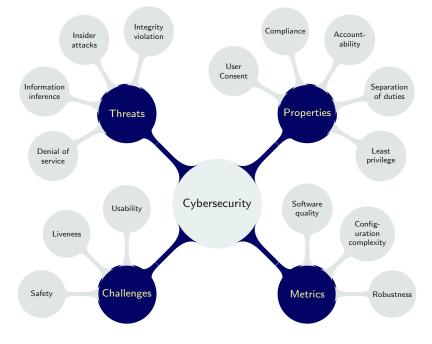

A Sociotechnical Systems Perspective on the Science of Security and Privacy

Munindar P. Singh singh@ncsu.edu (Joint work with Özgür Kafalı and Nirav Ajmeri)

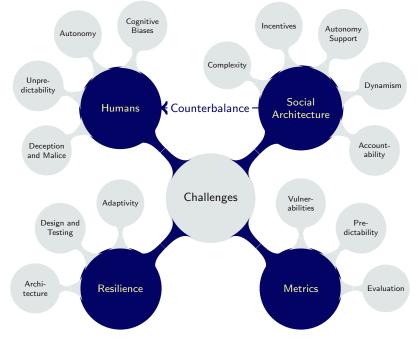

> Department of Computer Science North Carolina State University

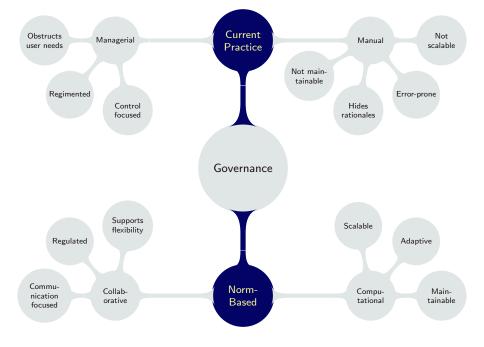
XKCD's Assessment of Cybersecurity Today

IF SOMEONE STEALS MY LAPTOP WHILE I'M LOGGED IN, THEY CAN READ MY EMAIL, TAKE MY MONEY, AND IMPERSONATE ME TO MY FRIENDS, BUT AT LEAST THEY CAN'T INSTALL DRIVERS WITHOUT MY PERMISSION.


©Randall Munroe http://xkcd.com/1200/

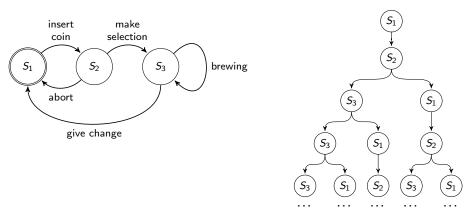
Participants and Artifacts in Security


Greatest challenges arise in the upper two; most past effort is on technical architecture



Usability and Strange User Behavior

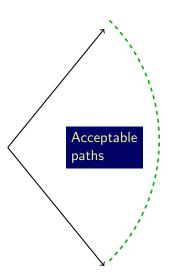
Can we protect users from themselves?



Vending Machine in Vienna

Conventional formal methods assume regimentation, i.e., a technical service

AF[Brew]: On every path, coffee is eventually brewed $A[\neg Brew\ U\ Coin]$: On every path, no coffee is brewed prior to payment


©Fachhochschule Technikum Wien

http://embsys.technikum-wien.at/projects/decs/verification/formalmethods.php

Regimentation: Violations are Impossible

Viable assumption in a closed system

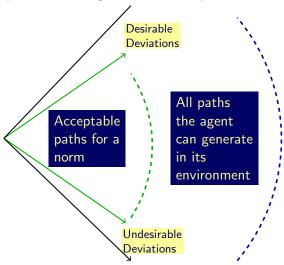
All paths the machine can generate in its environment

Vending Machine in Valencia

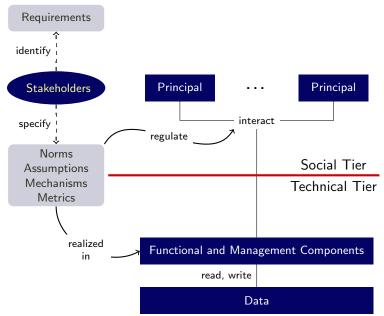
A business service

- ► Tall structure
- Hard to reach for short people
- Is that a bug or a feature?

Vending Machine Close Up: Cigarettes!



Regulation



Regulation: Violations are Possible

Appropriate assumption when dealing with autonomous parties

Specifying and Enacting Sociotechnical Systems

Emergency Scenario

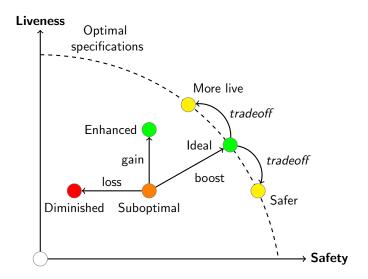
- Hospital authorizes Physician to enter the emergency department
 - authorization(physician, hospital, swipe_card, access_PC)
- Hospital authorizes Physician to access the patient's health records
 - ▶ authorization(physician, hospital, consent ∨ logged_in, EHR)
- Hospital prohibits Physician from accessing EHRs of other patients
 - prohibition(physician, hospital, logged_in, nonpatient_EHR)
- Physician commits to Hospital to log off after reviewing EHR
 - ▶ commitment(physician, hospital, EHR, ¬logged_in)
- Hospital prohibits Physician from disclosing patient's protected health information (PHI) online
 - prohibition(physician, hospital, EHR, disclose_PHI_online)

Requirements

- r_1 : Patient's PHI must not be published online
 - ► AG (¬disclose_PHI_online)
- r₂: Physician must be allowed access to EHR in emergency (with or without consent)
 - ▶ AG (emergency \rightarrow AF (EHR))
- r₃: Open sessions must be closed after reviewing EHR
 - ▶ AG (EHR → AF (¬logged_in))
- r_4 : In case of a disaster, physician must be able to share the patient's PHI with family members on some path
 - ► AG (disaster → EF disclose_PHI_family)

Refinement via Design Patterns

AG (¬ disclose_PHI)


```
R-Access:
                            AF (EHR)
                                                              R-Share:
                                                                                 AG (disaster \rightarrow EF share_PHI)
                                                                               R: {R-Disclose, R-Access, R-Logout, R-Share}
R: {R-Disclose, R-Access, R-Logout, R-Share}
                                                                               A: {⟨¬logged_in, POWER_FAILURE⟩, ...}
A: \{ \langle \neg logged\_in, POWER\_FAILURE \rangle, \dots \}
                                                                               M: {m(true.{consent }.{ }), ...}
\mathcal{M}: {m(\text{true}, \{\text{consent }\}, \{\}), \dots\}
                                                                               A(PHY, HOS, consent ∨ logged_in, EHR)
A(PHY, HOS, consent, EHR)
                                                                               C(PHY, HOS, EHR, ¬logged_in)
P(PHY, HOS, true, share_PHI)
P(PHY, HOS, true, disclose_PHI)
                                                                               P(PHY, HOS, true, disclose_PHI)
                 Expansion pattern
                                                                                                Accessibility pattern
                                                                               R: {R-Disclose, R-Access, R-Logout, R-Share}
R: {R-Disclose, R-Access, R-Logout, R-Share}
                                                                               A: {⟨¬logged_in, POWER_FAILURE⟩, ...}
A: \{ \langle \neg logged_in, POWER_FAILURE \rangle, \dots \}
                                                                               M: {m(true.{consent }.{ }), ...}
                                                            Responsibility
\mathcal{M}: {m(\text{true}, \{\text{consent }\}, \{\}), \dots\}
                                                               pattern
                                                                               A(PHY, HOS, consent ∨ logged_in, EHR)
* A(PHY, HOS, consent V logged_in, EHR)
                                                                               + C(PHY, HOS, EHR, ¬logged_in)
P(PHY, HOS, true, share_PHI)
                                                                               P(PHY, HOS, true, share_PHI)
P(PHY, HOS, true, disclose_PHI)
                                                                               P(PHY, HOS, true, disclose_PHI)
```

R-Logout:

 $AG (EHR \rightarrow AF \neg logged_in)$

R-Disclose:

Tradeoffs

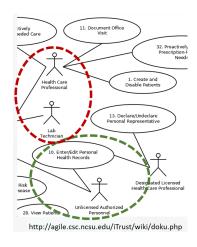
Comparing STS Specifications

 Experiments on surgical procedures using constraint logic programming

$$\label{eq:Liveness score} \begin{aligned} \text{Liveness score} &= \frac{\text{supported procedures}}{\text{all procedures}} \\ \text{Safety score} &= 1 - \frac{\text{procedures by outside physicians}}{\text{supported procedures}} \end{aligned}$$

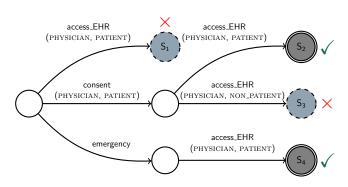
Mode of	Liveness score		Safety score	
operation	Suboptimal	Enhanced	Suboptimal	Enhanced
Regular practice	0.19	0.19	1.00	1.00
Medical emergency	0.10	0.73	1.00	0.14
Server failure	0.00	0.21	1.00	0.00

Representing Misuse Cases for Software Engineering


To help build secure sociotechnical systems

Current approaches provide

- Informal representations to visualize misuse cases
- Mechanisms needed to protect sensitive resources


Current approaches cannot capture

- Social interactions among users
- Computational models for misuse
- Sufficiently expressive representations that support digital forensics

Identifying Misuse from Norm Enactments

► P(PHYSICIAN, HOSPITAL, ¬consent(PHYSICIAN, PATIENT) ∧ ¬emergency, access_EHR(PHYSICIAN, PATIENT))

Thanks!

- Department of Defense
- National Science Foundation
- Amit Chopra, Lancaster

http://www.csc.ncsu.edu/faculty/mpsingh/

