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Abstract

Geographical characteristics have been proven to be effective in improving the quality of
point-of-interest (POl) recommendation. However, existing works on POl recommendation
focus on cost (time or money) of travel for a user. An important geographical aspect that has
not been studied adequately is the neighborhood effect, which captures a user’s POl visiting
behavior based on the user’s preference not only to a POI, but also to the POI's neighbor-
hood. To provide an interpretable framework to fully study the neighborhood effect, first, we
develop different sets of insightful features, representing different aspects of neighborhood
effect. We employ a Yelp data set to evaluate how different aspects of the neighborhood
effect affect a user’s POl visiting behavior. Second, we propose a deep learning—based rec-
ommendation framework that exploits the neighborhood effect. Experimental results show
that our approach is more effective than two state-of-the-art matrix factorization-based POI
recommendation techniques.

1 Introduction

Location-based social networks (LBSNs) facilitate personalized point-of-interest (POI) recom-
mendation, which not only helps users in exploring interesting places, but also increases reve-
nues for businesses. Several POI recommendation approaches employ a user-POI check-in
matrix, which is typically very sparse (most users usually check-in only at a few POIs). Accord-
ingly, approaches that rely only on the check-in matrix yield poor recommendation quality
[1]. Additional context information such as social relationships [2] and geographical charac-
teristics [3] have been exploited to overcome the data sparsity problem and improve the rec-
ommendation quality.

The neighborhood of a POI consists of its surrounding POIs. We define the neighborhood
effect as a phenomenon that a user visits a POI because of their preference not only to that POI
but also to the POI’s neighborhood. The neighborhood effect is different from the geographical
effect investigated in previous studies. Those studies assume that users tend to visit POIs near
their homes or offices and nearby POIs of a POI that they just visited [4, 5]. The geographical
effect is mainly about the cost of travel (e.g., time or money) from a user’s current location to a
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POL. In contrast, the neighborhood effect is about the environmental context created by a
POT’s surrounding POIs. For example, a user is more likely to visit a restaurant that is sur-
rounded by their interested POIs than an isolated restaurant, although the two restaurants are
at the same distance from the user’s current location. In this case, the geographical effect is the
same for the two restaurants, but the the neighborhood effect affects the user’s behavior.

The neighborhood effect has not been studied adequately in POI recommendation. Liu
et al. [6] find that the neighborhood effect is more important than the geographical effect in
POI recommendation. Similarly, Li et al. [7] integrate the neighborhood effect into a matrix
factorization-based model. Doan et al. [8] investigate two main properties of the neighbor-
hood effect, area attraction and neighborhood competition, and ascertain the two factors
through empirical studies. However, most studies (1) obtain the latent vectors of users and
POIs from the matrix factorization model, limiting the interpretability of the neighborhood
effect; and (2) measure the neighborhood effect purely from a personalized effect perspective,
provided that each POI in a neighborhood plays a role in a user’s preference for the neighbor-
hood—the inner product of latent vectors between a user and a POI measures a user’s prefer-
ence for the POI, and summation of such preferences from a user to each POl in a
neighborhood is the neighborhood’s attraction to the user. What if such preference is more
dominated by a single POI (e.g., the least or most preferred POI)? What if the environmental
context of a neighborhood is the key factor that attracts a user? For example, a user with kids
may visit a highly rated kids-friendly plaza, even though none of the POIs in the neighborhood
attracts the user individually. Yin et al. [9] propose several sets of features to model the envi-
ronmental context, but they ignore the personalized preference.

To address the shortcomings above, we develop an interpretable POI recommendation
framework in which the neighborhood effect can be fully investigated and explicitly evaluated.
In particular, we seek to answer two research questions.

RQ;: Neighborhood Effect Modeling How to model the neighborhood effect in an interpret-
able and comprehensive manner? In particular, what constitutes the neighborhood effect
and how it affects a user’s POI visiting behavior?

RQ,: POI Recommendation How to build a POI recommender that exploits the neighbor-
hood effect to improve recommendation quality?

To answer these questions, we analyze data from three cities—Phoenix, Toronto, and Las
Vegas—with the highest number of POIs in the Yelp Challenge data set [10].

To answer RQ; on neighborhood modeling, we factorize the neighborhood effect into two
main categories: (1) personalized features capture a user’s personalized preference over nearby
POIs; and (2) property features model the environmental context of a neighborhood. We fur-
ther divide personalized features into four subsets by employing different aggregating func-
tions—two subsets aggregate a user’s personalized preference over each nearby POI by
arithmetic (distance adapted) mean functions, and the other two subsets model the neighbor-
hood effect via maximum (minimum) functions. Our evaluation results from the first research
question indicate that (1) the neighborhood effect could benefit POI recommendation; (2)
there is no significant difference between the property features and personalized features; and
(3) there is no significant difference among different aggregating functions in terms of model-
ing a user’s personalized preference for a neighborhood.

To answer RQ, on POI recommendation, we propose a multilayer perceptron (MLP)-
based recommender, incorporating the neighborhood effect. Our model outperforms two
state-of-the-art matrix factorization-based approaches, demonstrating the effectiveness of
integrating neighborhood features in a deep neural network for POI recommendation.
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Although our approach only integrates the neighborhood effect, it can be extended to other
contexts (e.g., social and temporal influences). It is important for a recommender to integrate
different kinds of context to improve its quality. However, some previous approaches are
developed for a specific kind of context [1, 11], and they do not generalize.

1.1 Key contributions

o We quantify different aspects of the neighborhood effect and evaluate the potential benefits
of each aspect, providing an interpretable framework for understanding the neighborhood
effect. To the best of our knowledge, our study is the first to comprehensively investigate and
evaluate different aspects of the neighborhood effect.

» We propose a deep neural network-based POI recommender that incorporates the neigh-
borhood effect and improves precision and recall of POI recommendation compared to the
state-of-the-art matrix factorization models. The proposed recommender can be easily
extended to incorporate other context information.

2 Related work

We review POI recommendation approaches that exploit geographical characteristics and
works that are closely related to our deep learning-based recommendation approach.

2.1 POI recommendation

Geographical characteristics are usually studied from the users’ perspective (geographical
effect) or from the locations’ perspective (neighborhood effect). Most of the existing works
focus on the geographical effect [1, 2, 12].

A few studies focus on the geographical characteristics from the locations’ perspective. Sev-
eral researchers integrate the neighborhood effect into a matrix factorization-based model [6,
7], showing the effectiveness of the neighborhood effect. Yin et al. [9] propose several sets of
features to model the environmental context created by the neighborhood. Doan et al. [8]
investigate two main properties of the neighborhood effect: area attraction and neighborhood
competition. Most existing studies either assume that the neighborhood effect is from a user’s
personalized preferences for the nearby POIs [6, 8] or from the environmental context [9].
However, the neighborhood effect may include both of these aspects. We investigate neighbor-
hood effect in a comprehensive and interpretable manner compared to the existing works.

Zhang and Chow [1] emphasize that the category of a POI captures the function of a POI,
and a user’s visiting behavior at a POI reflects their interests in the corresponding category.
Accordingly, our approach incorporates the POI category information in defining the relevant
features.

2.2 Deep learning-based recommender systems

There is an increasing interest in deep learning-based POI recommenders. Due to the
sequence visiting behavior seen for POIs, some researchers build models based on recurrent
neural networks (RNN) [13, 14]. However, these approaches cannot be applied to scenarios
where sequence behavior is not available. Yin et al. [15] build a convolutional neural network-
based model to extract features from users’ check-ins. Due to widespread availability, some
researchers exploit content information to build deep learning-based models for recommen-
dation [16, 17]. Most of these works model the check-in behavior or content information via

PLOS ONE | https://doi.org/10.1371/journal.pone.0255685  August 5, 2021 3/19


https://doi.org/10.1371/journal.pone.0255685

PLOS ONE

An interpretable framework for investigating neighborhood effect in POl recommendation

deep neural models. In contrast, our work focuses on integrating the heterogeneous informa-
tion learned from feature engineering with deep neural networks. Due to the performance
boosting capability of word embedding in the NLP field, many researchers focus on learning
POI embedding through deep learning models [18]. Xie et al. [19] jointly capture different
context in a unified way by embedding the four corresponding relation graphs into a low
dimensional space. Instead of learning a latent vector that could better represent a POI, our
work focuses more on investigating the neighborhood properties.

He et al’s approach [20] is most relevant to ours. They explore neural network architectures
for collaborative filtering using only the check-in matrix. They provide a general architecture
to model the user-item interactions in three different ways. Covington et al. [21] describe a
practical deep neural network-based recommendation architecture for YouTube. They also
model the user-item interactions through multiple layers of fully connected Rectified Linear
Units. We adopt a similar architecture to model the user-item interactions, but focus on
modeling neighborhood effect, and integrating the effect with deep neural models for
recommendation.

3 Problem formulation

Let U = {u})" beaset of M users and L = {I}}", be a set of N POIs. Each POl is associated
with a geo-tag and a POI category. A user visits one or more POIs. Some users also have online
friendships with other users. Then, we formulate our research questions as follows.

RQ;: Neighborhood Effect Modeling Given a user u’s observed check-ins and the neighbor-
hood L' for each of their checked-in POI I, how can we model the neighborhood effect in
an interpretable and comprehensive manner?

That is, how can we factorize the neighborhood effect into two feature vectors w,, and w;?
The first feature vector, w,,, embeds the user and the neighborhood pair, representing the
user’s personalized preference for the neighborhood. The second feature vector, w;, embeds
the POI and the neighborhood pair, representing the characteristics of the neighborhood
the POI belongs to.

RQ,: POI Recommendation Given the neighborhood effect (w, and w;), how can we predict
the user u’s preference score y,, for an unvisited POI / and return the top-k POIs with the
highest scores?

)A/u,l:f(vuvvl’wwwﬁp’ Q’(H)f) (1)

where P € R"* and Q € R"* are the latent factor matrices for users and POIs, respec-

tively; K is the dimension of the latent space; v, € R”*! and v, € RV*" are the sparse one-
hot encoding vectors for user u and POI ], respectively; ©;denotes the parameters for the
model function f.

We answer these questions via the Yelp Challenge data set [10]. We conduct experiments
on three cities with the highest number of POIs in the data set. The three cities (Phoenix,
Toronto, and Las Vegas) represent different life styles. Phoenix and Toronto represent daily-
life styles, where several check-ins are likely from residents. However, Toronto is more densely
populated than Phoenix. Las Vegas represents tourism style, where several check-ins are likely
from tourists.

The Yelp data set does not contain check-in frequencies—it only provides users’ reviews of
POIs. Therefore, we only know whether a user has visited that POI but not the exact number if
the user visited the POI more than once.
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Table 1. Statistics from the Yelp data set for three cities.

Users POIs Reviews #POlIs per user #Users per POI
3,566 13,154 157,189 44.07 11.95
3,811 16,042 207,800 54.53 12.95
10,606 23,816 490,730 46.27 20.61

https://doi.org/10.1371/journal.pone.0255685.t001

We clean the data set by removing users with fewer than 20 reviews. Table 1 reports the sta-
tistics of the data set in each city after cleaning. Each POI is associated with a geo-tag (latitude,
longitude) and a top-level POI category [22]. The resulting data set covers POIs from 21 differ-
ent categories. The data set also contains social relationships between users. That is, for each
user, it provides a list of the user’s friends on Yelp.

4 Neighborhood effect modeling (RQ;)

Fig 1 (top) plots the percentage of POIs having at least one other POI within 100 m, 200 m, or
500 m distance. We calculate the geographical distance between two POIs by the Haversine
formula [23]. When the threshold is 200 m, ~95% of POIs in each of the three cities have at
least one neighbor.

We define the size of a neighborhood as the number of POIs in its neighborhood. We adopt
the threshold of 200 m to define a neighborhood. That is, the neighborhood of a POl is given
by the set of POIs within 200 m radius of that POI. We adopt this definition of a neighborhood
due to its simplicity and popularity among researchers [6, 24], but our study is not limited to
this definition. With the threshold of 200 m, almost all POIs have some neighbor but not too
many POIs have too many neighbors. Fig 1 (bottom) outlines the frequency of neighborhood
sizes with the threshold of 200 m in each city. We observe that, the majority of neighborhoods
have fewer than 20 POIs, and only a few neighborhoods consist of more than 100 POlIs.

Our goal is to model the neighborhood effect when a user decides to visit a POI. We seek to
provide an interpretable framework to fully investigate the neighborhood effect by answering
questions such as: What constitutes the neighborhood effect and what is the corresponding
performance on POI recommendation? Is the neighborhood effect mainly dominated by a
user’s personalized preferences for the nearby POIs or the neighborhood property? Is it more
affected by a single POI or all the nearby POIs? Is it dominated by the least or most preferred

POI?
-
25 1 :
e 1,000 —— Phoenix
43 2 g
= %o . LTor\o/nto
al 0.95 2 —— Las Vegas
S ¢ 2. 500
%0 c —e— Phoenix %
= 0.9 —=— Toronto =
o 9
© —o— Las Vegas 0
g =
200 400 0 100 200 300
Distance threshold (in meters) Size of neighborhood

Fig 1. The percentage of POIs having at least one neighbor within a distance threshold of 100 m, 200 m, and 500 m (top). The frequency of
different neighborhood sizes in each city, considering neighborhood size of 200 m (bottom).

https://doi.org/10.1371/journal.pone.0255685.9001
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Table 2. Notation.

Ny The number of times a user u visits POI [

My The number of times a user u visits POIs belonging to category ¢

Tl The rating a user u gives to a POI /

n The number of times a POI [ has been visited

U The set of users who have visited a POI [

U. The set of users who have visited POIs belonging to category ¢

G The set of categories POI I belongs to

L The set of POIs, excluding POI J, that are located in the neighborhood of /

L! The set of POIs belonging to category ¢, excluding POI [, located in the neighborhood of I

Uﬂ” The set of users who have visited at least one POI in the neighborhood of , not including POI /

https://doi.org/10.1371/journal.pone.0255685.t002

In Sections 4.1 and 4.2, we define features to model a user’s preference toward a single POI
(user-POI features) and for a neighborhood (user-neighborhood features), respectively. These
fine-grained features help in interpreting the neighborhood effect and answering the questions
above. Table 2 shows the notation we adopt.

4.1 User-POI features

Instead of learning latent vector of users and POIs from matrix factorization models [6, 7] or
deep learning-based models [18, 19], we propose several sets of user-POI features to represent
a user’s preference for a POI for its better interpretability. In addition, most matrix factoriza-
tion-based methods learn the latent vectors from the check-in matrix, which is usually very
sparse. We exploit different sources of information to overcome the data sparsity problem.

We divide user-POI features into five categories.

4.1.1 Check-in features (RATING-FACTORIZATION). Due to the lack of check-in frequency
data, we exploit matrix factorization [25] on the observed user-POI rating matrix to factorize
users and POIs into a joint latent factor space. The inner products between a user and a POI’s
latent factors in this space measures how much a user is interested in the POL

4.1.2 Content features (CONTENT-EMBEDDING). Word embedding [26] maps words from a
high dimensional space to a continuous vector space of a much lower dimension such that
words with similar meaning have a similar vector representation. Recently, this approach has
gained popularity due to its performance boosting capability in many content analysis applica-
tions [17].

We train the word embedding for reviews in each city separately using the word2vec algo-
rithm [26]. Before training, we preprocess each review by converting all words into lower case
and removing all stop words, punctuations, and non-alphabetical words. Next, we retain only
words that appear at least four, four, and nine times, resulting in a vocabulary size of 42,212,
45,881, and 50,601 in Phoenix, Toronto, and Las Vegas, respectively. For Phoenix and
Toronto, the threshold of four reduces the vocabulary size to 20% of the original vocabulary
size. We choose this threshold by following an assumption (based on the Pareto principle [27])
that 20% of vocabulary can cover 80% of the user preferences expressed in the reviews. We
choose a different threshold for Las Vegas compared to the other two cities because the vocab-
ulary size in Las Vegas is much larger than the other two cities we study. We choose nine as
the threshold for Las Vegas because it yields a vocabulary size that resembles the other two
cities.

For each user, we aggregate all their reviews and average the embedding of all the words,
resulting in the user embedding. For each POI, we aggregate all the reviews of the POI and
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average the embedding of all the words, resulting in the POI embedding. We average instead
of concatenating embeddings by following Covington et al. [21]. As for the check-in features,
the inner products between user and POI embedding measures how likely the user will visit
the POL

4.1.3 Popularity features. A POUI’s popularity is an important indicator of user interests
in the POI [28]. We define popularity by three metrics:

(1). the number of visits,

NUMBER-VISITS-POI = Z”u.z =n, (2)

uel;

(2). the average rating of the POI,

AVERAGE-RATING-POI = (Zrur,)/n, =r, (3)

uel;

(3). the number of users who have visited the POI,

NUMBER-USERs-POI = |U}|. (4)

In our Yelp data set, #,,; is always one. However, we define this feature so that it is applica-
ble to other data sets that contain user check-in frequency. The popularity of a POI cannot dis-
tinguish one user’s preference for a POI from another user. In contrast, the POI category can
capture personalized preference because users may show distinct biases (or affinities) over POI
categories, e.g., a user will go to bars if they are interested in socializing and to gyms if they are
interested in fitness.

We define a user’s bias for a category c as

n

b S o (5)

In Eq 5, Cis the predefined set of categories in the data set. For users with insufficient
history for a category, we introduce a parameter 7 to overcome “cold start” [29]. That is,
b, .= 1 x d, where d, represents the category density in one city—the number of POIs
belonging to category ¢ divided by the number of POIs in a city. We set 7 to 0.3 in our
experiment.

Following Zhang et al. [1], we measure a user’s preference for a POI based on the POI’s
popularity weighted by the user’s category bias. A POI may be associated with several catego-
ries. We define three popularity features:

(1). the categorical popularity by number of visits,

n
VISIT-POPULARITY = E b, x L

: ’ 6
<G, > iec™ (6)
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(2). the categorical popularity by rating,

r
RATING-POPULARITY = E b, X ="

: 7
<, D’ )

(3). the categorical popularity by number of users,

Ul
USER-POPULARITY = E b, x

X 7 8
ol Zlec'Ul‘ ()

4.1.4 Geographical features. Due to the importance of geographical influence in a user’s
location visiting behavior, we also need to consider the distance between the location of POI /
and their visited locations. For each user, we compute a centroid location m,,, where the lati-
tude and longitude is the mean values of the latitudes and longitudes of their visited geo-coor-
dinates. We define two geographical features:

(1). the median of distances between POI [ and each visited POI of user © (MEDIAN-
DisTaNCE), and

(2). the distance between POI [ and #1,, (DISTANCE-TO-CENTROID).

4.1.5 Social features. We include two social features:
(1). the sum of visits over each user u’s friends for POI I (SociaL-Visit), and

(2). the average of ratings over each user u’s friends for POI [ (SociaL-RATING).

4.2 User-neighborhood features

For a user « and a POI ], we define u’s preference for I's neighborhood by excluding u’s prefer-
ence for I so that we can investigate how s nearby POIs affect u/’s preference for I.

Intuitively, the neighborhood effect may comprise two factors: the user’s preference toward
each POI in the neighborhood, individually (personalized features) and the properties of the
neighborhood (property features). According to the problem formulation in Section 3, person-
alized features correspond to w,, and property features correspond to w;.

4.2.1 Personalized features. We divide personalized features into four subsets by employ-
ing different aggregating functions—two subsets aggregate a user’s personalized preference
over each nearby POI by arithmetic (distance adapted) mean functions, and the other two sub-
sets model the neighborhood effect via maximum and minimum functions. Previous studies
[6-8] model the neighborhood effect via the arithmetic (distance adapted) mean functions. To
the best of our knowledge, no other researchers have investigated the performance of the
neighborhood effect via maximum and minimum functions.

To simplify the notation, let 3, ; represent one of the user-POI features. Thus, each one of
the following subsets includes nine features in evaluation.
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(1). Average preference over each nearby POI

AVERAGE-SCORE = (Zéw)/|L;l|. (9)

el
JELy

(2). Average preference over each nearby POI, but the similarity is adjusted by the distance,

DISTANCE-SCORE = (Z:équ X SIJ)/(ZSU)' (10)

jeL,t jeL,!
Following [6], we exploit a Gaussian distribution over the distance between POI / and
POI j to model their similarity. That is,

(@)’

Sy = ¢ @, (11)

where dj; is the geographical distance between POI /and POI j and ¢ is a constant, which
we set as 0.01 in our experiment.

(3). Maximum preference among nearby POls,

MAX-SCORE = ?;a;)l( 0, (12)

(4). Minimum preference among nearby POls,

MIN-SCORE = ;?L{I} 0, (13)

4.2.2 Property features. Property features capture the environmental context created by
the POIs in a neighborhood. For example, is the neighborhood a food plaza or a shopping
mall? Is it popular? We define a neighborhood’s popularity on a category c as the proportion
of POIs belonging to category c:

-1
pl =i (1)
We employ p, ! in multiple features below.
(1). Number of POIs in the neighborhood,
NuMBER-OF-POI = |L|. (15)

(2). We apply the entropy measurement to the neighborhood’s popularity over a category c:

CATEGORY-ENTROPY = —» p. ! x log p, ! (16)

ceC
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(3). For each user, we obtain their category-bias vector, where each item in the vector is the
user’s bias for the category c: b, .. For each neighborhood, we obtain its category distribu-
tion vector, where each item is the neighborhood’s popularity over the category p, .

Then, we compute the cosine similarity between the two vectors:
-l
Zce(]bu,c X pn,c
b 2 )2 ’
ZCEC( u,c) X Zcec(pn,c)

CATEGORY-SIMILARITY =

(4). This feature measures how many other POIs in the same neighborhood having the same
category with POI I. The competitiveness may have both positive and negative effects on
a user’s POI visiting behavior. For some categories like “nightlife”, a higher number of
POIs having the same category may be more attractive to users. However, for categories
like “restaurants”, users may become more selective when deciding which POI to visit,
reducing the chances of visiting some of them. Because a POI could have several catego-
ries C;, we pick the category that has maximum neighborhood popularity:

COMPETITIVENESS = max p;lc (18)
ceCy ’

(5). Sum of visits over all other POIs,

NEIGHBORHOOD-VISIT = an. (19)

o1
JeLy

(6). Average of ratings over all other POls,

NEIGHBORHOOD-RATING = (Zr]) JIL.

-
JELy,

(7). Number of unique users who visited at least one another POI in the neighborhood,

NEIGHBORHOOD-USER = |U,"|. (21)

5 Evaluation of neighborhood effect

We seek to answer two questions: (1) Does the neighborhood effect benefit POI recommenda-
tion? (2) What is the performance of different ways of modeling the neighborhood effect on
POI recommendation?

5.1 Evaluation strategy

For each user, we randomly choose 80% of their visited POIs as the training set, and the rest of
visited POIs as the test data. In addition, for each user, we sample a set of unvisited POIs
whose number is the same with their visited POIs, and 80% of them serve as the training data.
In this way, we transform the recommendation problem to a binary classification problem. A
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Table 3. AUC and accuracy for different classifiers on different combination of features.

City Metric POI Neighborhood Property Personalized
Average Distance Max Min
Logistic Regression | Phoenix AUC 0.8319 0.8581 0.8333 0.8553 0.8552 0.8535 0.8563
Accuracy 0.7540 0.7824 0.7565 0.7733 0.7731 0.7729 0.7739
Toronto AUC 0.8077 0.8256 0.8076 0.8201 0.8200 0.8204 0.8221
Accuracy 0.7353 0.7478 0.7353 0.7427 0.7427 0.7432 0.7443
Las Vegas AUC 0.8560 0.8683 0.8569 0.8647 0.8646 0.8621 0.8649
Accuracy 0.7731 0.7896 0.7764 0.7856 0.7853 0.7836 0.7847
FastTree Phoenix AUC 0.8788 0.8819 0.8809 0.8796 0.8795 0.8795 0.8800
Accuracy 0.8115 0.8135 0.8132 0.8123 0.8118 0.8123 0.8126
Toronto AUC 0.8585 0.8681 0.8672 0.8608 0.8607 0.8608 0.8595
Accuracy 0.7862 0.7942 0.7941 0.7880 0.7885 0.7872 0.7877
Las Vegas AUC 0.8958 0.9002 0.8999 0.8967 0.8971 0.8963 0.8971
Accuracy 0.8239 0.8279 0.8274 0.8258 0.8257 0.8253 0.8248

https://doi.org/10.1371/journal.pone.0255685.t003

pair is constructed between a user and a POI, and the label of the pair is positive if the user has
visited the POI. The features of each pair are computed based on the knowledge from the
training data. We apply logistic regression and a MART gradient boosting algorithm FastTree
[30]. All the features are normalized to [0, 1] before evaluation.

5.2 Evaluation results

We adopt the area under the curve (AUC) and accuracy as the classification evaluation metrics.
Table 3 compares the classification metrics with and without neighborhood features. We high-
light the highest value in each row. For simplicity, we use “POI” to represent user-POI features,
and “neighborhood” to represent all (personalized and property) user-neighborhood features.

Because user-POI features play a major role in POI recommendation, all classifiers include
those features. For example, “property” represents that user-POI features and property features
are included in the corresponding classifier.

First, adding user-neighborhood features increases AUC and accuracy in all three cities for
both classifiers. This suggests that the neighborhood effect can benefit POI recommendation.

Second, the improvement that user-neighborhood features yield is more obvious with logis-
tic regression than for FastTree. We conjecture that user-neighborhood features overcome the
simplicity of a model (as in logistic regression); thus, when the model becomes more sophisti-
cated (as in FastTree, which can recognize complex decision boundaries), the improvement
from user-neighborhood features is not as pronounced.

Next, we evaluate each type of user-neighborhood features to further investigate the neigh-
borhood effect.

(1). If we compare property features with each subset of personalized features, the AUC and
accuracy of the personalized features are better than the property features for Logistic
Regression. However, for FastTree, property features alone yield similar AUC and accu-
racy as the combination of property and personalized features. Thus, our evaluation results
do not show any significant difference between property features and personalized
features.

(2). There is not much difference among the subsets of personalized features in terms of AUC
and accuracy. If we consider all the nearby POIs in a neighborhood, there is not much
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difference if we adjust the similarity by the distance (average vs. distance). For the maxi-
mum (minimum) functions, because taking the maximum (minimum) of each user-POI
feature would result in different POIs, we further investigate the impact of each user-POI
feature.

For each classifier, we take all the user-POI features for POI [ and maximum (minimum) of
a specific user-POI feature over all the nearby POIs. Table 4 reports AUC for FastTree classifier
on each user-POI feature with maximum (minimum) aggregating functions. For example,
“visit-popularity” with the “max” function represents all the user-POI features for POI [ and
the maximum of “visit-popularity” feature among all the other POIs in the neighborhood. We
choose FastTree because it has a better performance than logistic regression.

(1). Our evaluation results do not show any significant difference between maximum and
minimum aggregating functions.

(2). InTable 4, we highlight the top-2 ranked feature with aggregation function in terms of
AUC across each city. The rating-popularity feature with the maximum function always
ranks within the top-2 among the three cities. Our results show that rating-popularity is
an effective feature in modeling the neighborhood effect: the maximum value of the single
feature shows a comparable performance with all the personalized features over all the
nearby POIs shown in Table 3.

6 Exploiting neighborhood features for POl recommendation (RQ.)

We showed different ways of modeling neighborhood effect and their corresponding perfor-
mance on POI recommendation. Next, we propose NbdMLP, an MLP-based recommender
that exploits the neighborhood features (described in Section 4).

Table 4. AUC for FastTree on each user-POI feature with maximum (minimum) aggregating functions.

Feature Function Phoenix Toronto Las Vegas
Rating-factorization Max 0.8790 0.8586 0.8959
Min 0.8790 0.8587 0.8959
Content-embedding Max 0.8790 0.8596 0.8965
Min 0.8794 0.8590 0.8963
Visit-popularity Max 0.8792 0.8595 0.8964
Min 0.8791 0.8589 0.8961
Rating-popularity Max 0.8796 0.8596 0.8965
Min 0.8794 0.8593 0.8964
User-popularity Max 0.8798 0.8598 0.8963
Min 0.8793 0.8595 0.8964
Median-distance Max 0.8788 0.8587 0.8958
Min 0.8790 0.8588 0.8957
Distance-to-centroid Max 0.8785 0.8588 0.8953
Min 0.8789 0.8590 0.8959
Social-visit Max 0.8789 0.8584 0.8956
Min 0.8787 0.8584 0.8960
Social-rating Max 0.8782 0.8584 0.8956
Min 0.8790 0.8584 0.8960

https://doi.org/10.1371/journal.pone.0255685.t1004
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Output Layer

MLP Layers

Embedding Layer

Input Layer

6.1 NbdMLP model architecture

An advantage of deep neural network-based recommenders (compared to traditional matrix
factorization) is the convenience of integrating heterogeneous, e.g., continuous and categori-
cal, features [21]. Previous studies have shown that an MLP-based model could mimic collabo-
rative filtering and yield a comparable performance [20, 21]. We adopt a similar architecture
due to its simplicity, effectiveness of imitating collaborative filtering, and convenience of inte-
grating heterogeneous features.

Since we choose the multilayer neural network as the function fin Eq 1, the equation can be
formulated as

Vi = Goua(Dx (- (05(01 (PTv,, Qv 0, 0))) ... )), (22)

where ¢,,,, is the mapping function for the output layer and ¢, represents the mapping func-
tion for the x-th layer, where x € [1, 2, .. ., X].

Fig 2 shows the NbdMLP model architecture. The input layers resemble the check-in
matrix, with a difference that each user and POI are transformed into a sparse vector with one-
hot encoding. The sparse input vector of a user (a POI) is embedded into a dense vector. The
obtained embedding of a user (a POI) layer can be seen as a latent vector in the collaborative
filtering. Importantly, the embeddings are learned jointly with other parameters in the model
training process.

The user and the POI embedding are concatenated with the neighborhood features, pro-
ducing a wide first layer of an MLP architecture. Inside MLP layers, several layers are fully con-
nected, and we choose Rectifier (ReLU) [31] as the activation function. The final output layer
is the predicted score y,, and the training objective is to minimize the pointwise loss between

I Training
Score { Yur |« Yul ) Target

¥, and its target label y,,; (0 or 1).

. / 4 \ J

User-Latent Vector Item-Latent Vector

ofoy1y]--10 ofojoy1y]--10 Neighborhood Features

User (u) POI (1)

Fig 2. The architecture of the NbdMLP model.
https://doi.org/10.1371/journal.pone.0255685.9002
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Because property features perform in par with personalized features (Section 5), we focus
only on property features with the user and POI embeddings for simplicity. We normalize all
such features to [0, 1] before feeding to the network.

The user and POI embedding can be pretrained with other models to improve the recom-
mender’s quality, which is not the focus of this study. The purpose of our work is to investigate
different aspects of neighborhood effect and propose a recommender that could easily inte-
grate the neighborhood features.

6.2 Evaluation strategy and metrics

For each user, we randomly choose 80% of their visited POIs for training, 10% of visited POIs
for validation (to tune parameters), and the rest of visited POIs for testing.

To solve the one-class CF problems [32], for each observed check-in pair, we randomly
sample five unobserved user-POI pairs as negative instances. As He et al. [20] suggest, the opti-
mal sampling ratio is around 3 to 6.

It is time consuming to rank all unvisited POIs for each user. Thus, as Koren’s [33] work,
we randomly sample 100 POIs that a user has not visited and add these to the test set of the
user. Then, we rank the POIs in this combined set of visited and unvisited POIs. We treat a
POI as discovered if it is visited and recommended. We apply the same strategy to all the base-
line methods. Based on this strategy, we evaluate the POI recommendation quality via two
metrics:

o Precision@N (P@N) = Number of discovered POIs among the top-N POIs / Number of rec-
ommended POIs

« Recall@N (R@N) = Number of discovered POIs among the top-N POIs / Number of actual
visited POIs

Specifically, we report P@5, R@5, P@10, and R@10.

We implement NbdMLP with Keras [34]. In deep neural models, more hidden layers and
more neurons in each layer would improve the model performance, but may require signifi-
cantly better server configurations. We select hidden layer parameters, considering both effi-
ciency and effectiveness. First, we choose the user and POI embedding size as 16. Because the
first layer in the MLP layers is concatenation of user and POI embeddings and neighborhood
features, its size is fixed. After experiments with different hidden layers on the validation set,
we pick 32 and 16 ReLU units in the second and third layers, respectively. We discuss more
details of hidden layer configurations in Section 6.5. We adopt batch size of 256, epochs of 10,
learning rate of 0.001, and Adaptive Moment Estimation (Adam) [35] as the optimizer.

6.3 Baseline recommendation approaches

We compare our approach, NbdMLP, with the two state-of-the-art recommendation algo-
rithms and their variants. To make these approaches comparable with NbdMLP, we select the
latent factors of users and POlIs as 16, and other parameters based on the best performance on
the validation set.

LIBMEF is the standard matrix factorization technique [36], where only the check-in matrix is
used for recommendation. We set the L2-norm regularization on users and POIs as 0.1,
0.05, respectively. The number of iterations is 10.

IRenMF is a state-of-the-art matrix factorization-based approach exploiting neighborhood
effect [6]. It models neighborhood effect both at the instance level (a few nearest POIs) and
at the region level (the geographical region where the POl is located). We set the
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regularization parameters A; and A, to 0.015, and the instance weighting parameter o to 0.6.
We choose the k-means algorithm to cluster all POIs into 100 regions. For each POI, the
closest 10 POIs are selected to model its instance-level neighborhood.

InMF is a special case of IRenMF, where the neighborhood effect only exploits the instance-
level characteristics.

RenMF is a special case of IRenMF, where the neighborhood effect only exploits the region-
level characteristics.

MLP is a special case of NbdMLP, without the neighborhood features. We adopt this baseline
to understand how the neighborhood features affect reccommendation. We set the parame-
ters of MLP to be same as those for NbdMLP.

6.4 Recommendation performance comparison

Fig 3 compares the recommendation metrics. First, compared with the other matrix factoriza-
tion-based baselines (all baselines except MLP), NbdMLP shows the best performance for
both P@5 and R@5 across the three cities. For P@10 and R@10, NbdMLP outperforms other
baselines except LIBMF on Toronto, with around 0.002 decrease for both metrics. Considering

Phoenix
0.3
0.2
0.1 ‘ ‘
Precision@5 Recall@5 Precision@10 Recall@10
Toronto
0.3
0.2
0.1
Precision@5 Recall@5 Precision@10 Recall@10
Las Vegas
0.4
0.3
0.2 I I
Precision@5 Recall@5 Precision@10 Recall@10
III NbdMLP RenMF InMF RenMF tmmMr B0 mrp |

Fig 3. The precision and recall of NbdMLP and five baselines.
https://doi.org/10.1371/journal.pone.0255685.9003
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the small difference and NbdMLP’s better performance with P@5 and R@5, we argue that
NbdMLP outperforms matrix factorization-based baselines across three cities.

IRenMF, InMF, and RenMF also exploit neighborhood effect. The better performance
of NbdMLP compared to these baselines indicates that integrating neighborhood features
into a deep neural network is an effective way of building neighborhood-based POI
recommenders.

The definition of neighborhood effect in InMF is very similar to the aggregated personalized
features in Section 4. NbdMLP outperforms InMF with all metrics across three cities. For
example, in terms of P@5, the improvement of NbdMLP over InMF is 51.64%, 86.47%, and
56.16% on Phoenix, Toronto, and Las Vegas, respectively. Even when we compare the perfor-
mance of NbdMLP with the best performing neighborhood-based baseline, RenMF, in terms
of P@5, NbdMLP yields improvements of 9.86%, 28.30%, and 5.33% on Phoenix, Toronto,
and Las Vegas, respectively.

Interestingly, NbdMLP outperforms MLP with all metrics in Phoenix and Toronto, but not
in Las Vegas. This observation suggests that neighborhood effect is not a major factor in decid-
ing a user’s POT’s visiting behavior in Las Vegas. We conjecture that, in a tourism city, such as
Las Vegas, a user’s POI visiting behavior is driven mainly by the popularity of a POI, but not
the nearby POls.

6.5 Experiments on hidden layers

We experiment with different hidden layer configurations of NbdMLP. Since the number of
neighborhood features can vary, we only indicate the size of hidden units of MLP layers in
Table 5, excluding the neighborhood features. However, the experiment results are conducted
with property features. For example, “32 — 16 — 8” indicates that the size of the concatenated
user and POI embeddings is 32 (where the embedding size of users and POIs is 16 each), and
the hidden units size of the second layer and the last layer is 16 and 8, respectively.

Table 5 only reports P@5 and R@5 for brevity. We highlight the highest value in each col-
umn. First, for a fixed embedding size, if we increase the size of hidden units of other layers
(e.g., 32 — 16 — 8 vs. 32 — 32 — 16), both P@5 and R@5 improve across three cities. The
results suggest that increasing the width of hidden layers improves performance.

If we only increase the depth of hidden layers, with the embedding size fixed (32 — 16 — 8
vs. 32 — 32 — 16 — 8), only Las Vegas shows improved P@5 and R@5. It suggests that
increasing the depth of hidden layers may cause overfitting and degrade the performance,
especially with a small data set. The same pattern remains if we increase the embedding size of
users (POIs), but make the other hidden layers remain the same (32 — 32 — 16 vs. 64 — 32
— 16). Because Las Vegas has a much larger data set than Phoenix and Toronto, increasing
the model complexity does improve the performance.

Table 5. P@5 and R@5 for hidden layer configurations.

Hidden layers Phoenix Toronto Las Vegas

P@5 R@5 P@5 R@5 P@5 R@5
32—16—8 0.2262 0.1565 0.2529 0.1526 0.3557 0.2574
32—32—16—8 0.2179 0.1478 0.2563 0.1563 0.3674 0.2620
32 —32—16 0.2387 0.1627 0.2586 0.1574 0.3688 0.2628
64 — 32 — 16 0.2277 0.1550 0.2392 0.1457 0.3724 0.2643
64 — 32— 16— 8 0.2142 0.1454 0.2348 0.1417 0.3836 0.2733

https://doi.org/10.1371/journal.pone.0255685.t005
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Opverall, this experiment suggests that increasing the complexity of hidden layers does not
always improve the performance. The performance depends on the scale and context of the
data sets.

7 Conclusions

We propose different sets of features to quantify a user’s preference for a neighborhood. These
features constitute an interpretable framework for analyzing the neighborhood effect with
respect to POI recommendation.

Our evaluation of neighborhood features indicates that property features (which capture the
environmental context of a neighborhood) perform in par with personalized features (which
capture a user’s personalized preference over nearby POIs). In addition, there is no significant
difference among aggregating functions of personalized features.

We propose NbdMLP, a deep neural network-based recommender, to exploit neighbor-
hood features. We demonstrate the promise of building a deep learning-based recommender
by incorporating heterogeneous information and conduct extensive experiments with differ-
ent hidden layer parameters. NbdMLP’s higher precision and recall over two matrix factoriza-
tion models, specifically in cities representing daily life style, suggest the effectiveness of our
approach in such cities. The influence of the neighborhood effect in tourism and possibly
other types of cities remains to be studied.
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