
Programming MAS without Programming Agents

Munindar P. Singh and Amit K. Chopra

North Carolina State University, Università degli Studi di Trento

May 2009

singh@ncsu.edu, akchopra.mail@gmail.com (NCSU & Trento)Programming MAS May 2009 1 / 21

Architecture

How a system is organized
I Primarily its ingredients

I Components
I Interconnections

I An architecture is motivated by
I Stakeholders’ requirements
I The environment in which it will be instantiated as a system

singh@ncsu.edu, akchopra.mail@gmail.com (NCSU & Trento)Programming MAS May 2009 2 / 21

Open Architecture

I Openness: specifying the interconnections cleanly
I Physical components disappear
I Their logical traces remain

I Protocols: interconnections in open information environments

singh@ncsu.edu, akchopra.mail@gmail.com (NCSU & Trento)Programming MAS May 2009 3 / 21

Architectural Style

I A style identifies
I (Architectural) Constraints on components and interconnections
I Patterns on components and interconnections

I A style yields a language (possibly also a notation) in which we
present the architecture of a particular system

singh@ncsu.edu, akchopra.mail@gmail.com (NCSU & Trento)Programming MAS May 2009 4 / 21

Requirements for a MAS Architecture

I The components are agents
I Autonomous
I Heterogeneous

I The environment provides
I Communication: inherently asynchronous
I Perceptions
I Actions
I For IT environments, we can treat all as communications

I The stakeholders require the agents to interoperate

singh@ncsu.edu, akchopra.mail@gmail.com (NCSU & Trento)Programming MAS May 2009 5 / 21

Criteria for Judging Interconnections

The purpose of the interconnections is to support interoperation of the
components

I Loose coupling: support heterogeneity
I Flexibility: support autonomy, enabling participants to extract all

the value they can by exploiting opportunities and handling
exceptions

I Encapsulation: promote modularity
I Compositionality: promote reuse

singh@ncsu.edu, akchopra.mail@gmail.com (NCSU & Trento)Programming MAS May 2009 6 / 21

Interoperation

I Two or more components interoperate when each meets the
expectations that each of the others places on it

I Neither about control flow, nor about data flow [Parnas, 1972]
I Most, if not all, subsequent software engineering research

considers only control or data flow
I Ill-suited for MAS

I Challenges for expectations
I How may we characterize them except via flow?
I How may we verify or ensure they are met?

singh@ncsu.edu, akchopra.mail@gmail.com (NCSU & Trento)Programming MAS May 2009 7 / 21

Protocols, Generally
Consider networking or even power

I Protocols encapsulate the allowed interactions
I Connect: conceptual interfaces
I Separate: provide clean partitions among logical components

I Wherever we can identify protocols, we can
I Make interactions explicit
I Identify markets for components

I Protocols yield standards; their implementations yield products

singh@ncsu.edu, akchopra.mail@gmail.com (NCSU & Trento)Programming MAS May 2009 8 / 21

Specifying MAS Protocols
In light of the above criteria

I Procedural, which specify the how
I Finite state machines, Petri nets
I Generally over-specify the interactions, thus limiting flexibility and

coupling the components tightly
I Declarative, which specify the what

I Logic in its various forms
I Not necessarily higher level than the procedural approaches
I Most valuable when the conceptual abstractions promote loose

coupling and flexibility

singh@ncsu.edu, akchopra.mail@gmail.com (NCSU & Trento)Programming MAS May 2009 9 / 21

Proposed Approach
Agent communication done right

I Syntax: documents to be exchanged as messages
I Semantics: formal meaning of each message

I For business applications, expressed via commitments
I For other situations, potentially expressed via other suitable

constructs in a like manner
I Minimal operational constraints

I It is surprising how few constraints are truly needed

singh@ncsu.edu, akchopra.mail@gmail.com (NCSU & Trento)Programming MAS May 2009 10 / 21

Commitments Introduced

Compliance means not violating a commitment

I C(debtor , creditor , antecedent , consequent)
I C(EBook , Alice, $12, BNW)

I DETACH: C(x , y , r , u) ∧ r → C(x , y ,>, u)
I C(EBook , Alice, $12, BNW) ∧ $12 ⇒ C(EBook , Alice,>, BNW)
I C(debtor , creditor ,>, consequent): unconditional commitment

I DISCHARGE: u → ¬C(x , y , r , u)
I BNW ⇒ ¬C(EBook , Alice, $12, BNW)
I BNW ⇒ ¬C(EBook , Alice,>, BNW)

singh@ncsu.edu, akchopra.mail@gmail.com (NCSU & Trento)Programming MAS May 2009 11 / 21

Ensuring Interoperation: 1
Traditional representations

I Traditional SE approaches handle only control and data flow
I A poor notion of interoperation, but at least they have it

I Traditional AAMAS approaches make onerous demands
I The beliefs—similarly, desires or intentions—of the parties involved

must be
I Determinable: impossible without violating heterogeneity
I In mutual agreement: impossible without violating autonomy and

asynchrony
I Hence, no viable notion of interoperation

singh@ncsu.edu, akchopra.mail@gmail.com (NCSU & Trento)Programming MAS May 2009 12 / 21

Ensuring Interoperation: 2
Commitment alignment

I Two sources of asymmetry in MAS
I Communications are directed: direction of causality is from sender

to receiver
I Commitments are directed: direction of expectation is from creditor

to debtor
I Our definition of alignment is asymmetric

I Whenever a creditor computes a commitment, the debtor computes
the same commitment

I Finesse in “whenever”

singh@ncsu.edu, akchopra.mail@gmail.com (NCSU & Trento)Programming MAS May 2009 13 / 21

Ensuring Interoperation: 3
Alignment and asynchrony

I When a debtor autonomously creates a commitment, it sends a
corresponding message, which lands at the creditor

I Here the debtor is committed before the creditor learns of it
I When a creditor detaches a commitment, thereby strengthening it,

a message corresponding to the detach eventually arrives at the
debtor

I Here the debtor is committed when it receives the detach
I This motivates a treatment of quiescence wherein we only consider

well-formed points in executions where each message has landed
I When a debtor or creditor learns that a commitment is discharged

or detached, respectively, it must immediately notify the other
(integrity, which ensures no quiescence until the information has
propagated)

[Chopra & Singh, AAMAS 2009]

singh@ncsu.edu, akchopra.mail@gmail.com (NCSU & Trento)Programming MAS May 2009 14 / 21

Programming MAS: Protocol Specifications

I To program a MAS, define a protocol
I Specify roles
I Specify messages
I Specify meaning messages in terms of commitments
I Specify any additional constraints

I The above is valid because we have formalized interoperability
based on commitments

I We can compose protocols

singh@ncsu.edu, akchopra.mail@gmail.com (NCSU & Trento)Programming MAS May 2009 15 / 21

Programming MAS: Configuration

I To instantiate and enact a MAS, identify agents to play roles in its
protocol

I Could be preexisting agents proceeding on their own initiative
I Could be new agents instantiated from preexisting code-bases
I Could be custom agents

singh@ncsu.edu, akchopra.mail@gmail.com (NCSU & Trento)Programming MAS May 2009 16 / 21

Programming MAS: Middleware

I Offer primitives encapsulated as programming abstractions or
middleware by which agents can

I Communicate with each other
I Maintain their commitments as debtors
I Maintain their commitments as creditors
I Verify each other’s compliance: are any commitments not being

discharged?
I Ensure that the constraints required for interoperability are applied

[Chopra & Singh, ProMAS 2009]

singh@ncsu.edu, akchopra.mail@gmail.com (NCSU & Trento)Programming MAS May 2009 17 / 21

Beady Eye
Not for the architecture guy

Also known as BDI
I Violates heterogeneity: presumes knowledge of agent internals
I Prevents alignment in settings involving asynchrony
I Tightly couples the agents
I Leads to invalid assumptions such as sincerity in communication

singh@ncsu.edu, akchopra.mail@gmail.com (NCSU & Trento)Programming MAS May 2009 18 / 21

Aside: Notation
Important but secondary to concepts

When we describe an architecture
I What matter most are the concepts using which we do so
I Notation is important, but less so

I Existing notations are not complete for our purposes
I A contribution of MAS research is to invent suitable notations

singh@ncsu.edu, akchopra.mail@gmail.com (NCSU & Trento)Programming MAS May 2009 19 / 21

Conclusions

I In attempting to develop practical MAS, AAMAS approaches
I Adopt traditional software ideas wholesale, thus neglecting the key

features that characterize MAS
I Seek to differentiate themselves from traditional SE, mainly through

BDI
I Approaches that ignore asynchrony, autonomy, heterogeneity are

unacceptable
I Higher-level concepts yield interconnections that support MAS

applications
I Provided we realize them correctly to yield interoperation

singh@ncsu.edu, akchopra.mail@gmail.com (NCSU & Trento)Programming MAS May 2009 20 / 21

Directions

I CSOA, Commitment-based service-oriented architecture [Singh,
Chopra, Desai, IEEE Computer 2009]

I An architecture style that treats business (not technical) services as
agents, and includes patterns for service engagements

I Business modeling language [Telang & Singh, SOCASE 2009]
I A way to express a MAS in terms of the business relationships

among agents as conglomerates of commitments
I A way to verify the computations realized with respect to business

models

singh@ncsu.edu, akchopra.mail@gmail.com (NCSU & Trento)Programming MAS May 2009 21 / 21

