The Internet of Things and Multiagent Systems:
Decentralized Intelligence in Distributed Computing

Munindar P. Singh and Amit K. Chopra

North Carolina State University
Lancaster University

June 2017
IoT Challenges

Discovery
- Physical objects
- Dealing with places
- Power source?
- Data services

Usability
- Identifying
- Manipulating
- Visualizing

Governance
- Autonomy
- Decentralization
- Sharing things

Security
- Integrity
- Privacy
- Owner’s
- Others’

Distributed
- Unreliable messaging
- Asynchrony
- Delay tolerance

- Provenance
- Trust

Dashed: Emphasis today
Internet of Oceans: Global Hybrid Profile Mooring Launch

Resource sharing, here for scientific collaboration
Internet of Oceans: Glider Being Launched

Intelligence at the end points
Vehicle Actuators

Remote configuration: Over the air modification of Tesla chassis elevation
Main Architectural Elements

Things
- Sensors
- Actuators

Middleware
- Discovery Selection
- Storage
- Monitoring
- Control

Applications
- User Interface
- Reasoner

Users

IoT emphasizes ownership and governance
Decentralization Calls for a Multiagent Architecture

Each agent represents an autonomous party; each Org represents an interaction context.
Vending Machine in Vienna

Conventional software engineering focuses on technical artifacts

AF[Brew]: On every path, coffee is eventually brewed
A[¬Brew U Coin]: On every path, no coffee is brewed prior to payment

© Fachhochschule Technikum Wien
http://embsys.technikum-wien.at/projects/decs/verification/formalmethods.php
Vending Machine in Valencia

Users plus machine form a sociotechnical system

- Tall structure
- Hard to reach for short people
- Is that a bug or a feature?
Vending Machine Close Up: Cigarettes!
Regulation: Violations are Possible

Appropriate assumption when dealing with autonomous parties
IoT Federation Levels and What Flows Across

Current techniques: lower levels
IoT applications need upper levels

- Governance
- Services
- Ontology
- Connectivity
- Expectation
- Value
- Meaning
- Information
- Governance
- Services
- Ontology
- Connectivity

© Singh & Chopra (NCSU & Lancaster) IoT and Multiagent Systems June 2017
Existing Approaches Ignore Expectations and Governance

Problems in ethics, trust, privacy, ...
Back to the Future

Current techniques: orchestration and a central mindset
IoT applications need decentralization and social protocols

Figure: Before IT: social but not computational

Figure: Current: centralized but computational

Figure: Envisioned: decentralized and computational
Sociotechnical Systems: Decentralized Intelligence

Requirements

Principal

... regulate

Principal

(Decentralization)
Social Tier

Technical Tier (Distribution)

data

read, write

Functional and Management Components

Stakeholders

specify

realized in

Expectations

Assumptions

Mechanisms

Metrics

identify

© Singh & Chopra (NCSU & Lancaster) IoT and Multiagent Systems June 2017 15
Formalizing Expectations for Distributed Computing

Normative relationships or norms in Orgs: Declarative; composable; manipulable

Diagram:
- **Org**
 - Context
 - Antecedent
 - Consequent

- **Principal**
 - Practically Commit
 - Dialectically Commit

- **Norm**
 - Subject
 - Object

- **Antecedent**
 - Commit
 - Authorize
 - Prohibit
 - Sanction
 - Empower

© Singh & Chopra (NCSU & Lancaster) IoT and Multiagent Systems June 2017
Simple Domain Model for Sociotechnical Systems

A vocabulary for governance

- **Action**
 - Organization
 - Participation
 - Eject
 - Admit
 - Registration
 - Contribute
 - Withdraw
 - Communication
 - Norm Operation
 - Create
 - Delegate
 - Assign
 - Resource
 - Owns
 - Norm State
 - Member
 - Registrant
 - Owns
 - Participation
 - Created
 - Violated
 - Satisfied
 - Resource
 - Capable
 - In
 - State
 - Property
 - Inform
 - Request
 - Query

© Singh & Chopra (NCSU & Lancaster) IoT and Multiagent Systems June 2017
Summary: Decentralized Intelligence is Key for IoT

IoT applications need computational models of sociotechnical systems

- Programming models
 - How can we enacting social protocols?
 - How may we express expectations via norms?
 - How can we computationally support reasoning about social protocols?

- Interaction-oriented software engineering
 - What modeling constructs cohesively underpin multiple federation levels? Can a declarative treatment of causality yield such constructs?
 - How can we characterize autonomy and corresponding accountability?

- Enlightened governance
 - How can we evaluate the quality of norms?
 - How can we support social deliberation about norms?
 - What are high-level architectural abstractions that naturally incorporate governance?
 - How can we understand ethics in a tangible computational manner?
Thanks and Plugs

- Acknowledgments
 - US Department of Defense
 - US National Science Foundation

- Read and publish in
 - ACM Transactions on Internet Technology
 - IEEE Internet Computing

http://www.csc.ncsu.edu/faculty/mpsingh/