID, out request]
  Bidder → Manager: bid[in ID, in request, out response]
  Manager → Winner: award[in ID, in request, in response, out
      decision]
}
```

Introduction to the Internet of Things

Representative Applications of IoT

Architectures for the IoT


Discovery and Selection


Achieving Coherence and Cooperation

Decentralization and Interaction for IoT

Governing Interactions in the IoT

Synthesis

Governance for Secure Collaboration

Broadly, administering sociotechnical systems to serve stakeholder needs

Existing and emerging standards, such as ETSI's, provide partial support for governance

- Resource management
 - Devices
 - Channels
- Group management
 - Membership creation, verification, maintenance...
 - Subscriptions, announcements
 - Permissions
- Credential management
 - Authentication
 - Authorization

Operational specifications but no formal representation or model

Credit: ETSI draft TS 102 690, May 2014, {http://docbox.etsi.org/smartM2M/Open/Latest_Drafts/}

Governance Challenges in IoT

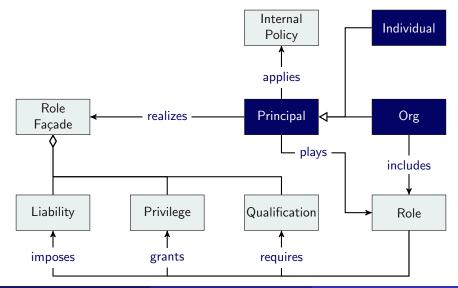
Accommodating autonomy, heterogeneity, and dynamism

Support configurational adaptation

- Resource sharing: Offer ocean instrument for sharing
- Affiliation: Add new laboratories
- Sanction: Allow external sharing of results to fulfill deliverables
- Support operational adaptation
 - ▶ Resource sharing: Preempt low-priority users in case of oil spill
 - Affiliation: Forbid unilateral publishing of results
 - Sanction: Absolve researcher who reveals results to prevent public endangerment (extenuating circumstances)
- Research challenges
 - Abstractions to capture rules of encounter
 - Methods to design and analyze such abstractions
 - Methods to implement such abstractions

Foundations of Secure Collaboration over IoT

Social perspective that complements technical (data, application, infrastructure) perspectives


- Policy: An implementation-independent specification of decision making
- Normative basis: Key relationships are reflected in norms, to be used a standard of correctness for interactions
- Social context: An Org (as a microsociety) recursively provides the context for the norms among and policies of its members
- Interaction orientation: How agents apply policies to enter into, monitor, and enact normative relationships

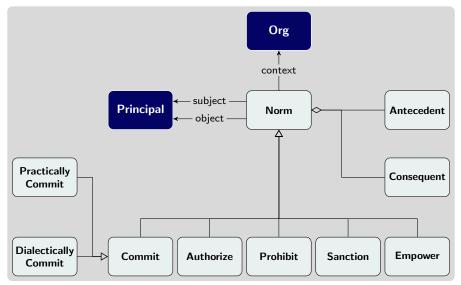
Principles of Governance: What Policies Give Us

Administration that is intelligent and intelligible

- Vividness of modeling
 - Grounded in applications; modeled entities are real
- Minimality of operational specifications
 - Leaving restrictions unstated except where essential to correctness
- Reification of representations
 - Explicit: hence, inspectable, sharable, and manipulable

Overview of Policy-Governed Secure Collaboration

© Singh & Chopra (NCSU & Lancaster)


Achieving Governance: Principals and Orgs

Put collaboration in organizations center stage

- Principals are the stakeholders: people and organizations
 - Provide a locus for interaction
- Orgs are like *institutions:* have an identity and life time distinct from their members; also principals
 - Examples: NCSU, DoD, OOI, ...
 - Provide a locus for roles
 - Characterized via norms
 - Potentially enforce norms on members playing specific roles
 - An Org's main hold over its members is the threat of expulsion

Types of Directed Normative Relationships or Norms

Declarative; composable; manipulable

Norms as Façades

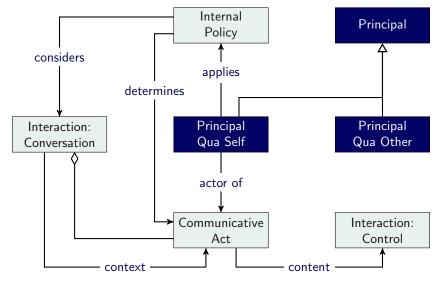
Norm	Subject's Façade	Object's Façade
Commitment	Liability	Privilege
Authorization	Privilege	Liability
Power	Privilege	Liability
Prohibition	Liability	Privilege
Sanction	Liability	Privilege

Life Cycle for Norms: 1

Using a variant of the UML state diagram notation

Life Cycle for Norms: 2 Substate of a terminated norm

If terminated in		Then					
ant	con	Com	Aut	Pro	San	Pow	
false	false	null	null	null	null	null	
false	true	sat	sat	null	null	null	
true	false	vio	vio	sat	null	vio	
true	true	sat	sat	vio	sat	sat	

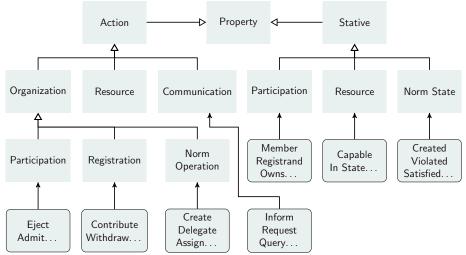

Unifying Norms and Policies for Governance

Promoting precision, verifiability, modularity, and reusability for secure collaboration

- Norms characterize interactions in terms of expectations and accountability
 - Provide the standards of correctness for governance
 - Packaged as role façades
 - Adopted by an agent to support its goals and concomitant policies
 - Help identify policy points: where policies apply
- An agent adopts policies that, given its role façades and goals,
 - Support discharging its liabilities
 - Potentially exploit its privileges
 - May not individually or collectively comply with norms
 - May thus violate some security expectations

Governance and Policies: Two Kinds of Interaction

Conversations with autonomous parties; control over resources


Governance and Policies: Information Model

Relevant information

- Attributes of the parties involved
 - Qualifications, affiliations
- Attributes of the capabilities involved
 - Interactions to be carried out upon resources
 - Collated as interaction types and resource types
- Attributes of the relationships among the parties involved
 - Participations in different Orgs
 - Arrangements among Orgs (captured as participations)
 - Ongoing interactions

Vocabulary for Governance and Policies

Norms and Orgs

Interactions and Policy Types

Going beyond access control

Understand a policy in terms of its cause and its effect

Cause

- ► *Reactive:* triggered by a request from another stakeholder
- Proactive: triggered by local observations
- Effect
 - Authorization of action to be taken on behalf of requester
 - Enablement of action, which would otherwise not be taken
 - Expectation of action, which would now be performed

An Information Model and Commitment Specification

TakeCharge(tcID, nuID, phID, patID, tcThreshold) key tcID CardiacEvent(ceID, nuID, phID, patID, ceMagnitude) key ceID CPR(cprID, nuID, phID, patID, cprDuration) key cprID

```
commitment CardioCare nulD to phID
create TakeCharge
detach CardiacEvent [, TakeCharge + 180]
where ceMagnitude >= tcThreshold
discharge CPR [, CardiacEvent + 5]
```

A Cardio Care commitment from a nurse to a physician is

- created upon Take Charge;
- detached if a CardiacEvent for this patient happens above the specified threshold within 180 minutes
 - Else the commitment *expires*
- discharged if CPR on this patient happens within five minutes of the Cardiac Event (else violated)

```
Generate Log Schema
CREATE TABLE TakeCharge (
  tcID VARCHAR(10), nuID VARCHAR(10), phID VARCHAR(10),
      patID VARCHAR(10), tcThreshold VARCHAR(10),
  stamp DATETIME.
  PRIMARY KEY(tcID)
);
CREATE TABLE CardiacEvent (
  ceID VARCHAR(10), nuID VARCHAR(10), phID VARCHAR(10),
      patID VARCHAR(10), ceMagnitude VARCHAR(10),
  stamp DATETIME.
  PRIMARY KEY(celD)
);
CREATE TABLE CPR (
  cprID VARCHAR(10), nuID VARCHAR(10), phID VARCHAR(10),
      patID VARCHAR(10), cprDuration VARCHAR(10),
  stamp DATETIME,
  PRIMARY KEY(cprID)
);
```

Generate Canonical Queries for Accountability Checking In relational algebra (Jun Yang's notation); maps to SQL

```
Query for which Cardio Care commitments are detached
((\select_{(stamp >= stamp38)} (
 (TakeCharge) \join
 (\rename_{celD, nulD, phID, patID, ceMagnitude, stamp38}
 (\select_{ceMagnitude = tcThreshold} (CardiacEvent)))))
        \union
 (\select_{(stamp >= stamp37)}
        ((\select_{ceMagnitude = tcThreshold}
        (CardiacEvent)) \join
        (\rename_{tcID, nuID, phID, patID, tcThreshold, stamp37}
        (TakeCharge)))));
```

Challenges and Partial Recent Progress

- Storing and retrieving events to determine the state of a norm
 - Mapping norms to relational databases [AAAI 2015, AAMAS 2016]
- Maintaining alignment of views despite decentralization
 - Communications to guarantee (eventual) alignment [AAMAS 2015]
- Software engineering for sociotechnical systems
 - Abstractions, architecture, and principles [RE 2014, WWW 2016]
- Designing protocols and Org contexts for monitorability
 - ► Failure of compositionality of monitorability [IJCAI 2015]
 - Automatically close a context to ensure monitorability
- Designing protocols and Org for robustness and resilience
 - Typology of sanctions and sanctioning processes [KER 2016]
 - TBD: Formalization of normative robustness and resilience
 - TBD: Reasoning about sanctions for design of Orgs

Introduction to the Internet of Things

Representative Applications of IoT

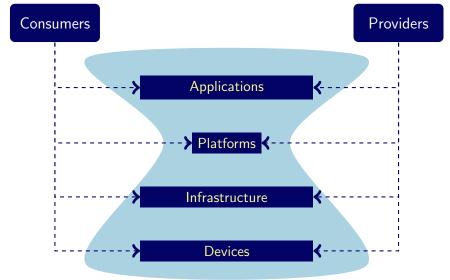
Architectures for the IoT

Discovery and Selection

Achieving Coherence and Cooperation

Decentralization and Interaction for IoT

Governing Interactions in the IoT


Synthesis

Synthesis

IoT Hourglass: Few Platforms for Many Applications

Benefit from the upper layers; excitement from the lower layer

Summary and Directions

Exercise: Collective concept map

- What theme do you remember most from today?
- What additional high-level themes should we consider within
 - Artificial intelligence?
 - Distributed computing?
 - Information systems?
- What IoT research question would be worth pursuing?

Thanks and Plugs

Acknowledgments

- US Department of Defense
- US National Science Foundation
- Read and publish in
 - ACM Transactions on Internet Technology
 - IEEE Internet Computing

http://www.csc.ncsu.edu/faculty/mpsingh/