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Abstract

Argumentative stance classification is key role in identify-
ing authors’ viewpoints on specific topics. However, gener-
ating diverse pairs of argumentative sentences across vari-
ous domains is challenging. Existing benchmarks often come
from a single domain or focus on a small set of topics. Ad-
ditionally, manual annotation for accurate labeling is time-
consuming and labor-intensive. To address these challenges,
we propose leveraging website rules, readily available expert-
curated content, and large language models to bypass the
need for human annotation. Our approach produces a mul-
tidomain benchmark comprising 4,498 topical claims and
30,961 arguments from three sources, and spanning 21 do-
mains. We benchmark the dataset in fully supervised, zero-
shot, and few-shot settings, shedding light on the strengths
and limitations of the different methodologies.

1 Introduction
Argumentation is a pervasive human activity present in var-
ious aspects of everyday life, which involves expressing
viewpoints backed by reasons or attempting to persuade oth-
ers towards a specific perspective (Guo, Zhang, and Singh
2020; Guo and Singh 2023; Sobhani, Inkpen, and Matwin
2015). A crucial challenge in argument mining is stance
classification (Küçük and Can 2020), where the goal is to
classify an argument’s stance as either favor, against, or neu-
tral regarding a given claim. For example, argument The
possession of nuclear weapons provides countries with a
strong defense mechanism, deterring potential adversaries
from launching attacks can be classified as against the claim
All countries should give up their nuclear weapons.

Social media sites are prominent venues for the exchange
of ideas and arguments (AlDayel and Magdy 2021a). Claims
are often simplified into noun phrase topics, such as “nu-
clear weapon” for the above example. Previous research
has spent a lot of effort in constructing datasets concerning
various topics. For example, Mohammad et al. (2016) con-
structed a dataset with tweets commenting on Atheism, Cli-
mate change, Feminist, Hillary Clinton, Abortion, and Don-
ald Trump. Conforti et al. (2020b) studied public opinion
toward four financial merger events, Glandt et al. (2021)
investigated stance classification on three policies during
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Covid-19. Recently, Cruickshank, Soofi, and Ng (2024) col-
lected YouTube video comments and annotated their stance
towards the U.S. military.

One challenge to stance classification comes from the va-
riety of stance topics (Allaway and McKeown 2020). Many
prior benchmarks are not topically diverse. As mentioned
above, they typically feature a handful of topics, each with
a corpus of comments to facilitate the training of supervised
models dedicated to that topic (Stab et al. 2018). The acqui-
sition of stance labels relies on human annotators for ground
truth (Küçük and Can 2020), which is time-consuming and
difficult to scale up. Besides, most previous benchmarks fo-
cus on a single genre or source.

Accordingly, our objective is to construct a diverse and
multisource stance classification benchmark without human
annotation. Allaway and McKeown (2020) categorize stance
classification into two categories based on the topic: topic-
phrase and topic-position. For the former, the topic is typ-
ically a noun phrase (including proper noun), such as nu-
clear weapon. For the latter, the topic is a complete posi-
tion claim such as All countries should give up their nuclear
weapons. Notably, the argument we introduce at the begin-
ning of this section would be classified as favor for the for-
mer and against for the latter. This reveals a major differ-
ence between topic-phrase and topic-position stance classi-
fication: the latter is context-dependent. Our benchmark fo-
cuses on topic-position, as we argue that topic-phrase can be
easily converted into topic-position by constructing a posi-
tional claim, which has a more general form. Preferably, a
truly intelligent stance classification system should be able
to grasp the meaning of the topical claim and reverse its pre-
diction when the claim reverses itself.

We construct our benchmark from three types of sources:
a social media website, two debate websites, and arguments
generated by large language models (LLMs). For the social
media website, we leverage conversations from a subreddit
called ChangeMyView1 from Reddit, where a poster chal-
lenges other users to change the poster’s opinion expressed
by a positional title. The comments labeled by the poster
as successful can be seen as counterarguments to the ti-
tle (Guo, Zhang, and Singh 2020; Yuan and Singh 2023).
On the debate websites, opposing arguments are curated by

1https://www.reddit.com/r/changemyview/



Topical Claim Comment Stance

Space exploration is
a waste of money.

Instead of decreasing resources by space travel and such, we must deal with problems on
Earth first. Why bother spending all this money on exploring space when we could be
helping our own planet that us humans live on. . .

Favor

Animals have rights. It makes no sense to give animals rights because they cannot makes decisions about what
is right and wrong and will not try to treat us in an ethical manner in return. . .

Against

All student loan debt
should be eliminated.

Schools already have a heavy workload and limited resources. Adding moral education
to their curriculum may place an additional burden on teachers and administrators. It
could divert valuable time and resources away from core academic subjects, potentially
compromising the quality of education provided to students. . .

None

Table 1: Examples from our benchmark.

the users, who provide clear stance labels (Guo and Singh
2023). LLMs have been shown effective for data augmen-
tation (Sahu et al. 2022; Yoo et al. 2021; Edwards et al.
2022). To further enrich the diversity of the benchmark,
we use LLMs to generate arguments on both sides for a
given topical claim. The foregoing steps yield a combined
dataset of 4,498 topics and 30,961 arguments spanning 21
domains. Table 2 compares our benchmark with previous
benchmarks. Using this benchmark, we tackle the following
research questions.

RQ1 How does LLM-generated data benefit stance clas-
sification in real-world applications?
We conduct experiments on individual real-world
datasets and on combined LLM-generated and real-
world datasets to show the benefit of integrating LLM-
generated data during training. We use traditional ma-
chine learning methods (AlDayel and Magdy 2021b)
commonly applied in stance classification alongside pre-
trained LLMs like BERT (Devlin et al. 2019).

RQ2 To what extent do stance classification models gen-
eralize across topics and domains within a topic-
position framework?
Topic-position stance classification offers a notable ad-
vantage due to its flexibility. It analyzes pairs of argu-
mentative sentences instead of being limited to the top-
ical noun phrase. This research question addresses how
effectively stance classification can generalize across
both topics (i.e., different topics from the same source)
and sources (i.e., different sources covering similar or
different topics).

RQ3 How does supervised finetuning compare to zero-
shot and few-shot learning with LLMs for cross-
domain stance classification?
Supervised finetuning and in-context learning are two
common methods for adapting models to specific tasks.
Research shows that LLMs can adapt well to new tasks
in zero-shot and few-shot scenarios (Brown et al. 2020),
which do not require any training data. In contrast, super-
vised finetuning substantially improves performance on
data within the trained domain, but often fails to gener-
alize effectively to new domains (Ng and Carley 2022a).
This question addresses the relative effectiveness of these
two approaches for cross-domain stance classification.

Findings We observe that incorporating LLMs generated
data into the training process enhances in-domain perfor-
mance of traditional machine learning techniques, includ-
ing Support Vector Machines (SVM), Convolutional Neural
Networks (CNN), and Bidirectional Long Short-Term Mem-
ory (BiLSTM) networks. However, this strategy yields in-
consistent outcomes when applied to finetuning contempo-
rary LLMs. We also observe that generative models consis-
tently outperform classification models with supervised fine-
tuning. LLMs yield commendable performance in zero-shot
settings for cross-domain evaluation, though a substantial
performance gap remains in comparison to in-domain su-
pervised finetuning. Furthermore, in few-shot experiments,
instruction-tuned LLMs consistently outperform their non-
instruction-tuned counterparts, highlighting the effective-
ness of instruction-tuning as a robust approach for adapting
LLMs to downstream tasks.

Contributions Our contributions are twofold:

• We propose a scalable and extensible framework to con-
struct a diverse and multisource benchmark for argumen-
tative stance classification without human annotation.

• We implement and evaluate fully-supervised, zero-shot,
and few-shot learning using LLMs. This thorough as-
sessment facilitates a comparative analysis of various
methodologies, emphasizing the efficacy of instruction-
tuning for optimizing the performance of LLMs.

The rest of this paper is structured as follows: Section 2
reviews related work and positions our research in relation
to existing studies. Section 3 introduces the proposed frame-
work for constructing a multisource stance classification
benchmark. Section 4 presents experiments using both tra-
ditional machine learning models and contemporary LLMs
with supervised finetuning. Section 5 examines zero-shot
and few-shot learning across various LLM families. Sec-
tion 6 summarizes our work and discusses its broader im-
pact.

2 Related Work
Stance is a speaker’s evaluation of a proposition or topic.
The proposition may be implicit as a topic-phrase (a noun
phrase) or explicit as a topic-position (a positional claim)
(Allaway and McKeown 2020). Datasets from early research



Authors Diversity Source Topic Type Size

Mohammad et al. (2016) 6 topics Twitter Phrase 4870
Stab et al. (2018) 8 topics Google query Phrase 25 492
Allaway and McKeown (2020) 4641 noun phrases Debate website Phrase 18 545
Ferreira and Vlachos (2016) 300 rumor claims News article Position 2595
Gorrell et al. (2019) various claims Twitter, Reddit Position 8574
Bar-Haim et al. (2017) 55 claims Debate website Position 2394
Hanselowski et al. (2019) 6422 claims Fact-check website Position 19 439
This paper 4498 claims Reddit, Debate website, LLM Position 30 961

Table 2: Comparison with previous benchmarks.

originate from arguments in online debate forums (Soma-
sundaran and Wiebe 2010; Murakami and Raymond 2010;
Walker et al. 2012; Hasan and Ng 2014) and mostly fall un-
der the topic-phrase category (AlDayel and Magdy 2021a).
More recent datasets cover various topics (Sobhani, Inkpen,
and Zhu 2017; Qazvinian et al. 2011; Mohammad et al.
2016; Conforti et al. 2020b; Li et al. 2021; Glandt et al.
2021). For topic-position stance classification, datasets pri-
marily come from news articles, where headlines are used as
the topic-phrase (Ferreira and Vlachos 2016; Habernal et al.
2018; Conforti et al. 2020a; Chen et al. 2019; Qazvinian
et al. 2011). Many existing datasets are generated from one
source in one domain and focus on comments for a small set
of topics, followed by human annotation.

We emphasize the topic-position variant of stance classi-
fication because phrases can be transformed into positions
by formulating an affirmative claim (e.g., Abortion maps
to Abortion should be legalized ). Unlike previous works,
which rely on human annotators for labeling, we leverage
website rules, readily available expert-curated content, and
large language models to acquire faithful stance labels.

3 Benchmark Construction
We now describe the details for building our benchmark.

3.1 Dataset Collection
To enhance textual diversity, our benchmark is curated with
content from three types of sources: a social media website,
debate websites, and LLM generation.

Social media website ChangeMyView (CMV) is a sub-
reddit (forum on Reddit) in which participants contribute
their opinions and engage in discussions with the explicit
aim of defending their perspectives. A typical CMV post ad-
heres to a particular structure: it begins with the abbreviation
“CMV: ” signifying Change My View, followed by a con-
cise representation of the author’s viewpoint. Subsequently,
the body of the post provides the rationale for their stance.
If any of the comments made by the participants success-
fully manage to influence a shift in the author’s viewpoint,
the author acknowledges this change by awarding the com-
menter with a delta. Therefore, we extract the title, body, and
delta-awarded comments, where the title corresponds to the
designated topical claim, the body constitutes a supportive

argument, and the comments bearing a delta reward act as
counterarguments.

We leverage two existing CMV datasets (Tan et al. 2016;
Al-Khatib et al. 2020) because Reddit now limits its API to
return at most 1000 recent posts. To keep the text meaningful
and concise, we select bodies and comments with a length
between 20 to 200 words.

Debate websites We selected two sites dedicated to online
debates, idebate.net and debatewise.org, due to their well-
structured presentation of arguments for and against a po-
sition. These sites provide clear and comprehensive argu-
ments, thus obviating the need for annotation. We captured
the subjects of a debate along with the associated arguments.

Some of the arguments were excessively verbose. How-
ever, we observed that the stance of an argument can typ-
ically be discerned within the initial few sentences. There-
fore, in the interest of improving the manageability of the
data, we retained only the initial five sentences of each argu-
ment. This choice aligns with our restricting the CMV argu-
ments to 20 to 200 words.

Figure 1: Domain distribution of the topics in our dataset.

3.2 LLM-Generated Arguments
We use GPT-3 to generate text because it produces coher-
ent, contextually relevant, and fluent language. GPT mod-
els are pretrained on vast amounts of diverse data, enabling
them to mimic human-like language patterns across various



Prompt 1: Generate a claim for each topic.
Given a question or topic, generate a controversial claim.
Input: Should Halloween costumes be allowed in schools?
Output:

Prompt 2: Generate three opposing arguments
Given a topic, write three distinct supporting arguments and
three opposing arguments. You should write in 1st person
view rather than 3rd person view. Don’t explicitly say I sup-
port or oppose. Don’t summarize the points at the beginning.
Topic: Halloween costumes should be allowed in schools.

topics. Previous research has demonstrated GPT’s ability to
encode beliefs into argumentative texts (Alshomary et al.
2021) and to determine rumors and antagonistic relation-
ships between Twitter users by detecting stances in replies
and quotes (Villa-Cox et al. 2020). We employ GPT-32 to
produce arguments from multiple perspectives on diverse
subjects. This process involves three steps.

Topic collection We conducted a search with Google to
identify contentious subjects and compiled such topics from
ten web sources (listed in Appendix A).

Claim generation The topics collected from the web have
various forms. We use Prompt 1 shown below to generate a
claim for each topic.

Argument generation For each claim, we use Prompt 2,
shown below, to generate three arguments from both sides.

CMV Debate LLMG Total

Topical claims 1873 982 1643 4498
Arguments 6407 14 696 9858 30 961
Favor 1863 7319 4929 14 111
Against 4544 7377 4929 16 850
None 5609 2904 4929 13 442
Args/Claim 6.4 17.9 9.0 6.9
Length/Arg 105.2 102.3 56.2 86.7

Table 3: Statistics for our benchmark. Args/Claim means
the average number of arguments per claim, and Length/Arg
means the average number of words for each argument.

Constructing neutral arguments The above methods as-
sign stance labels of favor or against, as in some prior
datasets. Generating a neutral stance, however, is difficult
since a judgment of neutrality often depends on the anno-
tator’s interpretation. We seek to compel the LLM to focus
on how the argument and the topical claim relate, moving
beyond reliance on surface-level linguistic cues.

For each claim, we create neutral arguments by randomly
selecting arguments for other claims. Consequently, we de-
fine a neutral stance as one that includes either irrelevant ar-

2https://platform.openai.com/docs/guides/text-generation/chat-
completions-api

Prompt 3: Classify arguments into predefined categories.
Given a topic, classify which domain the topic falls into.
Output the domain directly without other words. Some ex-
ample domains are sport, environment, civics, history, ed-
ucation, politics, technology, literature, arts and music, sci-
ence, ethics and animal, finance and business, global affairs,
health, psychology, law and justice, relationship, nursing,
religion, food and nutrition. You should pick the category
that most closely matches the topic. If none of the categories
matches, you can use a new category of your own.
Topic: Halloween costumes should be allowed in schools.
Output:

guments or instances where no discernible stance can be in-
ferred. One way is to randomly sample arguments. However,
it may yield semantically distinct instances that are easily
captured by the model. That is, classification is easier when
the sampled arguments address completely different topics
from the claim. To improve this, we use BERT to embed all
claims and arguments. For each claim, we randomly sample
three arguments falling within the similarity score range of
[0.3, 0.5]. This criterion is motivated by the fact that highly
similar arguments may include content that may convey an
implied stance. Conversely, moderately similar arguments
may seem to discuss related subjects but be subtly different,
thereby forming more challenging examples. For example,
the third claim in Table 1 concerns student loan debt, but the
comment is about moral education: thus, it doesn’t indicate a
stance about the claim, though they both relate to education.
We use “LLMG” to refer to the dataset generated by GPT-3.

3.3 Dataset Characteristics
Table 1 and Table 3 show some examples and the statistics
for our dataset, respectively. Our dataset exhibits greater di-
versity than prior datasets. We apply GPT-3 to classify these
arguments into predefined categories or generate novel do-
mains, as shown by Prompt 3. This process yields over 100
domains across all topics. We consolidate these into 21 prin-
cipal domains. Figure 1 illustrates the distribution of these
domains across the topics.

3.4 Validate LLM-Generated Dataset
To evaluate LLMG’s quality, we (1) manually verify that
GPT-3 adheres to the guidelines and produces accurate re-
sponses and (2) compare the lexical diversity of real-world
datasets and GPT-3 generated content.

Human verification First, we applied regular expressions
to search for phrases like as an AI, I cannot and its varia-
tions, such as as an AI, I can’t, in LLMG and found no such
occurrences. Second, three independent raters labeled 200
randomly selected arguments from LLMG. We designed a
survey to assess two key aspects of the GPT-3 response:

Acceptance: Does the sentence indicate that the AI refused
to provide a response? For instance, does it contain vari-
ations of as an AI, I cannot?



Model CMV Debate LLMG CMV + LLMG Debate + LLMG
Against Favor None Against Favor None Against Favor None Against Favor None Against Favor None

SVM 0.423 0.142 0.332 0.311 0.340 0.168 0.520 0.568 0.558 0.463 4.0 0.332 19.0 0.426 16.9 0.480 9.4 0.492 15.2 0.265 9.7

CNN 0.481 0.328 0.473 0.421 0.460 0.237 0.620 0.646 0.598 0.546 6.5 0.434 15.0 0.554 8.1 0.552 13.1 0.506 5.6 0.286 4.9

BiLSTM 0.524 0.372 0.531 0.471 0.474 0.356 0.662 0.645 0.651 0.564 4.0 0.450 16.9 0.585 7.8 0.526 5.4 0.510 3.6 0.386 3.0

Table 4: Macro-F1 scores with a single dataset versus using LLMG for weak supervision. The subscript numbers indicate
performance improvement compared to a single dataset. The training and test splits are consistent with those in Table 6. The
test set for CMV+LLMG and Debate+LLMG are the same as merely training using CMV and Debate, where the training set
merges CMV and Debate with LLMG.

Model Dataset Against Favor None

SVM CMV 0.40** 1.90*** 0.94**
Debate 0.40** 1.20** 0.67**

CNN CMV 0.65** 1.06** 0.81***
Debate 0.75*** 1.31** 0.49**

BiLSTM CMV 0.40** 0.78*** 0.54**
Debate 0.68** 0.91*** 0.42**

Table 5: Cohen’s d Effect Sizes for SVM, CNN, and BiL-
STM on the three datasets with and without LLMG. Here,
** and *** denote levels of statistical significance, where
** means a p-value of < 0.05 and ** means a p-value of
< 0.001. The p-values are computed using a t-test of the
differences in the means of Macro-F1 scores.

Accuracy: Does the response adhere to Prompt 2, specif-
ically including three supporting and three opposing ar-
guments in the correct order?

Each question could be answered as Yes or No. We ob-
served that the raters, based on majority voting, found no
instances of refusal to answer, and 99% of the responses ad-
hered to the instructions in Prompt 2. The few answers that
did not follow the prompt were instances where the first-
person perspective was not used. Both tasks were rated as
strongly related, with Cohen’s Kappa scores of 1.0 for AI
acceptance and 0.95 for AI accuracy. These results indicate
that LLMG contains high-quality text.

Lexical and semantic diversity Figure 2a illustrates that
sentences in LLMG exhibit greater lexical diversity than
those in the CMV and Debate datasets. Lexical diversity
is quantified using the metric called distinct-2—the number
of unique bigrams and normalizing by the total number of
words generated—which is a popular metric for lexical di-
versity (Li et al. 2016; Park, Yang, and Park 2019).

The overall distinct-2 scores—i.e., averaged across all
sentences on Favor, Against, and None, respectively—are
as follows: 0.774 for CMV, 0.719 for Debate, and 0.863
for LLMG. Specifically, the distinct-2 scores for Favor are
0.771 for CMV, 0.782 for Debate, and 0.767 for LLMG;
for Against; they are 0.674 for CMV, 0.719 for Debate,
and 0.770 for LLMG; and for None, they are 0.792 for
CMV, 0.825 for Debate, and 0.823 for LLMG. This find-
ing aligns with previous research indicating that machine-
generated text often exhibits greater lexical diversity than
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(a) Lexical diversity is calculated by bigram percentage.
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(b) Semantic diversity is calculated as (1− σ), where σ is the rel-
evant cosine similarity between EBR embeddings.

Figure 2: Lexical and semantic diversity scores across
datasets and labels.

human-authored text (Lee, Liang, and Yang 2022; Ravi et al.
2024).

Moreover, we compare semantic diversity across the three
datasets. Diversity is determined by averaging the cosine
similarity between the BERT embeddings of each instance.
Semantic diversity is measured by averaging the cosine sim-
ilarities between BERT embeddings for each instance. A
lower similarity indicates higher diversity. Figure 2b illus-
trates that the overall semantic diversity values are 0.84 for
CMV, 0.86 for Debate, and 0.91 for LLMG. This indicates
that LLMG has the highest semantic diversity of the three
datasets. Breaking down by label for CMV, Debate, and
LLMG, respectively, we see that: for Favor, the diversity
values are 0.78, 0.87, and 0.90; for Against, 0.91, 0.89, and
0.94; and for None, 0.84, 0.85, and 0.88.

In other words, LLMG shows the highest diversity across
all labels, underscoring its superiority in capturing greater
lexical and semantic variations than both CMV and Debate.
Thus, LLMG is potentially better suited for more nuanced
analyses than the other datasets, making it a valuable re-
source for investigating stance.



train dev test

topics args favor against topics args favor against topics args favor against

CMV 748 2633 744 1889 188 626 188 438 937 3148 931 2217
Debate 392 5860 2934 2926 99 1538 757 781 491 7298 3636 3662
LLMG 656 3936 1968 1968 165 990 495 495 822 4932 2466 2466
Total 1796 12 429 5646 6783 452 3154 1440 1714 2250 15 378 7033 8345

Table 6: Data distributions between train, dev, and test splits.

BERT T5 LLaMa

CMV Debate LLMG Avg CMV Debate LLMG Avg CMV Debate LLMG Avg

CMV 0.789 0.477 0.557 0.608 0.771 0.489 0.752 0.679 0.820 0.513 0.652 0.662
Debate 0.765 0.594 0.738 0.699 0.529 0.616 0.791 0.645 0.665 0.672 0.822 0.720
LLMG 0.554 0.473 0.770 0.599 0.593 0.483 0.832 0.636 0.515 0.453 0.759 0.576
All 0.760 0.594 0.727 0.694 0.782 0.632 0.933 0.782 0.851 0.733 0.834 0.806

Table 7: Cross-dataset finetuning performance of macro-F1 for three models for the specified dataset component.

4 Fully Supervised Finetuning
We now address RQ1 and RQ2 by conducting experiments
with both traditional machine learning models and LLMs.

4.1 Traditional Machine Learning Models
We conduct experiments using popular stance classifica-
tion methods. AlDayel and Magdy (2021b) identify SVM,
CNN, and BiLSTM as leading machine learning methods
for stance classification. Therefore, we evaluate the effec-
tiveness of LLMG as a weakly supervised approach for real-
world datasets. We adopt Word2Vec embeddings—a well-
known embedding approach. For BiLSTM and CNN, we
fine-tune the models with a learning rate of 2e−4, AdamW
optimizer, 0.5 dropout, and CrossEntropy loss.

Table 4 presents the performance of classifying the three
stance labels with and without LLMG as weak supervision.
The results show that LLMG greatly improves the perfor-
mance, particularly for CMV’s Favor label and Debate’s
Against label, with average performance gains of 10% and
9%, respectively.

These improvements across diverse datasets and stance
labels demonstrate that incorporating AI-generated data en-
hances stance classification generalizability (Ng and Carley
2022b), reaffirming the benefits of LLMs in real-world ap-
plications (Lee, Liang, and Yang 2022; Ravi et al. 2024).

Moreover, Table 5 presents Cohen’s d effect sizes across
the three models on two datasets with respect to three stance
categories: Against, Favor, and None. The results suggest
varying levels of statistical significance, where higher values
correspond to stronger effects. The SVM and CNN models
are averaged over ten-fold cross-validation, while BiLSTM
was trained for ten epochs. Similarly, CNN and BiLSTM
models show significant gain in performance, especially in
the Favor category for both datasets, with effect sizes rang-
ing from 0.78*** to 1.31** across models. Overall, these
results indicate that incorporating LLMG (Language Model

Guidance) is effective in improving stance classification, as
evidenced by the strong effect sizes, particularly in distin-
guishing stances that favor a position.

4.2 Large Language Models
We use SLM (S for Small) for the previous generation of
language models, such as BERT (Devlin et al. 2019), to con-
trast them with LLMs. A prevalent method for classification
using SLMs involves finetuning, which entails exposing a
pretrained SLM to domain-specific data. However, finetun-
ing is not always the optimal method for customizing LLMs
and some research have suggested it could be detrimental
to performance. Moreover, whereas finetuning is tractable
for SLMs, it demands substantial computational resources
for LLMs. Therefore, we compare SLMs and LLMs for su-
pervised finetuning for stance classification. For finetuning
BERT, we concatenate the topic and argument with the spe-
cial token [SEP] and prepend the sequence with the special
token [CLS] to form the template [CLS] + Topic + [SEP] +
Argument. A three way classification head is added on top
of the token [CLS] to perform the classification task.

For finetuning the generative models T5 and LLaMa, and
use the same template as in the Training Prompt (below). We
show a few concrete examples in Appendix C. As for autore-
gressive pretraining, we apply the maximum likelihood es-
timation, which involves minimizing the cross-entropy loss
between the predicted probability distribution of the next to-
ken and the actual token for the whole sequence. At infer-
ence time, we simply remove the gold label from the prompt
so that the model can make a prediction. The output length
is limited to two.

4.3 Experimental Setup
Our evaluation involves (1) BERT (Devlin et al. 2019), rec-
ognized for its effectiveness in classification, (2) T5 (Raf-
fel et al. 2020), a generative counterpart to BERT, and (3)



Training Prompt for Generative Models.
Classify the stance of the argument towards the topic as
either favor, against, or neutral. Return the label only
without any other text.

Topic: {topic}
Argument: {argument}
Label: {label}

LLaMa-7b (Touvron et al. 2023), a popular LLM. We con-
duct the following experiments.

Finetuning with a single dataset To evaluate general-
izability in stance classification, we assess how a model
trained on one dataset performs on another dataset.

Finetuning with multiple datasets We extend the above
evaluation to include finetuning on combined datasets.

Finetuning with varied sizes of training data We evalu-
ate the effect of data size (from combined data) on finetun-
ing. For all datasets, we adopt the macro-F1 metric, namely,
the average F1 score for each label category (Favor, Against,
None). For BERT (110M) and T5 (250M), we perform fine-
tuning with all parameters. For LLaMa-7b, we apply the
QLoRA (Dettmers et al. 2023) quantization technique, up-
dating only 20 million parameters. Table 6 shows how we
split the data into train, dev, and test sets. The hyperparame-
ter settings for all models are shown in Appendix B.

4.4 Results
We now present the results of our experiments. Table 7
shows the results for finetuning with a single dataset and
with all of the three datasets. These results reveal a persis-
tent challenge across all models: a difficulty in adapting to
new datasets when subjected to finetuning with one dataset,
indicating the subtle differences between domains.

Notably, the best average performance is achieved by
LLaMa-7b fine-tuned on the Debate dataset. For finetun-
ing with multiple datasets, LLaMa-7b is the model with the
highest average F1 across all three datasets. Despite having
fewer fine-tuned parameters (20M compared to 110M and
250M), LLaMa-7b outperforms its counterparts, reflecting
the power of LLMs in complex tasks. Both T5 and LLaMa-
7 beat BERT, highlighting the advantage of using generative
models over classification-oriented models for stance classi-
fication.

We now describe our ablation studies. Figure 3 presents
the results for different amounts of training data. The three
models demonstrate comparable and high training sample
efficiency. Notably, with approximately 25% of the training
data, each model achieves nearly 95% of its optimal perfor-
mance.

5 Zero-Shot and Few-Shot Benchmarking
The zero-shot and cross-topic variants of stance classifica-
tion are well-aligned since both involve topics not encoun-
tered during training. To address RQ3, we evaluate strict

zero-shot and few-shot learning. Research suggests that the
knowledge that LLMs possess is predominantly acquired
through pretraining (Cruickshank and Ng 2023). This im-
plies that LLMs possess the inherent capacity to address var-
ious tasks, provided they are suitably instructed

5.1 Experimental Setup
We focus on open LLMs (Touvron et al. 2023), to enhance
accessibility. LLMs exhibit a variety of architectures and
sizes, and whether they underwent instruction tuning dur-
ing their training process. We employ LLaMa as the cor-
nerstone of our study, because of its demonstrated superior-
ity across multiple tasks and performance that is compet-
itive with ChatGPT. We consider the 7B, 13B, 33B, and
65B configurations of LLaMa, as well as the 7B, 13B, 33B
configurations of its instruction-tuned counterpart, Vicuna
(Chiang et al. 2023). We also include another model family,
UL2 (Tay et al. 2023), and its instruction-tuned counterpart
FLAN-UL2, which has an encoder-decoder architecture and
the 7B and 40B configurations of the Falcon family, with
and without instruction tuning.

We conduct experiments with zero-shot and few-shot
in-context learning. For all the LLMs, we use QLoRA
to quantize them to 4 bits to reduce the need for GPU
memory. QLoRA suffers little loss on a variety of tasks
(Dettmers et al. 2023). Our experiments are run on a mix-
ture of NVIDIA-A100, NVIDIA-A30, NVIDIA-A10, and
NVIDIA-A6000 GPUs.

5.2 Results
The overall results are shown in Table 8. The main findings
are summarized as follows.

Significance test for model performance We performed
McNemar’s test to assess the significance of model pre-
diction differences among the top-performing models. This
test was conducted in two stages. First, we compared the
top models from each family, namely LLaMA-65B, Vicuna-
33B, Falcon-40B-instruct, and FLAN-UL2-20B. Second,
we compared zero-shot and 9-shot performances within
these four families. The corresponding p-values are pre-
sented in Table 9. As observed, the differences across both
settings are statistically significant (p < 0.001) across three
datasets, with the exception of LLaMA-65B vs. Vicuna-
33B on the CMV and LLMG datasets, and LLaMA-65B vs.
FLAN-UL2-20B on the CMV dataset. Notably, all models
exhibited significant differences between the zero-shot and
9-shot conditions, highlighting the critical benefit of few-
shot examples in performance improvement.

Gap with upper bound Overall, we observe positive ef-
fects for model scaling. For all model families, larger mod-
els yield better performances across most settings. How-
ever, the best performance of FLAN-UL2, which achieves
41.17, 51.51, and 50.21 under zero shot for CMV, Debate,
and LLMG, respectively, falls far behind the supervised ap-
proach, which suggests difficulty for LLMs to comprehend
downstream tasks.
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Figure 3: Performance of micro-F1 for BERT, T5, LLaMa on all partitions of the dataset with various training examples.

Models 0-shot 3-shot 6-shot 9-shot
CMV Debate LLMG CMV Debate LLMG CMV Debate LLMG CMV Debate LLMG

LLaMA-7B 16.28 16.33 15.08 17.265.68 29.076.10 24.456.18 23.468.15 33.806.33 29.325.08 14.79 28.27 31.66
LLaMA-13B 9.68 20.48 17.19 24.077.56 35.495.08 31.848.08 22.966.99 41.341.34 31.603.79 12.55 40.84 30.50
LLaMA-30B 22.05 11.58 38.23 32.635.63 42.683.01 42.002.02 28.682.15 44.061.68 37.031.62 32.58 42.10 39.97
LLaMA-65B 33.32 36.96 54.59 38.404.71 49.762.38 50.263.31 37.255.69 50.212.24 45.072.55 41.76 50.73 53.65
Vicuna-7B 24.38 37.49 33.05 19.837.71 28.925.61 29.946.75 15.954.57 30.636.29 30.704.58 12.15 26.10 22.84
Vicuna-13B 25.59 30.15 47.11 31.296.27 41.316.47 38.907.47 22.902.23 42.411.22 36.784.19 14.95 42.56 40.59
Vicuna-33B 34.51 42.59 51.86 31.706.49 47.544.80 41.402.70 29.924.19 48.942.37 38.502.15 29.48 49.90 41.50
Falcon-7B 16.40 22.04 18.45 27.583.60 30.337.68 30.801.84 26.703.88 34.405.45 32.553.80 23.44 40.74 34.59
Falcon-7B-I 24.68 23.50 31.64 24.422.03 23.703.44 20.811.73 10.671.38 20.290.57 18.081.29 10.18 20.63 19.86
Falcon-40B 30.52 39.20 33.85 24.733.05 34.546.42 28.876.44 22.015.59 32.676.05 29.225.44 16.34 29.82 23.61
Falcon-40B-I 35.22 42.52 38.74 29.874.23 35.075.43 32.746.36 27.605.25 33.074.27 31.443.76 22.75 26.73 27.74
UL2-20B 31.93 37.32 36.38 27.493.22 22.353.26 29.368.94 25.541.87 18.284.57 19.914.23 22.59 11.67 17.01
FLAN-UL2-20B 41.17 51.51 50.21 41.850.84 52.510.29 52.700.55 42.300.63 52.670.31 53.460.62 42.93 52.60 54.28

Table 8: Zero-shot and few-shot in-context learning for various LLMs.

CMV Debate LLMG

LLaMa-65B vs. Vicuna-33B 0.544 – 0.408
LLaMa-65B vs. Falcon-40B-I – – –
LLaMa-65B vs. FLAN-UL2-20B 0.934 – –
Vicuna-33B vs. Falcon-40B-I – – –
Vicuna-33B vs. FLAN-UL2-20B 0.671 – –
Falcon-40B-I vs. FLAN-UL2-20B – – –

LLaMa-65B 0-shot vs. 9-shot – – –
Vicuna-33B 0-shot vs. 9-shot – – –
Falcon-40B-I 0-shot vs. 9-shot – – –
FLAN-UL2-20B 0-shot vs. 9-shot – – –

Table 9: McNemar’s significance test. We show the p-values
indicating nonsignificance and omitted all < 0.001.

Number of few-shot exemplars Exposing a model to
more examples reliably improves performance across var-
ious tasks. However, our results are mixed. To understand
variability, we randomly sampled 10 sets of examples for
both 3-shot and 6-shot learning and calculated their mean
and standard deviation. Some sets of examples show bet-
ter performance than zero-shot. Nonetheless, the variability
highlights the sensitivity of LLMs to specific examples. One
exception is FLAN-UL2, the top performer, which maintains
an average variance of 0.54, showcasing the consistency of
its performance. Additionally, FLAN-UL2 demonstrates a
robust improvement due to the increase in example input.

Impact of instruction tuning Instruction-tuning continu-
ally fine-tunes an LLM by exposing it to diverse instructions

CMV Debate LLMG

Against argument 39.54 60.24 35.01
Favor argument 54.93 69.75 47.31
Overall 44.17 65.01 40.87

Table 10: Percentage of using facts in argument for each
dataset.

and their responses. Doing so enhances its ability to follow
instructions. We observe that instruction-tuned models re-
liably outperform models of the same architecture and size
that are not instruction-tuned. This is apparent by comparing
Vicuna to LLaMa, Falcon-instruct to Falcon, and FLAN-
UL2 to UL2. This observation highlights the effectiveness
of instruction-tuning as a task-agnostic method for adapting
LLMs to downstream tasks.

6 Discussion
We present a benchmark dataset compiled from three types
of sources: a social media website, two debate websites, and
arguments generated by large language models (LLMs). The
resulting dataset covers a wide range of 4,498 topics, com-
prising 30,961 arguments distributed across 21 domains.

We demonstrate the usefulness of our dataset via three ex-
perimental approaches: fully supervised, zero-shot, and few-
shot in-context learning with LLMs. Notably, our findings
highlight the superior performance of generative models
over classification models. LLMs, when used in a zero-shot
scenario, demonstrate commendable performance, though



Facts Extraction Prompt.
Facts are objective statements that are verifiable. Arguments
are subjective claims or positions.

Given a topic and an argument, identify if the argument
relies on any verifiable facts. Return the fact that the
argument relies on. Return none if the argument does not
rely on verifiable facts. Be concise in your response.

Topic: {topic}
Argument: {argument}

with a noticeable performance gap relative to the upper
bound. Furthermore, instruction-tuned LLMs reliably out-
perform their non-instruction-tuned counterparts, empha-
sizing the effectiveness of instruction-tuning for adapting
LLMs to downstream tasks.

Thus, our study establishes robust baselines for the cre-
ated dataset and provides valuable insights that can guide
the development of more generalized stance classification
methods. This research not only advances our understand-
ing of the performance dynamics among different learning
approaches but also offers practical implications for opti-
mizing the use of LLMs for stance classification. Next, we
discuss the use of factual information in argument formula-
tion and some limitations of our work.

6.1 Factual Information in Arguments
Using facts in arguments can improve their credibility and
persuasiveness. Though stance classification is not con-
cerned with factual accuracy, in real-world applications, en-
suring the factuality of arguments generated by LLMs is es-
sential for their responsible use.

We adopt an LLM not from the GPT family to analyze
the prevalence of factual information in arguments. Specif-
ically, we adopt Anthropic’s Claude 3.5 Sonnet, one of the
most advanced commercial models, with the facts extraction
prompt.

Table 10 shows the percentages of arguments using facts
in CMV, Debate, and LLMG. There is a clear difference be-
tween the use of facts in (the more casual) CMV discussions
and formal debate arguments, where including facts is en-
couraged by the participants. Arguments produced by GPT-
3 show a lower prevalence of facts, which may be due to
limitations set by its built-in guardrails—for example, the
model may avoid citing statistics or named entities unless
explicitly prompted. Across all three datasets examined, the
frequency of factual information in favor arguments is much
higher than that in against.

6.2 Limitations and Future Work
This study faces several limitations. First, our proposed
framework for the collection of diverse argumentative sen-
tence pairs covering a variety of topics can be extended as
needed to facilitate the collection of additional data. How-
ever, this framework is constrained by the types of sources
from which stance labels can be extracted. While we inves-

tigate the utilization of LLMs to construct stance classifica-
tion datasets, more sophisticated experiments would be ben-
eficial for exploring the full potential of this approach.

Second, while our study examines stance classification
from three types of sources, it is important to recognize that
this task is applicable in a much broader array of contexts,
such as news articles, tweets, and political discourse. There-
fore, combining our dataset with other existing datasets
from different domains could improve the generalizability
of stance classification.

Third, while we focus on the adoption of GPT-3 for gener-
ating arguments, we do not directly compare LLMs for gen-
erating arguments. We defer comparative studies involving
LLMs such as GPT-4, PaLM, or Claude to future research.
Such an evaluation would enable more robust methods for
benchmarking for stance classification and other social me-
dia problems.

Finally, future work could also consider the moral and so-
cial framing of arguments, especially in settings where re-
sponsibility attribution or ethical reasoning plays a central
role. Prior work has shown that everyday arguments often
reflect implicit moral norms (Xi and Singh 2023) and that
blame assignment on social media is shaped by demographic
and psychological factors (Xi and Singh 2024). Incorporat-
ing such dimensions could enhance the interpretability and
real-world applicability of stance classification systems.
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Paper Checklist
1. For most authors. . .

(a) Would answering this research question advance sci-
ence without violating social contracts, such as violat-
ing privacy norms, perpetuating unfair profiling, exac-
erbating the socio-economic divide, or implying disre-
spect to societies or cultures? Yes

(b) Do your main claims in the abstract and introduction
accurately reflect the paper’s contributions and scope?
Yes

(c) Do you clarify how the proposed methodological ap-
proach is appropriate for the claims made? Yes

(d) Do you clarify what are possible artifacts in the data
used, given population-specific distributions? No, the
dataset doesn’t involve population-specific distribu-
tions

(e) Did you describe the limitations of your work? Yes
(f) Did you discuss any potential negative societal im-

pacts of your work? No
(g) Did you discuss any potential misuse of your work?

No
(h) Did you describe steps taken to prevent or mitigate po-

tential negative outcomes of the research, such as data
and model documentation, data anonymization, re-
sponsible release, access control, and the reproducibil-
ity of findings? No

(i) Have you read the ethics review guidelines and en-
sured that your paper conforms to them? Yes

2. Additionally, if your study involves hypotheses testing. . .

(a) Did you clearly state the assumptions underlying all
theoretical results? NA

(b) Have you provided justifications for all theoretical re-
sults? NA

(c) Did you discuss competing hypotheses or theories that
might challenge or complement your theoretical re-
sults? NA

(d) Have you considered alternative mechanisms or expla-
nations that might account for the same outcomes ob-
served in your study? NA

(e) Did you address potential biases or limitations in your
theoretical framework? NA

(f) Have you related your theoretical results to the existing
literature in social science? NA

(g) Did you discuss the implications of your theoretical
results for policy, practice, or further research in the
social science domain? NA

3. Additionally, if you are including theoretical proofs. . .

(a) Did you state the full set of assumptions of all theoret-
ical results? NA

(b) Did you include complete proofs of all theoretical re-
sults? NA

4. Additionally, if you ran machine learning experiments. . .

(a) Did you include the code, data, and instructions
needed to reproduce the main experimental results (ei-
ther in the supplemental material or as a URL)? No, all
material will be published later

(b) Did you specify all the training details (e.g., data splits,
hyperparameters, how they were chosen)? Yes

(c) Did you report error bars (e.g., with respect to the ran-
dom seed after running experiments multiple times)?
Yes

(d) Did you include the total amount of compute and the
type of resources used (e.g., type of GPUs, internal
cluster, or cloud provider)? Yes

(e) Do you justify how the proposed evaluation is suffi-
cient and appropriate to the claims made? Yes

(f) Do you discuss what is “the cost” of misclassification
and fault (in)tolerance? No

5. Additionally, if you are using existing assets (e.g., code,
data, models) or curating/releasing new assets, without
compromising anonymity. . .

(a) If your work uses existing assets, did you cite the cre-
ators? No, no previous dataset is used.

(b) Did you mention the license of the assets? No, no li-
cense is needed. The dataset will be open

(c) Did you include any new assets in the supplemental
material or as a URL? No

(d) Did you discuss whether and how consent was ob-
tained from people whose data you’re using/curating?
No

(e) Did you discuss whether the data you are using/curat-
ing contains personally identifiable information or of-
fensive content? No, no personally identity is involved

(f) If you are curating or releasing new datasets, did you
discuss how you intend to make your datasets FAIR?
No

(g) If you are curating or releasing new datasets, did you
create a Datasheet for the Dataset? No

6. Additionally, if you used crowdsourcing or conducted
research with human subjects, without compromising
anonymity. . .

(a) Did you include the full text of instructions given to
participants and screenshots? NA

(b) Did you describe any potential participant risks, with
mentions of Institutional Review Board (IRB) ap-
provals? NA

(c) Did you include the estimated hourly wage paid to
participants and the total amount spent on participant
compensation? NA

(d) Did you discuss how data is stored, shared, and dei-
dentified? NA

Broader Impact
Stance classification focuses on identifying the position of
an argument on a specific topic, not its factual correct-
ness. Text generated by LLMs or online users sometimes in-
cludes inaccurate information. This concern is relevant when



our dataset is used for downstream applications—such as
generating arguments for persuasive writing or educational
content—where factual correctness is critical (e.g., health or
policy discussions). In such cases, factuality should be veri-
fied before deployment.

Arguments containing unverified information in our
dataset may lead to the creation of models that generate un-
reliable outputs, which can contribute to the spread of mis-
information (Bang et al. 2023). Existing research on verify-
ing factual information falls into two primary approaches.
One approach focuses on extracting atomic facts from con-
tent generated by LLMs and validating these facts against
external references, such as Wikipedia or the web (Chern
et al. 2023) results. Another approach relies on the model’s
internal mechanisms, employing strategies such as chain-of-
thought reasoning to deliberate on the generated responses
and implement self-correction (Dhuliawala et al. 2024).

The risk of misinformation highlights the necessity for the
establishment of rigorous evaluation metrics to assess the
factual accuracy of AI-generated text (Shafayat et al. 2024).

A Websites for collecting topics
1. https://blog.kialo-edu.com/lesson-ideas/classroom-

debate-ideas/

2. https://www.weareteachers.com/controversial-debate-
topics/

3. https://research.com/education/debate-topics-for-
college-students

4. https://www.theedadvocate.org/political-debate-topics/

5. https://owlcation.com/academia/100-Debate-Topics

6. https://noisyclassroom.com/debate-topics/

7. https://www.myspeechclass.com/controversial-speech-
topics.html

8. https://custom-writing.org/blog/debate-topics

9. https://www.5staressays.com/blog/speech-and-
debate/debate-topics

B Experimental Hyperparameters
We provide the main hyperparameter settings for data gener-
ation with GPT-3, and the training of BERT, T5, and LLaMa
below.

B.1 Argument Generation with GPT-3
• temperature: 0.7

• max_generated_tokens: 500

B.2 BERT Finetuning
• Number of training epochs: 10

• Learning rate: 5e-5

• Batch size: 16

• Optimizer: Adamw

B.3 T5 Finetuning
• Number of training epochs: 10
• Learning rate: 2e-5
• Batch size: 16
• Optimizer: Adamw

B.4 LLaMa-7B Finetuning
• Number of training epochs: 3
• LoRA rank: 8
• LoRA alpha: 16
• LoRA dropout: 0.05
• LoRA bias: none
• Target modules: q_proj, v_proj, o_proj, k_proj, up_proj,

down_proj, gate_proj, embed_tokens, lm_head
• Learning rate: 2e-4
• Batch size: 64
• Warmup steps: 10
• Optimizer: paged_adamw_8bit
• max_input_length: 256

B.5 LLaMa-7B Inference
We perform inference with the fine-tuned LLaMa-7B in 4-
bit with BitsAndBytes:
• load_in_4bit: True
• bnb_4bit_quant_type: nf4
• bnb_4bit_use_double_quantL: True
• bnb_4bit_compute_type: bfloat16
• max_generation_length: 2

C Training Examples
We shown a few more randomly chosen examples from each
datasets of the benchmark for training in Table 11.

D Complementary Results
In this section, we provide complementary results for Ta-
ble 7. Specifically, per-class F1 score for each finetuning set-
ting is shown in Table 12, Table 13, and Table 14 for BERT,
T5, and LLaMa, respectively.



Topical Claim Comment Stance

Transgender (specif-
ically mtf) athletes
have an unfair ad-
vantage in strength-
based sports and
should only be able
to participate in their
biological gender
group

This is in response to the post that hit the front page recently which can be seen here:
Biologically speaking, the male gender is already predisposed to stronger traits and as a
response the Olympic Committee split competitions into two groups so that both genders
have an ëqual playing field.̈ But with more acceptance and social tolerance, along with
more transgender people coming out, problems have arose and will continue to rise until
this gets dealt with and, to me, it’s unfair and should be given strict guidelines and have
no gender fluidity in the eyes of competitors.

Favor

I feel that wealthy
should pay a flat tax
rather than the cur-
rent progressive us
tax system

I won’t try to convince you that you’re wrong about tax rates because I don’t know enough
about it. Just consider: doesn’t it ever bother you that people just pick up and leave for
the sake of a little more money? These people have no ties their location, or they have
ties that they’re willing to throw away for a cheaper house. It’s more of an admirable goal
to build those deep, binding ties. Approaching the world with love, making friends, and
investing in a community will lead to a more satisfying life than approaching it with cold
logic centered around money. Just picture the end of your life for a moment. Will you be
happier if you kept more of your money for yourself? Or will you be happier if you’re
a respected member of a community? Find a place that’s worth the higher taxes. Find a
place you could fall in love with

Against

It is not okay to keep
animals in zoos.

Education and conservation efforts can be achieved through alternative means, such as
wildlife sanctuaries and educational programs. These alternatives allow for a more ethical
approach to animal welfare, as they focus on providing a natural environment for the
animals while still educating the public about conservation and wildlife protection.

Favor

The drinking age
should be 18.

The human brain continues to develop until the mid-20s, particularly the prefrontal cortex
responsible for decision-making and impulse control. Allowing 18-year-olds to consume
alcohol may expose them to potential harm and hinder their brain development. Raising
the drinking age to 21 provides additional years for the brain to mature and reduces the
risk of long-term negative consequences associated with alcohol consumption.

Against

Government surveil-
lance is essential for
national security.

In an increasingly interconnected world, a country’s security can be threatened by various
factors beyond direct self-defense. Issues such as terrorism, cyber attacks, and the spread
of weapons of mass destruction pose significant risks that may require proactive military
action. Waiting until an attack occurs could result in catastrophic consequences that could
have been prevented.

None

Table 11: More examples from our benchmark.

CMV Debate LLMG
Against Favor Against Favor Against Favor

CMV 0.738 0.840 0.559 0.219 0.622 0.236
Debate 0.658 0.845 0.733 0.421 0.660 0.547
LLMG 0.272 0.573 0.357 0.475 0.631 0.769
ALL 0.719 0.747 0.734 0.443 0.728 0.701

Table 12: Per class F1 score for BERT finetuning.

CMV Debate LLMG
Against Favor Against Favor Against Favor

CMV 0.664 0.724 0.558 0.249 0.687 0.582
Debate 0.440 0.563 0.623 0.477 0.840 0.786
LLMG 0.451 0.581 0.427 0.512 0.820 0.902
ALL 0.668 0.722 0.634 0.522 0.952 0.900

Table 13: Per class F1 score for T5 finetuning.

CMV Debate LLMG
Against Favor Against Favor Against Favor

CMV 0.788 0.880 0.451 0.429 0.622 0.664
Debate 0.625 0.561 0.683 0.551 0.833 0.801
LLMG 0.461 0.553 0.441 0.452 0.828 0.792
ALL 0.882 0.852 0.724 0.643 0.853 0.821

Table 14: Per class F1 score for LLaMa finetuning.


