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Abstract
Warning: This paper contains examples of hateful content.
Please be aware that this content could be offensive.
Hate speech targets different social groups such as race and
gender, and poses a significant threat to social harmony. Re-
searchers are increasingly motivated to devise efficient tech-
niques to improve automatic hate speech detection on social
media platforms. However, current models are usually eval-
uated without considering hate speech targets and fail when
the targets are unseen in the training data.
In this study, we examine target (domain) shifts of hate
speech and propose Tad, an adaptation framework for neural
models that adopts domain-aware networks to improve cross-
domain hate speech detection. Tad features a hate knowledge
lexicon infusion network, a domain-specific network, and a
weighting network. We demonstrate that incorporating Tad
improves the performance of leading neural models in hate
speech detection when tested on unseen domains. Specifi-
cally, Tad yields improvements of up to 8.1% and an average
of 2.4% in macro F1-scores. Moreover, we identify data qual-
ity and quantity as vital factors to address performance gaps
between models tested on seen and unseen domains. Our re-
sults reveal that excessive knowledge infusion may result in
a decrease in performance such as for Religion. In addition,
we find trade-offs in cross-domain hate speech detection. For
example, weighted loss for heavily imbalanced data generally
improves performance.

1 Introduction
The openness and reach of social media are exploited by
malefactors to engage in hate speech targeting individu-
als or groups based on characteristics such as race, gen-
der, or ethnicity. Hate speech can lead to cyber and offline
crimes against minorities (Mathew et al. 2019). Automatic
hate speech detection is a way to protect vulnerable users
and promote inclusivity in online platforms. Consequently,
researchers are increasingly motivated to develop effective
methods for detecting hate speech on social media platforms
(Waseem and Hovy 2016; ElSherief et al. 2018; Arango,
Pérez, and Poblete 2019; Ousidhoum et al. 2019; Chiril et al.
2022; Mathew et al. 2021; Maity et al. 2022).

Hate speech detection in online communication is an im-
portant application of Natural Language Processing (NLP).
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Previous models of hate speech detection (Waseem and
Hovy 2016; Vigna et al. 2017; Swamy, Jamatia, and Gam-
bäck 2019; Mossie and Wang 2020; Kamal et al. 2023)
perform well when combining all training data from cer-
tain benchmark datasets related to specific target groups
(e.g., race). These approaches require a large number of hate
speech instances to achieve high performance. However,
real-world applications necessitate detecting hateful content
in social media when targets are new in training data. This
is due to targets constantly emerging. We can identify “do-
mains” in hate speech based on target groups (Ludwig et al.
2022) and corpora (Chiril et al. 2022; Sarwar and Murdock
2022). We focus on target groups to align with real-world
applications.

Hateful language varies across different domains, target-
ing groups like immigrants and women (Ludwig et al. 2022;
Sarwar and Murdock 2022). However, classifiers for hate
speech struggle to adapt to new domains (Bose, Illina, and
Fohr 2021; Fortuna, Soler-Company, and Wanner 2021), los-
ing up to 50% of their performance scores in out-domain
(where train and test data are from different targets) vis-á-
vis in-domain (where train and test data share the same tar-
get) experiments (Arango, Pérez, and Poblete 2019). This
challenge is exacerbated by domain shifts, where seem-
ingly innocent language contains offensive terms within spe-
cific communities, such as “ni**a” when used by African
American community (Vigna et al. 2017). Annotating hate-
ful content for new domains is labor-intensive, complicated
by biases in data collection and disagreements in annotation
(Dixon et al. 2018; Davani, Díaz, and Prabhakaran 2022).
Therefore, constructing robust hate speech detection classi-
fiers faces challenges when there’s a disparity between train-
ing and testing domains.

Another drawback is using a shared, domain-agnostic in-
put representation for different domains, limiting domain-
specific knowledge obtained during training (Liu, Zhang,
and Liu 2018). This approach may overlook domain nu-
ances, impacting task performance. Addressing this chal-
lenge requires techniques to effectively integrate domain-
specific information, enhancing model adaptability and per-
formance across diverse domains. For instance, the word
“bi**h” may indicate hate speech targeting women in one
domain, but it is commonly used in rap lyrics without
derogatory connotations.
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Figure 1: Framework of Tad. Here, wi represents a token in an instance, ŷj is the predicted hate label, and d̂j is the prediction
of whether an instance belongs to training domains (i.e., d̂j ∈ [0, 1]). Hateful tokens in are detected by an additional lexicon.

We study how performance varies across hate speech tar-
gets and propose a neural adaptation framework to model
domain shifts. We examine HateXplain (Mathew et al.
2021), a dataset that annotates each instance with hate and
target group labels. HateXplain labels nonhateful instances
unlike other multidomain datasets (ElSherief et al. 2018;
Ousidhoum et al. 2019; Basile et al. 2019), which enables us
to select diverse examples that encompass various domains.
This enables us to investigate the effectiveness of our ap-
proaches thoroughly. We consider three domains: Ethnicity
(e.g., Asian), Religion (e.g., Buddhism), and Sex Orienta-
tion (sexorient) (e.g., Asexual).

Methods We compare cross-domain hateful language dis-
tributions and analyze target shift impacts on hate speech
detection via cross-domain experiments, training regression
classifiers on one domain and evaluating on another. Statisti-
cal quantification of domain shifts using SHAP values high-
lights the importance of adapting from seen to unseen data.
To bridge performance gaps, we introduce Tad, a neural
framework featuring knowledge infusion leveraging a toxi-
city lexicon (Bassignana, Basile, and Patti 2018), a domain-
specific network adopting attention mechanisms for domain
descriptors (Vaswani et al. 2017), and a weighting network
dynamically adapting to domain shifts using a domain dis-
criminator to optimize training weights for tested domains
(Jiang and Zhai 2007). Our framework is shown in Figure 1.

Contributions As shown in Table 3, incorporating Tad
improves neural models’ performance for hate speech clas-
sification in cross-domain scenarios, yielding an average
F1-score improvement of 2.4% and up to 8.1% on Eth-
nicity. Our findings underscore the importance of learning
domain-specific hateful language for effective cross-domain
hate speech detection. Models leveraging external domain-
specific hateful knowledge, such as Sexorient, demonstrate
significant performance gains, averaging 2.5% when adapt-
ing to domain shifts. Furthermore, we observe that differ-
ent technologies exhibit varying strengths and limitations in

hate speech detection. While weighted loss generally en-
hances performance, it may lead to a decline in out-of-
domain performance for Sexorient. We will release our data,
code, and supplementary material if the paper is published.

2 Related Work
We discuss the literature on hate speech datasets and meth-
ods.

Datasets Researchers have collected hate speech datasets
from social media (Waseem and Hovy 2016; ElSherief
et al. 2018; Ousidhoum et al. 2019; Mathew et al. 2021).
While some are categorized by target groups like immi-
grants and women (Waseem and Hovy 2016; Basile et al.
2019), most are limited to single domains. This lack of
domain-specific knowledge leads to biased datasets due to
biased sampling procedures and drop performance of classi-
fiers (Arango, Pérez, and Poblete 2019). For instance, Wie-
gand, Ruppenhofer, and Kleinbauer (2019) demonstrate that
Waseem and Hovy’s (2016) dataset predominantly features
hate speech instances generated by a small group of au-
thors, with domain-specific keywords like announcer re-
lated to women’s competence in sports frequently appear-
ing. Despite the recent trend of annotating fine-grained
targets of hate speech on social media, many previous
datasets lack target labels for nonhateful instances (Tora-
man, Şahinuç, and Yilmaz 2022; Zampieri et al. 2023), or
conflate the concepts of “hateful” and “offensive,” (Almo-
haimeed et al. 2023) which should be distinguished (For-
tuna, Soler-Company, and Wanner 2021).

Methods Supervised classifiers like Logistic Regression
(LR) and Support Vector Machines (SVM) are widely used
in hate speech detection (Waseem and Hovy 2016; Vigna
et al. 2017; Swamy, Jamatia, and Gambäck 2019; Kamal
et al. 2023). Recent approaches incorporate word embedding
representations with Convolutional Neural Network (CNN)
(Zhang, Robinson, and Tepper 2018; Roy, Bhawal, and
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Subalalitha 2022; Ghosh et al. 2023) and Recurrent Neu-
ral Network (RNN) variants, including LSTM (Badjatiya
et al. 2017; Vigna et al. 2017), Gated Recurrent Unit (GRU)
(Mossie and Wang 2020), and transformer-based models
(Swamy, Jamatia, and Gambäck 2019). Capsule networks
(Kamal et al. 2023) are also utilized to capture textual rep-
resentations. Various strategies address domain adaptation
in hate speech detection. Chiril et al. (2022) demonstrate
that integrating domain-specific knowledge, such as emo-
tion and hateful lexical knowledge, improves model perfor-
mance. Sarwar and Murdock (2022) propose a method to
augment hate speech data through instance reconstruction.
However, these approaches face limitations due to dataset in-
compatibilities, posing methodology challenges (Zhou et al.
2021). For instance, Swamy, Jamatia, and Gambäck (2019)
find that BERT (Devlin et al. 2019) can transfer knowledge
between domains, but dataset incompatibilities remain a pri-
mary obstacle. Additionally, Fortuna, Soler-Company, and
Wanner (2021) stress the importance of accurate and non-
overlapping definitions of hate speech across datasets. Fur-
thermore, Ludwig et al. (2022) observe that unsupervised
methods can lead to negative knowledge transfer in cross-
domain hate speech detection due to incorrect pseudo-labels
interfering with training.

3 Dataset
This section introduces our dataset and approaches.

3.1 Dataset
We adopt HateXplain (Mathew et al. 2021), which consists
of around 20K annotated anonymized posts from Twitter and
Gab. The dataset was primarily annotated with the class la-
bels “Normal,” “Offensive,” and “Hate,” as well as anno-
tations of target groups such as LGBTQ. HateXplain dis-
tinguishes “Offensive,” and “Hate,” because Mathew et al.
(2021) argue that many messages can be offensive without
qualifying as hate speech. Unlike other datasets with target
annotations (ElSherief et al. 2018; Ousidhoum et al. 2019),
HateXplain includes annotations for all data points (Ludwig
et al. 2022), including those in the “Normal” class. There-
fore, we conduct experiments exclusively on HateXplain to
evaluate our method’s knowledge transfer abilities in strictly
separated target groups.

Domains Target groups # H # N # O

Ethnicity
African, Asian, Hispanic,
Indian, Jewish,
Caucasian, Arab

2,103 880 917

Religion
Buddhism, Christian,
Islam, Nonreligious,
Hindu

393 307 248

Sexorient Bisexual, Asexual,
Heterosexual, Homosexual 201 422 470

Table 1: The domains and target groups in our curated
dataset based on the HateXplain dataset (Mathew et al.
2021) (H: Hate, N: Normal, and O: Offensive).

Ludwig et al. (2022) extend the HateXplain dataset for
exploring domain adaptation technologies, but their cu-
rated dataset is not public. Although they refer to three do-
mains, namely Gender, Religion, and Race, they do not clar-
ify the targeted communities that were initially annotated
(e.g., African, Asian, and Indian). Hence, we follow Lud-
wig et al.’s (2022) method on categorizing the target groups
by ourselves based on the initiated annotations. HateXplain
employs three annotators for each instance. To ensure that
the trained models generalize effectively from a single do-
main to a new one, we collect instances where all three an-
notators agree on assigning a sole target group label. We fo-
cus on three categories. Ethnicity, Religion, and Sexorient—
because other target groups (e.g., Disability) contain fewer
than 60 instances annotated as “Hate,” risking poor results
due to insufficient coverage of all class labels. Table 1 dis-
plays data distributions.

4 Analysis: Target Shift Impacts
To qualify target shifts of hate speech language and how
these shifts affect hate speech classification, we conduct a
classification evaluation under a cross-domain setting that
trains a classifier on one domain and tests the classifier on
the other domains. We split 80% of documents as the train-
ing set and hold out 20% of documents as the testing set for
each domain corpus. We extract TF-IDF weighted uni-, bi-,
and tri-gram features on each domain corpus with the most
frequent 15,000 features during the training. We then build a
logistic regression classifier using LogisticRegression from
scikit-learn1 with default parameters. Finally, we evaluate
the classifier across each domain’s test set using macro F1
scores.
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Figure 2: In-Domain prediction results for each target, the
X-axis represents the training sets, whereas the Y-axis rep-
resents the testing sets used in logistic regression models.

As illustrated in Figure 2, in-domain scores exceed out-
domain scores. For example, the in-domain evaluation on
Ethnicity achieves 60.4% versus out-domain evaluation
when it becomes the tested new domain, ranging from
45.1% to 50.3%. The finding applies to other evaluations.
To qualitatively examine the domain shifts, we extract top
predictable word features for each domain by calculating
SHapley Additive exPlanations (SHAP) values (Lundberg

1https://scikit-learn.org/stable/
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Figure 3: Top ten predictive features computed using SHAP (Lundberg and Lee 2017). Larger values indicate greater importance
for explaining predictions.

and Lee 2017) using shap.2 Computing SHAP values is a
method for explaining the output of machine learning mod-
els in terms of the contribution of individual features to the
model’s predictions. The top ten predictable features of each
domain for the three labels are shown in Figure 3.

We observe that classifiers’ performance vary cross do-
mains and each domain has domain-specific language, while
some words are crucial in prediction performance. For ex-
ample, in Sexorient, the word kill has larger SHAP values
in Normal compared to that in Religion. Our results suggest
that learning domain-specific knowledge is crucial. Further-
more, dynamically adapting the learned knowledge to opti-
mize word weights from seen to unseen domains is neces-
sary. Therefore, we propose a neural adaptation framework
to model domain shifts, comprising three modules:
Knowledge infusion adopts extra knowledge to infuse

hateful content for unseen domains.
Domain-specific network learns the most salient hate con-

tent for each domain.
Weighting network adapts to domain shifts using the

domain-specific knowledge learned from seen domains.

5 Methods: Learning to Adapt Framework
Table 2 describes the notation used in this section.

Problem Reformulation Given hate speech instances
drawn from m distinct domains {Di}mi=1 (i.e., in in-domain,
m = 3; in out-domain, m = 2), where Di contains data
points that consist of (sj , dj , yj) where sj is a sequence of
words represented as w1, w2 . . . w|sj |. Here, dj is the domain
label for sj . Our objective is to find a function f that maps
each instance (sj , dj) to its corresponding hate speech label
yj ∈ [0, 1]. Our challenge is how to improve the generaliza-
tion f by identifying the correlations between domains.

Knowledge Infusion To enhance a model’s capacity to
identify hateful content, we infuse a lexicon during training.
We adopt HurtLex (Bassignana, Basile, and Patti 2018), a
popular lexicon for detecting hateful language on social me-
dia (Jiang and Zubiaga 2021; Chiril et al. 2022). HurtLex
contains 6,287 offensive, aggressive, and hateful English
words. We reprocess the input and generate a vector for

2https://shap.readthedocs.io/en/latest/

Notation Description

sj An input instance
dj Domain of sj
wi ith token in an input sentence sj
Di Data points of ith domain
yj Hate speech label for an instance sj
m Number of all domains
ht Hidden states of sj
Q Projection matrix that linearly project ht

M Domain descriptor matrix
K Dimension of M
P Projection matrix that linearly project M
Uj Domain-specific representation for sj
v A linear network to obtain Uj by projecting M and ht

aj Similarity between sj and M
zj Indication of whether a token belongs to the lexicon
λ Parameters of the knowledge infusion
θ Parameters of the prediction network
ϕ Parameters of the weighting network

Table 2: The notation used in this paper.

an instance sj as z1, z2, . . . , z|sj |, where if wi in the lexi-
con, zi = 1, else, zi = 0. We include an additional loss
Lk = −

∑
i|ci|zi, where ci denotes BERT’s output attention

weights for wi, indicating the salience of each token (Jain
et al. 2020). The term Lk decreases the loss when the impor-
tant tokens are hateful; it has no effect for nonhateful tokens.
The additional reward emphasizes the appearance of hateful
words, which benefits the model identifying hate content.

Domain-Specific Network As mentioned in Section 1,
domains exhibit language differences that alter the salience
of hate signals. Whereas previous works use domain-
agnostic representations (Chiril et al. 2022; Ludwig et al.
2022), we explicitly capture domain-specific representations
using domain descriptors (Liu, Zhang, and Liu 2018). Given
an input (sj , dj , yj), we apply an embedding layer (BERT
encoder) and BiLSTM to generate its general semantic rep-
resentation ht = h1, h2, . . . , h|sj|. We denote domain de-
scriptors as a matrix MK×m, where K is the dimension
of the input representations (the same as ht) and m indi-
cates the number of domains. The matrix M is automatically
learned. We weigh hidden states ht by each domain descrip-
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tor Mi for obtaining its domain-specific representation, U i
j .

Here, U i
j is the weighted sum of ht of attention scores aijt:

U i
j =

|sj|∑
t=1

aijtht, i ≤ m, (1)

where aijt sums up to one and reflects the similarity be-
tween the ith domain descriptor Mi and the hidden state
ht. To calculate aijt, we select the additive attention mecha-
nisms (Bahdanau, Cho, and Bengio 2015) over dot-product
(Vaswani et al. 2017) because doing so yields better per-
formance in our experiments. We adopt a one-hidden layer
feed-forward network (Liu, Zhang, and Liu 2018) to calcu-
late aijt as:

ujt
i = vT tanh(PMi +Qht),

ajt
i =

exp(ujt
i)∑|sj |

p=1 exp(ujp
i)
, i ≤ m, t ≤ |sj |,

(2)

where P and Q are matrices that linearly project M and ht

vectors into a 2K × K space. And, we normalize aijt via
softmax. Here, v serves as the linear layer after taking tanh
of the sum of the two vectors, where the output dimension
is set to 2K. It is empirically beneficial to project the repre-
sentation vectors to a larger space in our experiments. Fur-
thermore, we apply a self-attention layer to model domain
relations for simultaneously optimizing the ith domain de-
scriptor, Mi. We compute dot products between M and ev-
ery other domain descriptor and normalize the results using
softmax—that is,

M ′ = M · softmax(MTMi),

softmax(xi) =
exp(xi)∑
j exp(xj)

,
(3)

where M ′ is the updated descriptor for each domain.

Weighting Network To improve the generalization per-
formance, we incorporate an instance weighting network
(Jiang and Zhai 2007; Huang, Wormley, and Cohen 2022)
that dynamically adapts to domain shifts of hateful language.
We leverage a discriminator to optimize training weights for
target domains. The discriminator is a binary classifier that
predicts whether the input instances belong to source do-
mains. The discriminator calculates in-domain probabilities,
fϕ(dj |ht, Uj), where ϕ are the corresponding parameters.
We use cross-entropy loss for the weighting network as:

Ld = L(d̂j , fϕ(ht, Uj)), d̂j ∈ [0, 1] (4)

Thus, the weighting network dynamically adjusts the param-
eters, including those in the domain-specific network, such
as aijt. We optimize the prediction and weighting networks
separately, which enhances control of the training process.

Prediction We obtain the pretrained embeddings using
neural models that map sequences into dimensional embed-
ding representations of their textual context. We concate-
nate the weighted domain-specific representation with the
corresponding context embeddings so the model can learn

both domain-specific representations and context vectors of
an input instance. Then, we use a fully connected network
that applies softmax to predict ŷj ∈ [0, 1], which indicates
whether an input is hate speech. Following Mathew et al.
(2021), we apply dropout on the concatenated vectors and
employ a tanh activation function. We apply cross-entropy to
calculate the hate speech detection loss and optimize the net-
work by calculating Ly = L(yj , fθ(ŷj |ht, Uj)), where θ de-
notes the set of parameters including domain descriptors, at-
tention weights, and softmax parameters. In the out-domain
scenario, since the last layer has m outputs, we adopt an
ensemble approach (Liu, Zhang, and Liu 2018) to obtain a
single output for target domains during tuning. In particular,
since the predictor outputs probabilities on how likely a test
instance comes from the source domain, we use these prob-
abilities as weights to average each output predicted domain
label. Our experimental findings suggest that this approach
yields better performance than using the maximum proba-
bility. Combining the losses, the objective for our model be-
comes:

L = argmin
θ,ϕ,λ

·(Ly + Ld + λLk) (5)

where λ is a coefficient for controlling the importance of
knowledge infusion.

6 Experiments
Our curated dataset contains 5,741 instances from three do-
mains. To evaluate the effectiveness of our methods in en-
hancing hate speech classification, we implement our meth-
ods on established deep learning models known for their
strong performance in in-domain hate speech detection. By
doing so, we can evaluate the efficiency of our methods in
modeling domain shifts in cross-domain scenarios.

6.1 In- and Out Domain Settings
As in previous domain adaptation works (Chiril et al. 2022;
Ludwig et al. 2022; Huang, Wormley, and Cohen 2022), we
evaluate Tad’s performance in two settings. The in-domain
setting trains, validates, and tests models on the same do-
main. The out-domain setting trains models on two domains,
tunes model parameters on the third domain, and evaluates
them on the new domain. For example, we train models on
the Sexorient and Religion domains, then tune and test on
Ethnicity domain. For in-domain experiments, we randomly
split 80%, 10%, and 10% of instances into training, devel-
opment, and test sets. For out-domain experiments, we ran-
domly select 80% of the instances from each domain as test
sets and the remaining 20% for tuning.

6.2 Models
We employ Tad on neural models with established high in-
domain hate speech detection performance as suggested by
previous work (Ding, Zhou, and Zhang 2019; Mossie and
Wang 2020; Sarkar et al. 2021; Caselli et al. 2021). In the
in-domain experiments, we retain the default modules of the
models. For out-domain experiments, we adapt the modules
used in the in-domain experiments and then integrate Tad
after encoding the input instances.
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Ethnicity Religion Sexorient

Model No adapt Adapt No adapt Adapt No adapt Adapt

CNN+GRU 0.467 0.489 ↑1.2% 0.434 0.461 ↑2.7% 0.426 0.438 ↑1.2%
BiGRU 0.441 0.464 ↑2.3% 0.458 0.478 ↑2.0% 0.443 0.452 ↑0.9%
RNN 0.460 0.472 ↑1.2% 0.468 0.487 ↑1.9% 0.457 0.462 ↑0.5%
BiLSTM+Attn 0.472 0.553 ↑8.1% 0.470 0.481 ↑1.1% 0.443 0.458 ↑1.5%
cBERT 0.541 0.554 ↑1.3% 0.487 0.529 ↑4.2% 0.458 0.494 ↑3.6%
BERT 0.547 0.581 ↑3.4% 0.501 0.525 ↑2.4% 0.454 0.514 ↑6.0%
fBERT 0.544 0.560 ↑1.6% 0.517 0.538 ↑2.1% 0.458 0.512 ↑5.4%
HateBERT 0.557 0.563 ↑0.6% 0.522 0.545 ↑2.3% 0.480 0.520 ↑4.0%

Table 3: Comparisons of performance (macro F1 scores) with and without Tad in out-domain settings averaged over ten epochs.
“No adapt” retains the same modules as the models in in-domain experiments, whereas the “Adapt” incorporates Tad. The λ of
knowledge infusion is set to 0.2. The highest scores in each column are in bold.

• CNN+GRU (Zhang, Robinson, and Tepper 2018): The
model includes convolutional and max pooling layers to
capture local textual features. We employ convolution fil-
ter sizes of 2, 3, and 4, each with 100 filters. Then, we max
pool the outputs, passing the final vectors into a Gated
Recurrent Unit layer and then fed into a dense layer for
prediction.

• BiGRU (Ding, Zhou, and Zhang 2019): This method con-
sists of a stack of bidirectional GRU and capsule network
layers in its deep learning model.

• RNN (Mossie and Wang 2020): This method consists
of passing BERT-encoded embeddings through two fully
connected RNN layers.

• BiLSTM+Attn (Mathew et al. 2021): This model adds
an attention layer after sequential layers of a BiLSTM
model (Schuster and Paliwal 1997) and integrate attention
weights into the final sentence representation.

• cBERT (Chiril et al. 2022): The pooled hidden states
are fed into separate output layers for predicting hate
speech and domain, respectively, and their loss terms are
summed.

• BERT (Devlin et al. 2019): A transformer-based model
is a stack of encoder layers with twelve fully connected
neural networks augmented with self attention.

• fBERT (Sarkar et al. 2021) : This BERT model has under-
gone pretrained on an English offensive language corpus
of millions of tweets.

• HateBERT (Caselli et al. 2021): An alternative BERT
model pretrained on a dataset from banned Reddit com-
munities compromising offensive, abusive, and hateful
content.

For CNN+GRU and RNN-based models, we compute
the hidden states by passing BERT-encoded embeddings
through fully connected layers. For transformer-based mod-
els, we use the corresponding text representations by using
Huggingface3. In fBERT and HateBERT, we replace BERT
embeddings with the respective embeddings but keep the
original modules of BERT. Max length of texts and batch

3https://huggingface.co/

size are set to 256 and 64. The learning rate is tuned in the
range [1e−6, 1e−4] on the validation set for optimal perfor-
mance, and we report the best performance. The scheduler
for the learning rate is applied via StepLR using PyTorch4

with steps = 8 and γ = 0.7. The dimensions of the feed-
forward hidden layers of all models are set to 256. We use
dropout at different levels to regularize the outputs, where
the drop probability is set to 0.5. The AdamW optimizer
(Loshchilov and Hutter 2019) is used for transformer-based
models with ϵ = 1e−8 and RMSprop (Tieleman and Hinton
2012) is used for RNN-based models with γ = 0.9.

Model Ethnicity Religion Sexorient

CNN+GRU 0.624 0.495 0.500
BiGRU 0.638 0.476 0.492
RNN 0.630 0.489 0.554
BiLSTM+Attn 0.640 0.559 0.518
cBERT 0.649 0.584 0.564
BERT 0.653 0.635 0.566
fBERT 0.672 0.596 0.584
HateBERT 0.694 0.616 0.607

Table 4: In-domain performance (macro F1) comparisons.
The best scores of each column are in bold.

7 Results and Discussion
This section evaluates the selected models’ performance in
both in-domain and out-domain scenarios and then analyzes
methods to address performance disparities.

7.1 Analysis: In-Domain and Out-Domain
Performance Gaps

Table 3 and Table 4 report out-domain and in-domain perfor-
mances over ten epochs, respectively. The results show that
Tad is effective in adapting to domain shifts, resulting in re-
ducing performance gaps across domains for all the models.
We observe an increase of up to 8.1% in Ethnicity as shown

4https://pytorch.org/docs/stable/optim.html
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in Table 3. Notably, our methods exhibit the largest perfor-
mance improvement for Sexorient, averaging 2.8% across
all the eight experiments. Moreover, we find that models
trained and tested on Ethnicity outperform other domains.
We may explain this by Ethnicity’s large share of “Hate”
instances. Specifically, as depicted in Table 1, Ethnicity ex-
hibits the highest proportion of “Hate” instances, and Sex-
orient has the lowest. Table 3 displays that transformer-
based models outperform others, with a peak of 58.1% on
Ethnicity and a low of 45.4% on Sexorient.

7.2 Analysis: Performance Gaps between
In-Domain and Out-Domain Experiments

While incorporating Tad is effective in enhancing cross-
main experiments for the selected models, the results reveal
notable performance gaps, which reach as high as 8.7%. The
gaps can be attributed to data quality and quantity (Sarwar
and Murdock 2022), such as data imbalance caused by insuf-
ficient domain-specific language (Chiril et al. 2022; Ludwig
et al. 2022). Therefore, we focus on three components: (1)
efficiency of external knowledge, (2) sufficiency of tuning
data, and (3) balance of training data.
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Figure 4: Performance changes for HateBERT+Tad and
BiLSTM+Attn+Tad. Results for other models are omitted
because they have similar trends. The results when λ = 0.2
match Table 3.

External Knowledge Concentration Affects Performance
Figure 4 illustrates how performance changes due to the λ
parameter of the knowledge infusion module. We observe a
significant drop in performance when λ’s value goes above
0.6. The result suggests that external knowledge may com-
plicate model assessment, particularly when the prevalence
of hateful tokens becomes excessive, ultimately leading to a
decrease in performance. For instance, some words such as
idiot (in HurtLex (Bassignana, Basile, and Patti 2018)) are
prevalent on social media to express criticism or frustration,
but do not necessarily constitute hate speech.

Tuning Data Size Affects Performance As shown in Fig-
ure 5, we report performance on randomly selected 10% to
80% of instances from each domain’s full dataset to tune the
weighting network. Increasing the data quantity generally
improves performance across all three domains. This obser-
vation suggests that linguistic features of hate speech in real-
world applications can be challenging to capture, especially
when hateful words appear randomly.
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Figure 5: Data quality and quantity impacts. The left fig-
ures display the effect of development set sizes for tuning the
weighting network. The right figures illustrate performance
changes using UP and WL for balancing data distributions.

Data Imbalance Alleviation Results Vary Our dataset
is heavily imbalanced, which can impair a model’s perfor-
mance. We propose two methods to alleviate the effect of
imbalance:

Upsampling (UP): We upsample “Normal” instances with
duplication to the same amount of “Hate” instances,

Weighted loss (WL): We upweight the underpopulated la-
bels when computing the classification loss.

Figure 5 depicts the performance changes for Hate-
BERT+Tad, with other models exhibiting similar trends and
thus not included for brevity. We observe that the perfor-
mance of WL and UP varying across models. Additionally,
the WL approach demonstrates an improvement in the per-
formance of up to 4.62% as shown in Figure 5, which sug-
gests that data imbalance may be a significant challenge in
hate speech detection (Sarwar and Murdock 2022). These
observations corroborate previous results (Ludwig et al.
2022), which may be attributed to the complex landscape
of hate speech detection.

7.3 Ablation Studies
To verify the contributions of each part of our models, we
examine the contributions of knowledge infusion, domain-
specific network, and weighting network, separately in out-
domain experiments. Table 7 compares and reports the per-
formance changes of HateBERT+Tad, where we use atten-
tion weights during prediction as token importance attribu-
tions (Jain et al. 2020). The table shows that HateBERT’s
performance can be improved up to 2.7% (Sexorient) by
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Target Hate Speech Offensive Normal

- + - + - +

Ethnicity 0.657 0.705 0.406 0.433 0.462 0.482
Religion 0.613 0.655 0.230 0.326 0.541 0.562
Sexorient 0.464 0.485 0.382 0.483 0.532 0.546

∆ ↑ (%) 3.1 7.5 1.5

Table 5: Averaged performance changes (macro F1 scores)
of HateBERT+Tad in Table 3 over ten epochs of predicting
the three labels. “+” represents with Tad and “-” represents
without Tad.

adapting Tad. We find that incorporating a weighting net-
work and domain descriptors generally performs better than
knowledge infusion. Additionally, we note that the removal
of the domain-specific network results in the most decrease
in performance, reaffirming the value of learning domain-
specific knowledge (Chiril et al. 2022; Ludwig et al. 2022).
Moreover, Table 5 reports the performance changes of Hate-
BERT with and without Tad for each label. We observe that
our methods have the most positive impact on the “Offen-
sive” prediction, and the least impact is observed on the
“Normal” prediction.

7.4 Qualitative Analysis
We report the most common errors of HateBERT+Tad. We
randomly select 100 samples and summarize the most com-
mon reasons for mispredictions, as shown in Table 6, along
with examples.

Ambiguous usage Overuse of hateful words may lead the
model to rely too much on these words, despite their po-
tentially confounding nature.

Lack of slang The models struggle to identify content tar-
geting specific communities through the use of slang and
acronyms.

Words such as ni**a are prevalent on social media and
are commonly used nonhatefully (Example (d)) and (Ex-
ample (e)), which mislead the models to identify such con-
tents as “Hate.” Overused hate words such as in Exam-
ple (a) may confound the models, especially when infusing
external knowledge. Slang and jargon (e.g., acronyms) are
widely used on social media; they introduce noise and de-
grade automated classification performance (Naseem, Raz-
zak, and Eklund 2021), as seen in Example (c), highlighting
the impact of negative knowledge shifts. Furthermore, when
working with out-domain scenarios, the lack of domain-
specific knowledge in the source domain can lead to per-
formance degradation, making it challenging to generate
domain-invariant representations, as seen in Examples (b)
and (c). These examples demonstrate the complexity and nu-
ances of hate speech in real-world applications.

8 Conclusion
Our paper introduces novel methods that use domain-aware
networks to examine how performance varies across differ-

ent targets in hate speech detection. Although our meth-
ods improve hate speech detection performance in cross-
domain scenarios, there remain performance gaps between
in-domain and out-domain settings, revealing challenges in
achieving generalization in hate speech detection. We ex-
plore factors like data quantity, quality, and model structures
to address performance disparities through extensive exper-
iments. Our results reveal that additional hateful knowledge
is crucial for broader applicability. Moreover, when incorpo-
rating domain adaptation, the most substantial performance
improvement in out-domain experiments is observed for tar-
gets that frequently experience hate speech intertwined with
other targets. Our findings provide valuable insights for im-
proving hate speech detection and tackling the crucial chal-
lenge of domain shifts in hate language when it pertains to
various target groups.

8.1 Limitations and Future Work
We acknowledge limitations in our approach. First, some
source domains lack sufficient data, potentially leading to
inconsistent results due to inadequate class label coverage.
While HateXplain remains unique by including non-hateful
instances annotated with target labels, there’s potential for
further exploration with other datasets. Our experiments are
confined to a single dataset, making it challenging to gen-
eralize the main outcomes. Future work should explore ex-
periments on other datasets, such as tweets (Zampieri et al.
2023). We acknowledge that while there are numerous ad-
vanced architectures for hate speech, offensive language,
and abusive content detection models, detailed comparisons
between these models are beyond the scope of this current
work. We leave these comparative analyses for future re-
search endeavors, such as unsupervised methods (Ahmad,
Sujeeth, and Ekbal 2023), to address these limitations by in-
corporating a greater amount and higher diversity of data.
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