The Trust Competition Testbed Some Key Requirements

Munindar P. Singh

singh@ncsu.edu

Department of Computer Science North Carolina State University

Trust-04 Panel - p.1/10

Introduction

- The field has matured enough that a testbed can help evaluate and compare approaches
- But every testbed makes its own presuppositions
- Proposal: proceed in phases
 - Study requirements abstractly
 - Evaluate proposed testbeds
 - Select one that we can live with for the next few years

Ontology

- Must enable task-sensitive trust
- Need an ontology to enable interoperation
 - Tasks performed and requested by agents
 - Qualities of service modeled, delivered, measured and, possibly, declared
 - Used by the testbed to specify what it offers
 - Used by agents to interact with each other
 - Select one that we can live with for the next few years

Single-Agent Perspective

- Set up multiple agents, but
- Measure the outcomes for a given agent
 - Quality of service obtained (best, worst, typical)
 - Likelihood of being selected
 - Profit or loss
 - Risk borne

Distributed Perspective

- Set up multiple agents, but
- Measure the outcomes for the agents in aggregation
 - Clustering metrics
 - Authoritativeness metrics (e.g., PageRank)
 - Subgraphs: communities in the distributed sense

Social Perspective

Study relationships among agents

- Reciprocity
- Local aspects of clustering

Preferences and Policies

Enable agents to declare their preferences

- Policies for how trust is evaluated by an agent
- Policies for how the agents interact
- Evaluate the success or failure with respect to these policies

Threats

What kinds of threats would the testbed help us study?

- Despite our interest in high-level problems, underlying threats can act "unfair"
 - Death of an agent
 - Sudden sleep of an agent: loss of power or networking
 - Byzantine failures: agents become malicious
- Requirement: A suite of failures and an ability to tune them in experiments

Experimentation Modes

- Independent: Run multiple approaches separately for the same set up: simple and easy to use during development
- Competitive: Run multiple approaches at the same time but going against the "system" agents: a simple kind of bake off
- Adversarial: Run multiple approaches against each other: a more difficult kind of bake off to prepare for

Minimum Requirements

- Task-sensitivity
- Preservation of autonomy and heterogeneity
- Formal definitions for above metrics
- Extensibility with new metrics