
Interaction-Oriented Programming for Decentralized
Service Engagements

Munindar P. Singh
(with Amit K. Chopra and Samuel H. Christie V)

North Carolina State University

International Conference on Web Information Systems Engineering
(WISE)

October 2021

Singh Interaction-Oriented Programming for Services WISE 2021 1

http://www.csc.ncsu.edu/faculty/mpsingh/

Agents Helping Principals Exercise Autonomy
Inherently decentralized

Principal
g

3 3
Principal

g

Principal
g

3 3
Principal

g

▶ Each agent reflects the autonomy of its principal
▶ How can we realize a multiagent system based that accommodates

the autonomy of its principals?
▶ Does not unduly constrain an agent’s decision making
▶ Supports flexible interactions
▶ Enables loose coupling between agents

Singh Interaction-Oriented Programming for Services WISE 2021 2

Healthcare Application
Patient sends a Complaint to Physician, who sends a Prescription to Pharmacy, who
sends Fulfill to Patient

Patient

Physician Pharmacy

Complaint

Prescription

Fulfilled

▶ Autonomy means no one need send any message!

▶ Three parties, not client server
▶ Healthcare standards: Health Level 7 (HL7), Integrate the Healthcare

Enterprise (IHE)
▶ Informally described interactions difficult to implement correctly

Singh Interaction-Oriented Programming for Services WISE 2021 3

Purchase Order (PO) Fulfillment Application
Several items in a PO that may be wrapped and packed independently to create a
shipment

Merchant

Labeler Wrapper

Packer

Address Items

Shipping label Items wrapped

Items packed

Singh Interaction-Oriented Programming for Services WISE 2021 4

Asynchronous Communication
Without message ordering guarantees from the communication infrastructure!

▶ Today: Commonplace to rely on at least FIFO delivery

▶ Challenge: Coordinate decentralized computation without assuming
ordered delivery

Singh Interaction-Oriented Programming for Services WISE 2021 5

Interaction-Oriented Methodology
Lucid hi-fi computational abstractions for engineering sociotechnical systems

▶ Engineer a system by composing declarative specifications of
interactions
▶ Strictly without considering agents (endpoint implementations)

▶ Engineer an agent on the basis of those specifications
▶ Strictly without considering other agents

Singh Interaction-Oriented Programming for Services WISE 2021 6

Traditional Specifications: Procedural
Low-level, over-specified protocols, easily wrong

A B C

m1

m2

Precedes

A B

m1

m2

XOR

▶ Traditional approaches
▶ Emphasize arbitrary ordering and occurrence constraints
▶ Then work hard to deal with those constraints

▶ Our philosophy: The Zen of Distributed Computing
▶ Necessary ordering constraints fall out from causality
▶ Necessary occurrence constraints fall out from integrity
▶ Unnecessary constraints: simply ignore such

Singh Interaction-Oriented Programming for Services WISE 2021 7

Properties of Participants

▶ Autonomy
▶ Myopia

▶ All choices must be local
▶ Correctness must not rely on future interactions

▶ Heterogeneity: local ̸= internal
▶ Local state (projection of global state, which is stored nowhere)

▶ Public or observable
▶ Typically, must be revealed for correctness

▶ Internal state
▶ Private
▶ Must never be revealed: to avoid false coupling

▶ Shared nothing representation of local state
▶ Enact via messaging

Singh Interaction-Oriented Programming for Services WISE 2021 8

BSPL, the Blindingly Simple Protocol Language
Main ideas

▶ Only two syntactic notions
▶ Declare a message schema: as an atomic protocol
▶ Declare a composite protocol: as a bag of references to protocols

▶ Parameters are central
▶ Provide a basis for expressing meaning in terms of bindings in protocol

instances
▶ Yield unambiguous specification of compositions through public

parameters
▶ Capture progression of a role’s knowledge
▶ Capture the completeness of a protocol enactment
▶ Capture uniqueness of enactments through keys

▶ Separate structure (parameters) from meaning (bindings)
▶ Capture many important constraints purely structurally

Singh Interaction-Oriented Programming for Services WISE 2021 9

Key Parameters in BSPL
Marked as ⌜key⌝

▶ All the key parameters together form the key

▶ Each protocol must define at least one key parameter

▶ Each message or protocol reference must have at least one key
parameter in common with the protocol in whose declaration it occurs

▶ The key of a protocol provides a basis for the uniqueness of its
enactments

Singh Interaction-Oriented Programming for Services WISE 2021 10

Parameter Adornments in BSPL
Capture the essential causal structure of a protocol (for simplicity, assume all parameters
are strings)

▶ ⌜in⌝: Information that must be provided to instantiate a protocol
▶ Bindings must exist locally in order to proceed
▶ Bindings must be produced through some other protocol

▶ ⌜out⌝: Information that is generated by the protocol instances
▶ Bindings can be fed into other protocols through their ⌜in⌝ parameters,

thereby accomplishing composition
▶ A standalone protocol must adorn all its public parameters ⌜out⌝

▶ ⌜nil⌝: Information that is absent from the protocol instance
▶ Bindings must not exist

Singh Interaction-Oriented Programming for Services WISE 2021 11

Protocol in BSPL: Main Ideas

▶ Declarative
▶ No control flow, no control state

▶ Information-based
▶ Specifies the computation of distributed information object

▶ Message specification is atomic protocol

▶ Specified via parameters

▶ Explicit causality
▶ The messages an agent can send depends upon what it knows
▶ Via parameter adornments ⌜out⌝, ⌜in⌝, ⌜nil⌝

▶ Integrity
▶ Agent only sends messages that preserve consistency of objects
▶ Via key constraints

▶ Asynchronous messaging

▶ Requires no ordering from infrastructure

▶ Composition and verification

Singh Interaction-Oriented Programming for Services WISE 2021 12

The Initiate protocol

I n i t i a t e {
role B, S
parameter out ID key , out i tem

B 7→ S : r f q [out ID key , out i tem]
}

Singh Interaction-Oriented Programming for Services WISE 2021 13

The Initiate protocol

I n i t i a t e {
role B, S
parameter out ID key , out i tem

B 7→ S : r f q [out ID key , out i tem]
}

Initiate (virtual)

ID item

B:rfq

ID item

S:rfq

ID item

Singh Interaction-Oriented Programming for Services WISE 2021 13

The Initiate protocol

I n i t i a t e {
role B, S
parameter out ID key , out i tem

B 7→ S : r f q [out ID key , out i tem]
}

Initiate (virtual)

ID item

1 fig

B:rfq

ID item

1 fig

S:rfq

ID item

Singh Interaction-Oriented Programming for Services WISE 2021 13

The Initiate protocol

I n i t i a t e {
role B, S
parameter out ID key , out i tem

B 7→ S : r f q [out ID key , out i tem]
}

Initiate (virtual)

ID item

1 fig
5 jam

B:rfq

ID item

1 fig
5 jam

S:rfq

ID item

Singh Interaction-Oriented Programming for Services WISE 2021 13

The Initiate protocol

I n i t i a t e {
role B, S
parameter out ID key , out i tem

B 7→ S : r f q [out ID key , out i tem]
}

Initiate (virtual)

ID item

1 fig
5 jam

B:rfq

ID item

1 fig
5 jam

S:rfq

ID item

5 jam

Singh Interaction-Oriented Programming for Services WISE 2021 13

The Initiate protocol

I n i t i a t e {
role B, S
parameter out ID key , out i tem

B 7→ S : r f q [out ID key , out i tem]
}

Initiate (virtual)

ID item

1 fig
5 jam

B:rfq

ID item

1 fig
5 jam
×1 apple

S:rfq

ID item

5 jam

Singh Interaction-Oriented Programming for Services WISE 2021 13

The Initiate protocol

I n i t i a t e {
role B, S
parameter out ID key , out i tem

B 7→ S : r f q [out ID key , out i tem]
}

Initiate (virtual)

ID item

1 fig
5 jam
8 fig

B:rfq

ID item

1 fig
5 jam
8 fig

S:rfq

ID item

5 jam

Singh Interaction-Oriented Programming for Services WISE 2021 13

The Offer Protocol

Of f e r {
role B, S
parameter out ID key , out item , out p r i c e

B 7→ S : r f q [out ID , out i tem]
S 7→ B: quote [in ID , in item , out p r i c e]

}

Singh Interaction-Oriented Programming for Services WISE 2021 14

The Offer Protocol

Of f e r {
role B, S
parameter out ID key , out item , out p r i c e

B 7→ S : r f q [out ID , out i tem]
S 7→ B: quote [in ID , in item , out p r i c e]

}

Offer (virtual)

ID item price

1 fig

B:rfq

ID item

1 fig

B:quote

ID item price

S:rfq

ID item

1 fig

S:quote

ID item price

Singh Interaction-Oriented Programming for Services WISE 2021 14

The Offer Protocol

Of f e r {
role B, S
parameter out ID key , out item , out p r i c e

B 7→ S : r f q [out ID , out i tem]
S 7→ B: quote [in ID , in item , out p r i c e]

}

Offer (virtual)

ID item price

1 fig 10

B:rfq

ID item

1 fig

B:quote

ID item price

S:rfq

ID item

1 fig

S:quote

ID item price

1 fig 10

Singh Interaction-Oriented Programming for Services WISE 2021 14

The Offer Protocol

Of f e r {
role B, S
parameter out ID key , out item , out p r i c e

B 7→ S : r f q [out ID , out i tem]
S 7→ B: quote [in ID , in item , out p r i c e]

}

Offer (virtual)

ID item price

1 fig 10

B:rfq

ID item

1 fig

B:quote

ID item price

1 fig 10

S:rfq

ID item

1 fig

S:quote

ID item price

1 fig 10

Singh Interaction-Oriented Programming for Services WISE 2021 14

The Offer Protocol

Of f e r {
role B, S
parameter out ID key , out item , out p r i c e

B 7→ S : r f q [out ID , out i tem]
S 7→ B: quote [in ID , in item , out p r i c e]

}

Offer (virtual)

ID item price

1 fig 10

B:rfq

ID item

1 fig

B:quote

ID item price

1 fig 10

S:rfq

ID item

1 fig

S:quote

ID item price

1 fig 10
×4 fig 10

Singh Interaction-Oriented Programming for Services WISE 2021 14

The Decide Offer Protocol
Choice: accept and a reject with the same ID cannot both occur

Dec ide O f f e r {
role B, S
parameter out ID key , out item , out p r i c e , out d e c i s i o n

B 7→ S : r f q [out ID , out i tem]
S 7→ B: quote [in ID , in item , out p r i c e]

B 7→ S : accep t [in ID , in item , in p r i c e , out d e c i s i o n]
B 7→ S : r e j e c t [in ID , in item , in p r i c e , out d e c i s i o n]

}

Singh Interaction-Oriented Programming for Services WISE 2021 15

The Decide Offer Protocol
Choice: accept and a reject with the same ID cannot both occur

Dec ide O f f e r {
role B, S
parameter out ID key , out item , out p r i c e , out d e c i s i o n

B 7→ S : r f q [out ID , out i tem]
S 7→ B: quote [in ID , in item , out p r i c e]

B 7→ S : accep t [in ID , in item , in p r i c e , out d e c i s i o n]
B 7→ S : r e j e c t [in ID , in item , in p r i c e , out d e c i s i o n]

}
Decide Offer (virtual)

ID item price decision

1 fig 10

B:rfq

ID item

1 fig

B:quote

ID item price

1 fig 10

B:accept

ID item price decision

B:reject

ID item price decision

Singh Interaction-Oriented Programming for Services WISE 2021 15

The Decide Offer Protocol
Choice: accept and a reject with the same ID cannot both occur

Dec ide O f f e r {
role B, S
parameter out ID key , out item , out p r i c e , out d e c i s i o n

B 7→ S : r f q [out ID , out i tem]
S 7→ B: quote [in ID , in item , out p r i c e]

B 7→ S : accep t [in ID , in item , in p r i c e , out d e c i s i o n]
B 7→ S : r e j e c t [in ID , in item , in p r i c e , out d e c i s i o n]

}
Decide Offer (virtual)

ID item price decision

1 fig 10 nice

B:rfq

ID item

1 fig

B:quote

ID item price

1 fig 10

B:accept

ID item price decision

1 fig 10 nice

B:reject

ID item price decision

Singh Interaction-Oriented Programming for Services WISE 2021 15

The Decide Offer Protocol
Choice: accept and a reject with the same ID cannot both occur

Dec ide O f f e r {
role B, S
parameter out ID key , out item , out p r i c e , out d e c i s i o n

B 7→ S : r f q [out ID , out i tem]
S 7→ B: quote [in ID , in item , out p r i c e]

B 7→ S : accep t [in ID , in item , in p r i c e , out d e c i s i o n]
B 7→ S : r e j e c t [in ID , in item , in p r i c e , out d e c i s i o n]

}
Decide Offer (virtual)

ID item price decision

1 fig 10 nice

B:rfq

ID item

1 fig

B:quote

ID item price

1 fig 10

B:accept

ID item price decision

1 fig 10 nice

B:reject

ID item price decision

×1 fig 10 nice

Singh Interaction-Oriented Programming for Services WISE 2021 15

The Purchase Protocol

Purchase {
role B, S , Sh i ppe r
parameter out ID key , out item , out p r i c e , out outcome
private add re s s , r e s p

B 7→ S : r f q [out ID , out i tem]
S 7→ B: quote [in ID , in item , out p r i c e]
B 7→ S : accep t [in ID , in item , in p r i c e , out addre s s , out r e s p]
B 7→ S : r e j e c t [in ID , in item , in p r i c e , out outcome , out r e s p]

S 7→ Sh ippe r : s h i p [in ID , in item , in add r e s s]
Sh i ppe r 7→ B: d e l i v e r [in ID , in item , in addre s s , out outcome]

}

▶ reject conflicts with accept on resp (a private parameter)

▶ reject or deliver must occur for completion (to bind outcome)

Singh Interaction-Oriented Programming for Services WISE 2021 16

Standing Order
As in insurance claims processing

I n su r ance=Cla ims {
role Vendor (V) , S u b s c r i b e r (S)
parameter out pID key , out cID key , out c la im , out r e s pon s e

Create=Po l i c y (V, S , out pID , out d e t a i l s)
S 7→ V: c l a imReque s t [in pID , out cID , out c l a im]
V 7→ S : c l a imResponse [in pID , in cID , out r e s pon s e]

}

▶ Illustrates composite keys
▶ A policy (identified by a binding for pID) may be associated with

multiple claims (each identified by a binding for cID)

▶ Composes protocol Create-Policy, which produces bindings for pID

Singh Interaction-Oriented Programming for Services WISE 2021 17

Realizing BSPL via Local State Transfer (LoST)
Think of the message logs you want

▶ For each role
▶ For each message that it sends or receives

▶ Maintain a local relation of the same schema as the message

▶ Receive and store any message provided
▶ It is not a duplicate
▶ Its integrity checks with respect to parameter bindings
▶ Garbage collect expired sessions: requires additional annotations

▶ Send any unique message provided
▶ Parameter bindings agree with previous bindings for the same keys for

⌜in⌝ parameters
▶ No bindings for ⌜out⌝ and ⌜nil⌝ parameters exist

Singh Interaction-Oriented Programming for Services WISE 2021 18

Information Centrism
Characterize each interaction purely in terms of information

▶ Explicit causality
▶ Flow of information coincides with flow of causality
▶ No hidden control flows
▶ No backchannel for coordination

▶ Keys
▶ Uniqueness
▶ Basis for completion

▶ Integrity
▶ Parameter has only one value relative to the key

▶ Immutability
▶ Durability
▶ Robustness: insensitivity to

▶ Reordering by infrastructure
▶ Retransmission: one delivery is all it needs

Singh Interaction-Oriented Programming for Services WISE 2021 19

Ideal Protocol-Based System Architecture

Agent Agent

Principal Principal

Protocol

Asynchronous Communication Infrastructure

▶ Constraints

1. Agent ensures the correctness of its emissions. To do so, it needs
nothing but its local state (history of prior emissions and receptions)

2. The reception of any message is correct, if it was emitted correctly
3. Asynchrony: Emissions nonblocking; receptions nondeterministic

▶ No ordered delivery guarantee needed from infrastructure.

4. The protocol is the complete operational specification of the system

▶ Assumption: Infrastructure delivers only sent messages
▶ No guaranteed delivery assumed

Singh Interaction-Oriented Programming for Services WISE 2021 20

Comparing LoST and ReST

ReST LoST

Modality Two-party; client-
server; synchronous

Multiparty interactions; peer-to-
peer; asynchronous

Computation Server computes
definitive resource
state

Each party computes its defini-
tive local state and the parties
collaboratively and (potentially
implicitly) compute the definitive
interaction state

State Server maintains no
client state

Each party maintains its local
state and, implicitly, the rele-
vant components of the states of
other parties from which there is
a chain of messages to this party

Singh Interaction-Oriented Programming for Services WISE 2021 21

Comparing LoST and ReST

ReST LoST

Transfer State of a resource,
suitably represented

Local state of an interaction
via parameter bindings, suit-
ably represented

Idempotent For some verbs, es-
pecially get

Always; repetitions are guar-
anteed harmless

Caching Programmer can
specify if cacheable

Always cacheable

Uniform interface get, post, . . . ⌜in⌝, ⌜out⌝, ⌜nil⌝
Naming Of resources via

URIs
Of interactions via (compos-
ite) keys, whose bindings
could be URIs

Singh Interaction-Oriented Programming for Services WISE 2021 22

Decentralized Applications on FaaS Platforms
Protocol + FaaS = highly modular and concurrent agent out of the box
Developer focuses on business logic
Implemented on AWS Lambda

Proactor Reactor

Local State

Internal Store

Checker

Receiver Emitter

Agent Internals

Adapter

▶ Decision-making components,
Proactor and Reactor

▶ Many instances of each as FaaS
functions

▶ Each Reactor handles one
message schema (encoded in
JSON)

▶ Unique Checker for each agent

▶ Deployment: configuration file
per agent referring to layers for
components and resources

Singh Interaction-Oriented Programming for Services WISE 2021 23

Implementation on Amazon Web Services
Using the term stack instead of service to avoid confusion

▶ Serverless Framework manages the configuration of multiple resources
▶ Stack: a declarative specification of resources to be interpreted

▶ Locally using Serverless Framework tools
▶ Via a cloud deployment system, e.g., CloudFormation

▶ Separate stack for each agent to avoid coupling them unnecessarily:
generally, agents are provided by different organizations

▶ Map roles to endpoints, as below
{

”Merchant ” : ” h t t p s ://5 yo8ouXXXX . execute=ap i . us=eas t =1.amazonaws . com/merchant /messages ” ,
” L ab e l e r ” : ” h t t p s : // awj8rrXXXX . execute=ap i . us=eas t =1.amazonaws . com/ l a b e l e r /messages ” ,
”Wrapper ” : ” h t t p s ://23 y4xcXXXX . execute=ap i . us=eas t =1.amazonaws . com/wrapper /messages ” ,
”Packer ” : ” h t t p s : // akuf0nXXXX . execute=ap i . us=eas t =1.amazonaws . com/ packe r /messages ”

}

Singh Interaction-Oriented Programming for Services WISE 2021 24

Layer for the Checker Component

checke r :
path : l a y e r # r equ i r e d , path to l a y e r c on t en t s on d i s k
name : PoSCheckerLayer # op t i o n a l , Deployed Lambda l a y e r

name
d e s c r i p t i o n : Laye r f o r s h a r i n g the PoS checke r module #

op t i o n a l , D e s c r i p t i o n to p u b l i s h to AWS
l i c e n s e I n f o : GPLv3 # op t i o n a l
package :

i n c l u d e :
= ’ ! . /* * ’
= checke r . py

▶ Common component in our architecture

Singh Interaction-Oriented Programming for Services WISE 2021 25

JSON Specification of the Logistics Protocol

{
”name ” : ” L o g i s t i c s ” ,
” type ” : ” p r o t o c o l ” ,
” pa ramete r s ” : [” o rde r ID ” , ” i temID ” , ” i tem ” , ” s t a t u s ”] ,
” keys ” : [” o rde r ID ” , ” i temID ”] ,
” i n s ” : [] ,
” ou t s ” : [” o rde r ID ” , ” i temID ” , ” i tem ” , ” s t a t u s ”] ,
” n i l s ” : [] ,
” r o l e s ” : [” Merchant ” , ”Wrapper ” , ” L ab e l e r ” , ”Packer ”] ,
”messages ” : {

” Reques tLabe l ” : {
”name ” : ” L o g i s t i c s / Reques tLabe l ” ,
” type ” : ”message ” ,
” pa ramete r s ” : [” o rde r ID ” , ” add r e s s ”] ,
” keys ” : [” o rde r ID ”] ,
” i n s ” : [] ,
” ou t s ” : [” o rde r ID ” , ” add r e s s ”] ,
” n i l s ” : [] ,
” to ” : ” L ab e l e r ” ,
” from ” : ”Merchant ”

} ,
. . .

Singh Interaction-Oriented Programming for Services WISE 2021 26

Merchant’s Checker Specification

MerchantChecker :
name : MerchantChecker
h and l e r : / opt / checke r . l ambda hand l e r
l a y e r s :
= ${ c f : pos=components=dev . Checke rLaye rExpo r t }
= ${ c f : pos=components=dev . DepsLayerExport }
= ${ c f : l o g i s t i c s =dev . Con f i g u r a t i o nL a y e rE xpo r t }

r e s e r v e dConcu r r e n c y : 1

▶ Declares a function MerchantChecker, which uses
CheckerLayerExport to load the checker code, which includes the
Checker, and loads the configuration layer

Singh Interaction-Oriented Programming for Services WISE 2021 27

Merchant’s Reactor Specification for the Packed
Message

PackedReactor :
name : Merchant Packed Reactor
h and l e r : p a c k e d r e a c t o r . l ambda hand l e r
package :

i n c l u d e :
= pa c k e d r e a c t o r . py

▶ Identifies its Lambda handler

▶ Identifies the implementation code to load

Singh Interaction-Oriented Programming for Services WISE 2021 28

Merchant Package Specification

package :
i n d i v i d u a l l y : t r u e
i n c l u d e :
= ’ !** ’
= r e a c t o r s . j s o n

▶ Registers the Reactor by adding reactors.json for Merchant

▶ Specifies what to include and exclude

▶ Merchant’s Reactor mapping is below:
{

” L o g i s t i c s /Packed ” :
” arn : aws : lambda : us=eas t =1:834106683512: f u n c t i o n : Merchant Packed Reactor ”

}

Singh Interaction-Oriented Programming for Services WISE 2021 29

Packer’s Reactor for the Wrapped Message (Partial)
de f l ambda hand l e r (event , c on t e x t) : # wrapped r e a c t o r

message = event [” message ”]
enactment = even t [” enactment ”]
l a b e l e d msg = next ((m f o r m i n enactment i f m. ge t (” l a b e l ”)) ,

None)
i f l a b e l e d msg :

send packed n o t i f i c a t i o n f o r i tem
pay load = {

” type ” : ” send ” ,
” to ” : ”Merchant ” ,
”message ” : {

” o rde r ID ” : message [” o rde r ID ”] ,
” i temID ” : message [” i temID ”] ,
”wrapp ing ” : message [” wrapp ing ”] ,
” l a b e l ” : l a b e l e d msg [” l a b e l ”] ,
” s t a t u s ” : ” packed ” ,

} ,
}
pay load = j s o n . dumps (pay load) . encode (” ut f =8”)
p r i n t (” Send ing Packed : {}” . fo rmat (pay load))
r e s pon s e = c l i e n t . i n voke (

FunctionName=”PackerChecker ” ,
. . .

Singh Interaction-Oriented Programming for Services WISE 2021 30

Merchant’s Proactor Specification
fu n c t i o n s
o r d e r :

h and l e r : o r d e r . writeToDynamo
ev en t s :
= ht tpAp i : POST / o r d e r s # to r e c e i v e customer o r d e r s

package :
i n c l u d e :
= o r d e r . py

PO proactor :
h and l e r : PO proactor . g e t o r d e r p r o a c t o r
e v en t s :
= s t ream :

type : DynamoDB
arn :

Fn : : GetAtt : [o rde r sTab l e , StreamArn]
package :

i n c l u d e :
= PO proactor . py

▶ Proactor produces events or respond to outside events

Singh Interaction-Oriented Programming for Services WISE 2021 31

Evaluation on AWS Lambda: Transaction Time and
Throughput

▶ Asynchronously submit 1,000 POs (1–4 items) for Fulfillment

▶ Set all DynamoDB tables to autoscale, with no throttling of requests

▶ Normal setting: no delay

▶ Delayed setting: 1s delay to simulate heavier processing

▶ Delay: analyze the merchant agent’s message timestamps

Experiment
PO Duration Throughput

Mean (s) St. Dev. (s) POs/s Items/s

Normal 266.51 51.45 1.23 2.37
Delayed 267.27 46.45 1.21 2.34

▶ Reactor without delay takes 1ms to 380ms but delay of 1,000ms has
little effect—low effect size of difference (Cohen’s d = 0.015)

Singh Interaction-Oriented Programming for Services WISE 2021 32

Evaluation on AWS Lambda: Concurrency
Concurrent instances of Lambda functions via AWS CloudWatch monitoring console

▶ Deserv takes advantage of automatic scaling in FaaS

▶ The Checker and database are potential bottlenecks

▶ The business computation takes place in the Reactor, however

Component
Number of Instances

Normal Delayed

Receiver 2 2
Reactor 2 13
Emitter 3 5

Singh Interaction-Oriented Programming for Services WISE 2021 33

Multiple Enactments Are Possible and Desirable

buyer seller

PO

ship

pay

(a) Shipment first

buyer seller

PO

pay

ship

(b) Payment first

buyer seller

PO

pay

ship

(c) Concurrent

▶ Information-based protocol languages
▶ Declarative: based on causality and integrity constraints
▶ Produce maximal flexibility compatible with application meaning

Main finding: Information protocols formalized declaratively make possi-
ble optimizations that are unavailable for traditional protocol languages

Singh Interaction-Oriented Programming for Services WISE 2021 34

Protocol: Purchase with Cancellation
Causality and integrity are captured via in, out, and nil

p r o t o c o l PO Pay Cance l Sh ip {
roles B, S
parameters out ID key , out item , out p r i c e , out outcome
private pDone , gDone , r e s c i n d

B 7→ S : PO [out ID key , out item , out p r i c e]

B 7→ S : c a n c e l [in ID key , nil pDone , nil gDone , out r e s c i n d]

B 7→ S : pay [in ID key , in p r i c e , in item , out pDone]

S 7→ B: s h i p [in ID key , in item , nil r e s c i n d , out gDone]

S 7→ B: cance lAck [in ID key , in r e s c i n d , nil gDone , out
outcome]

S 7→ B: payAck [in ID key , in pDone , out outcome]
}

Singh Interaction-Oriented Programming for Services WISE 2021 35

Generating a Tableau

▶ A tableau node captures the enactment so far
▶ Any enabled emission or reception can take place next

▶ Explosion of possibilities; most are irrelevant variants

▶ Some are relevant alternatives: enabled emissions may become
disabled

▶ All enabled receptions remain enabled (until they occur)

Generate a reduced tableau ⇒
All logically distinct possibilities are retained
Superfluous variants are reduced

Singh Interaction-Oriented Programming for Services WISE 2021 36

Causal Relations Between Messages
Derived entirely from their parameters and how they are adorned

Two messages with a common parameter:
▶ Some message with ⌜out⌝ must precede a message with ⌜in⌝

▶ Directly endows (necessary precursor): when only one message has
⌜out⌝

▶ Receiving message with ⌜in⌝ enables another with ⌜in⌝, disables
⌜out⌝ and ⌜nil⌝

▶ Sending or receiving message with ⌜out⌝ enables another with ⌜in⌝,
disables ⌜out⌝ and ⌜nil⌝

▶ Message with ⌜nil⌝ has no effect

Chaining the above:

▶ Enablement: chain of one or more direct enablements

▶ Tangles with: Doesn’t endow (make possible) a message, and disables
a message or disables a causal precursor of the message

▶ Incompatible: tangles with and at least one of them an emission

Singh Interaction-Oriented Programming for Services WISE 2021 37

Reduction Method
Sensitive observations (emissions or receptions): if they may disable others or be disabled
by others

▶ Expand tableau using nonsensitive observations in arbitrary order
▶ If only sensitive observations

▶ Produce partitions heuristically (approximate vertex cover)
▶ Create one branch for each compatible set in the partition
▶ Develop each branch with an arbitrary member of the set

▶ Iterate until all branches end or hit an inconsistency

Singh Interaction-Oriented Programming for Services WISE 2021 38

▶ To verify a
property:
assert
suitable
proposition at
root

▶ Stop tableau
expansion
upon
contradiction

▶ Here:
complete
tableau for
illustration

▶ 22 nodes
instead of
1,495

{{B!cancel, B!ship},{B!pay}}

{{S!ship, S!payAck},{S?cancel}}

{{S!cancelAck},{S!payAck}}

B?cancelAck

S!cancelAck

B?payAck

S!payAck

S?cancel

{{S!payAck}}

B?payAck

S!payAck

B?ship

S?cancel

S!ship

S?pay

B!pay

B!cancel

{{S!ship, S!payAck}}

{{B?ship, S!payAck}}

{{S!payAck}}

{{B?payAck}}

B?payAck

S!payAck

B?ship

S!ship

S?pay

B!pay

S?PO

B!PO

Performance Comparison
Major improvements on practical protocols
Protocol listings are online or in works cited from the Tango paper

No Branch Reductions Tango

Protocol Nodes Branches Time Nodes Branches Time

PO Pay Cancel Ship 1,495 490 655 ms 22 4 8 ms
Block Contra 1,802 612 636 ms 14 2 8 ms
Independent 453 90 157 ms 11 1 3 ms
NetBill (e-commerce) 4,097 1,246 2,688 ms 62 8 38 ms
HL7 Create Lab Order 59,259 17,814 70,953 ms 69 14 76 ms

Tango: Precisely captures tanglements based on information protocols to justify strong
optimizations

Singh Interaction-Oriented Programming for Services WISE 2021 40

Discussion
Demonstrate how to achieve decentralization, avoid client-server programming, while
taking advantage of serverless computing

▶ IOP modularizes service systems
▶ Separates agents from one another
▶ Coupled only to the extent as specified in a protocol
▶ Information model supports asynchrony

▶ Deserv unifies protocol-based programming of service engagements
with serverless computing
▶ Each agent is a composition of microservices
▶ Immutability of information is naturally compatible with functional

programming

▶ Tango exploits causality to reduce complexity of formal verification

Singh Interaction-Oriented Programming for Services WISE 2021 41

Directions and Thanks

▶ Implementation: https://gitlab.com/masr
▶ Tools address

▶ Formal verification of protocols
▶ Fault tolerant agents as microservices
▶ Serverless computing
▶ IoT applications
▶ Blockchain implementation of contracts

▶ Directions: Enhanced tooling and evaluation

▶ Collaborators welcome!
▶ Thanks!

▶ US National Science Foundation grant IIS-1908374
▶ UK EPSRC grant EP/N027965/1

Singh Interaction-Oriented Programming for Services WISE 2021 42

https://gitlab.com/masr

