Understanding Service Engagements

Munindar P. Singh

North Carolina State University

February 2013

singh@ncsu.edu (NCSU)

Understanding Service Engagements

February 2013 1 / 40

Outline

Introduction

Direction: Modeling Contracts

Direction: Mining Contract Text

Direction: Mining Emails and Chats for Ad Hoc Processes and Trust

Direction: Selecting Based on Utility

Direction: Service Ecosystems

Technical Service

Characterized by transfers of bits

Generally, an abstraction of a computational object

- Traditional, as in web or grid services
- Improved: Abstraction of a "capability"
- Well encapsulated, i.e., a black box
- Interface defined at the level of methods or messages

Business Service

Characterized by transfers of value

- Typically long-lived with on-demand enactments
- Instantiated on the fly, unlike goods or products
- Though may be
 - Constructed using goods
 - Data center provisioning
 - Installation
 - About goods
 - Maintenance
- Not perfectly encapsulated, i.e., a gray box
- Interface defined at the level of business events

Service Engagement

An aggregation of business relationships and services in action

- Characterized by
 - Independence of principals, i.e., business partners
 - Coproduction
 - Participation by all, though not at the same level
 - Symmetric relationships: complementary capabilities and goals
 - Produced on demand
 - Participants provide business services to one another
- Specified via contracts

Services Conceptually

The Evolution of $\ensuremath{\mathsf{IT}}$

Shift from technical to business representation

Elements of an IT Episode: Traditional and for Services

Traditionally, no support for autonomy

Directions for Research

- Selection: Multiple perspectives on creating engagements
 - Social networks for reputation and referral
 - Selecting service coalitions and services for coalitions
 - Estimating trust
- Contracting: Specifying the rules of encounter
 - Specifying models of quality and utility
 - Pricing and economic incentives
 - Modeling exceptions and opportunities
 - Engendering trust

Enacting: Technical infrastructure to facilitate new business models

- Cloud computing as a foundation for service clouds
- Ad hoc processes
- Accommodating unexpected exceptions and opportunities
- Decentralized enactment: doing without a process orchestrator

Outline

Introduction

Direction: Modeling Contracts

Direction: Mining Contract Text

Direction: Mining Emails and Chats for Ad Hoc Processes and Trust

Direction: Selecting Based on Utility

Direction: Service Ecosystems

What is a Contract?

A reusable description of business-level interactions that preserve participants' autonomy

- Specifies how business events and interactions affect state
 - Capturing commitments on a business partner playing a role
- Specifies well-defined roles
 - Setting policies for how to enact a contract
- Stored in a repository
 - As an asset in its own right
 - Refined and composed for implementation

Contracts Specify Service Engagements

Crucial in open environments

- Emphasize interactions: observable by others
- Constrain interactions: limit autonomy
- Disregard internal implementations, thus facilitating heterogeneity
 - Except where a gray box is appropriate
- Embody a lot of subtlety as shown in our proposed model, next

Direction: Modeling Contracts

Juggling Contract: 1

Contract For: Canterbury Centre Dinner 2003 ("CCD"), Friday 6 June 2003, 24 High Street, Canterbury

This agreement is entered into between the University Juggling Club ("UJC") and the Canterbury Center Dinner 2003 on the following terms:

- 1. Service Provider: University Juggling Club.
- 2. Employer: Canterbury Center Dinner.
- 3. To be provided by UJC: Performers: J Woods (juggler); one other juggler; all equipment necessary for performance.
- 4. To be provided by CCD: Cloakroom.
- 5. Venue address: 24 High Street, Canterbury.
- 6. CCD understands that performances are restricted in venues with ceilings of insufficient height. The ideal height is 5 meters. Outside performances are restricted in rain or strong winds.
- 7. Date of Performance: Friday 6 June 2003, starting at 6:30PM.
- 8. Duration of Performance: 1.5 hours. Short (less than one minute) breaks are part of the performance.

Juggling Contract: 2

- 9. Fee: £30 per juggler + £10 expenses + £90 insurance (total £160).
- 10. If UJC is forced to cancel, all monies (including $\pounds 90$ deposit) will be refunded in full. If the Employer cancels with at least 24 hours notice, UJC will retain $\pounds 90$ and return any other monies.
- 11. Should poor weather mean that the Event takes place indoors, UJC will refund $\pounds 10$ expenses.
- 12. Performers will not consume any alcohol until after completion of services as agreed.
- 13. CCD will be responsible for compensation to UJC for damage to equipment caused by those attending the Event unless damage is caused when (if) Performers have left equipment unguarded.
- 14. UJC will be liable for any injury sustained by a guest at the Event if such injury results from provision of services as agreed upon in this contract unless the Event fails to provide a suitable area for performance.

< < p>< < p>

Outline

Introduction

Direction: Modeling Contracts

Direction: Mining Contract Text

Direction: Mining Emails and Chats for Ad Hoc Processes and Trust

Direction: Selecting Based on Utility

Direction: Service Ecosystems

Types of Normative Relationships Seen in Contracts

Unified logical form: Norm(subject, object, context, antecedent, consequent)

- Directed
- Declarative
- Composable
- Manipulable

э

Semantic Verb Classes: 1

State

- Examples: Retain, have, be, own, remain, include
- Dialectical Commitment: Each joint owner shall have an equal and undivided ownership interest in the Joint Works ...

Event

- Examples: Move, perform, deliver, notify, market
- Practical Commitment: Sharp shall provide Approved Carriers and Carrier Customers with Products for testing, evaluation and field trials in accordance with terms agreed upon between Sharp and such parties

Semantic Verb Classes: 2

Physical

- Examples: Produce, pay, develop, utilize, design
- Authorization: Danger will have the right to use the test results internally for product management and planning purposes

Social:

- Examples: Terminate, sell, approve, waive, purchase
- Power: In the event this Agreement terminates for a reason other than for Danger's material breach, Danger shall have the right to purchase any Sharp owned tooling and test equipment for a Product at a reasonable price

Key Textual Features with Examples

Subject contains organization name Clause signal Modal verb Negation present Only present Main verb expresses an event Main verb expresses a state Main verb has physical consequence Main verb has social consequence Practical commitment signal Dialectical commitment signal Authorization signal Prohibition signal Power signal Sanction signal

Motorola; Google if: unless may; should not: neither only deliver; perform have: be produce; pay terminate; approve agree to it warrants; it is understood that shall have the right to $\langle physical \rangle$ must not shall have the right to $\langle \text{social} \rangle$ responsible for any breach

- ∢ ศ⊒ ▶

Experimental Setting

- Gold standard
 - Selected 1,000 sentences from real-life contracts
 - Remove 38 sentences longer than 80 words each (often broken) to reduce noise and processing overhead
 - Remove 94 duplicate sentences
 - 868 sentences left after cleansing
 - Manually annotate each sentence with its norm type
- Features
 - Manually selected and automatically extracted
- Classification methods
 - Support Vector Machine (SVM)
 - Logistic regression (LR)
 - Naïve Bayes (NB)
- Evaluation
 - Ten-fold cross validation
 - Test on fresh data with model built from gold standard

Extraction Results (Ten-Fold Cross Validation)

Class		L R			SVM			NR		
Class	П		Г	Р	50	Г	П		г	
	P	R	Г	P	R	Г	Р	R	Г	
Practical C	0.87	0.80	0.83	0.88	0.70	0.78	0.83	0.81	0.82	
Dialectical C	0.75	0.79	0.77	0.67	0.84	0.74	0.69	0.83	0.76	
Authorization	0.67	0.69	0.68	0.68	0.65	0.66	0.65	0.76	0.70	
Prohibition	0.64	0.68	0.66	0.64	0.61	0.63	0.68	0.59	0.63	
Power	0.74	0.78	0.76	0.69	0.76	0.72	0.78	0.66	0.72	
Sanction	0.43	0.25	0.32	0	0	0	0	0	0	
Not a norm	0.58	0.47	0.52	0.42	0.33	0.37	0.6	0.2	0.3	
Average	0.75	0.74	0.74	0.71	0.71	0.71	0.72	0.73	0.72	

Image: A matrix of the second seco

э

Outline

Introduction

Direction: Modeling Contracts

Direction: Mining Contract Text

Direction: Mining Emails and Chats for Ad Hoc Processes and Trust

Direction: Selecting Based on Utility

Direction: Service Ecosystems

Identifying Commitment Operations from Interactions

Ten-fold cross-validation using SVM on marked up Enron email sentences

Commitment Operation	Р	R	F	Count
Commissive create	0.87	0.97	0.92	342
Directive create	0.94	0.97	0.95	162
Delegate	0.86	0.33	0.48	12
Discharge	1	0.02	0.04	38
Cancel	0	0	0	7
None	0.98	0.98	0.98	3,540
Total				4,101

Notice the skewed distribution. Some of the features used in the classifier are

- 1 Modal verb (shall, will, may, might, can, could, would, must)
- 2 Type of subject (first person, second person, third person)
- 3 Tense
- 4 Deadline

Determining Commitment Operations from Text

Commitments being the most prominent normative relationship

S	R	Content	Operation	$\mathbf{T}_{S,R}$	$\mathbf{T}_{R,S}$
Kim	Dorothy	I will also check with Alliance Travel Agency	$create(C_1)$		
Kim	Dorothy	I checked with our Travel Agency	discharge (C_1)		1
Rob	Kim	By Wednesday Aug 16 2001, please send all copies of your documentation	$create(C_2)$		
Kim	Rob	Rob, please forgive me for not sending this in by Aug 15	$cancel(C_2)$		\downarrow

э

Estimating Trust from Commitment Progression

Simplistic model of a human subject

- ▶ Two-valued representation, positive and negative experiences: $\langle r, s \rangle$
- Trust $\alpha = \frac{r}{r+s}$
- Characterize each subject via four parameters
 - Initial values, $\langle r_{in}, s_{in} \rangle$
 - Increment for positive and negative interactions: i_r and i_s

Commitment Operations	Trust $\langle r_{out}, s_{out} \rangle$
Create	$\langle 0.5i_r + r_{in}, 0.5i_s + s_{in} \rangle$
Delegate	$\langle 0.5i_r+r_{in},0.5i_s+s_{in} angle$
Discharge	$\langle i_r + r_{in}, s_{in} \rangle$
Cancel	$\langle r_{in}, i_s + s_{in} angle$
None	$\langle 0.5 i_r + r_{in}, 0.5 i_s + s_{in} angle$

Results: Prediction Error for Subjects' Ratings on Enron

Subjects marked up 5,487 sentences from emails exchanged by one selected Enron employee (each with inferred trust value and sentiment)

Results: Higher Trust Correlates with Positive Sentiments

Outline

Introduction

Direction: Modeling Contracts

Direction: Mining Contract Text

Direction: Mining Emails and Chats for Ad Hoc Processes and Trust

Direction: Selecting Based on Utility

Direction: Service Ecosystems

Adaptive Service Selection Framework

Trust: Collect Quality Information

Decide

- Whether to rely upon someone for taking a specified action
- Which service to use
- Which information to believe
- Represent quality information as a probability distribution

Benefits

- Provide both expected quality and confidence
- Learn from direct and indirect (referral) experience
- Deal with dynamic behavior

Utility Functions: Describe Consumers' Preferences

Formalize Composition: Define Composition Operator f

How quality of subservices is composed based on quality and composition type

$Quality \backslash Composition$	Sequence	Flow	Case	
Latency	SUM	MAX	SWITCH	
Throughput	MIN	SUM	SWITCH	
Failure	PRODUCT	PRODUCT	SWITCH	

Utility Function for Service Composition

Adjusting utility function

Quality type: *Throughput* Composition type: **Sequence** Expected Quality of **a**: *E*[*a*]

 \rightarrow Composition operator f: MIN

Exploration versus Exploitation

Learning policy

- Exploitation: Choosing current best choices
 - Stuck in a rut: May yield low long-term utility
 - Lack knowledge of new providers
 - Known providers dynamically change their profiles
- Exploration: Need to learn about unknown providers
 - Curiosity killed the cat: May yield low short-term utility

Boltzmann Exploration: balance exploration and exploitation

- Choose providers that yield higher expected utility more frequently
- Damp down exploration over time

Preliminary Results

Goal: services are used by those who value them most

Experimental Setup

- Four consumers; three providers
- Each provider has a capacity of two concurrent consumers
- Consumers can
 - Explore: interact with and learn about unknown providers
 - Exploit: sign long-term contract with good providers

Evaluation

- 1. Individual utility gain
- 2. Efficiency of resource allocation (providers \mapsto consumers)
 - Pareto Optimal Allocation: Cannot alter allocation to help one consumer without hurting another

Preliminary Results

Pareto optimality rate: % of time a Pareto allocation can be found

Outline

Introduction

Direction: Modeling Contracts

Direction: Mining Contract Text

Direction: Mining Emails and Chats for Ad Hoc Processes and Trust

Direction: Selecting Based on Utility

Direction: Service Ecosystems

Service Ecosystem

Principals (and their services) coexisting in an environment that cooperate and compete to facilitate the production and exchange of value

Characteristics of services

- Production of value
- Autonomy: self-interest
- Memory and learning
- Potential for coalitions
- Adaptivity

Characteristics of ecosystems

- Exchange of value
- Memory and learning
- Heterogeneity or diversity
 - Yet, potential intersubstitutability
- Surprising interactions
 - Dynamic structure and membership
 - Ecological niches

Thanks!

http://www.csc.ncsu.edu/faculty/mpsingh/

3

Image: A match a ma