Commitments for Business Processes: Overview of Concepts, Protocols, Machines, Compliance

Munindar P. Singh Department of Computer Science North Carolina State University

Essential Properties of Business Processes

n Autonomy.
n Heterogeneity.
n Exceptions.
n Opportunism.

Agent and Multiagent Systems

- n Agents cover a wide range of behavior and functionality.
- n An agent is an active computational entity that
 - **h** Has a persistent identity.
 - Perceives, reasons about, and initiates activities in its environment.
 - **n** Communicates with other agents.
 - Enters into complex relationships with other agents.
- n These features enable agents to participate in open systems as service providers and consumers.

Commitments

- **n** An agent's commitment to another agent:
 - n Is a directed obligation.
 - Arises within a well-defined scope or *context*, which is itself a MAS.
 - Manipulable (including revocable) with restrictions.
- n Enable coherent agent interactions by capturing the meaning behind the interactions.
- Claim: 90% of all business data reflects commitments [statistics made up J].

Outline

- n History, briefly:
 - n AI, communication, mentalism.
 - n Introduced 1991, applied late 1990s.
- n Commitments and spheres thereof.
- n Contracts.
- Commitment protocols and machines.
 Compliance.
- Directione
- n Directions.

Dynamic Organizations

Whenever agents come together dynamically and have structure to their interactions.

n Abstractly, organizations

- n Consist of roles
 - Requiring certain capabilities and commitments.
 - Offering certain authorities.
- Require commitments among the roles.
- Support commitments among the roles.
- n Concretely, organizations
 - n Consist of agents.
 - Acting coherently.

Sphere of Commitments

SoCom: an organization that provides the context or scope of commitments among agents.

n Conceptually, the SoCom

- Serves as a witness or adjudicator for the commitment.
- Helps validate commitments and test for compliance.
- n Offers compensations to undo members' actions.

Manipulating Commitments

n Operations on commitments:

- n Create.
- Discharge (satisfy).
- n Cancel.
- Release (eliminate).
- Delegate (change debtor).
- Assign (change creditor).
- n Metacommitments:
 - Constrain the manipulation of commitments.
 - Fall into a small number (dozen) of patterns for common business process scenarios.

Applying SoComs

- Example: buyer and seller roles with appropriate
 - ⁿ Capabilities, e.g., requests they can honor.
 - **n** Commitments, e.g., validity of their price quotes.
- n To adopt a role, an agent must have the capabilities and adopt the commitments.
- **n** System needs are architecture and tools for
 - n Discovery.
 - n Compliance.
 - Designing the right agents.

Binding Agents to Roles

SoComs provide the context for concepts represented & communicated.

Virtual Enterprises (VE)

- Two sellers come together into a SoCom called VE (implemented, e.g., with a new proxy agent).
- n Example of VE's commitments:
 - Notify on change.
 - ⁿ Update orders.
 - **Guarantee the price**.
 - Guarantee delivery date.

A Selling VE

Patterns

- n Common patterns of commitments emerge, e.g.,
 - **n** Policies to notify and renotify.
 - Policies to entertain requests, updates, from other roles.
- n Patterns help design good systems.
- Agent skeletons can be generated from selected patterns that a role is expected to follow.

Outline

- n History, briefly:
 - n AI, communication, mentalism.
 - n Introduced 1991, applied late 1990s.
- n Commitments and spheres thereof.
- n Contracts.
- Commitment protocols and machines.
 Compliance.
- n Directions.

Hohfeldian Concepts: 1

Hohfeld discovered that "right" is used ambiguously and proposed a uniform terminology to distinguish its various uses.

- n Sixteen concepts result:
 - Four main concepts.
 - n Their correlates.
 - n Their negations.
 - Their negations' correlates.
- n All two-party notions.

Hohfeldian Concepts: 2

- Claim-duty: the claims a party has on another.
- Privilege-exposure: freedom from the claims of another agent dual of claim.
- Power-liability: when an agent can change the claim-duty relationship of another agent – ability to create and manipulate commitments involving others.
- Immunity-disability: freedom from the power of another agent – dual of power.

Commitments for Contracts

Commitments express the Hohfeldian concepts. Importantly, commitments are

- n Public (unlike beliefs and intentions).
- n Can be used as the basis for compliance.
- Contracts apply between parties, in a context.
- **n** Other approaches are:
 - n Single-agent focused, e.g., deontic logic.
 - Don't handle organizational aspects of contracts.
 - **n** Don't accommodate manipulation of contracts.

Outline

- n History, briefly:
 - n AI, communication, mentalism.
 - n Introduced 1991, applied late 1990s.
- n Commitments and spheres thereof.
- n Contracts.
- n Commitment protocols and machines.
- n Compliance.
- n Directions.

Commitment Protocols

- Protocols enable open systems to be constructed.
- n Interaction protocols expressed in terms of
 - Participants' commitments.
 - Actions for performing operations on commitments (to create and manipulate them).
 - Constraints on the above captured in temporal logic.

Example: NetBill

Some variations:

- The merchant may start the protocol by sending a quote.
- The customer may send an accept prior to offer.
- The merchant may send the goods prior to accept.
 These variations are not allowed by the FSM.

Capturing Meaning

Atomic propositions:

- *n* request: the customer has requested a quote.
- n goods: the merchant has delivered the goods.
- n pay: the customer has paid the agreed amount.

n receipt: the merchant has delivered the receipt. Metacommitments:

- n promiseGoods: $C_m(accept \Rightarrow goods)$
- n *accept*: $C_c(goods \Rightarrow pay)$
- n promiseReceipt: $C_m(pay \Rightarrow receipt)$

Reasoning

When we represent meaning, we can reason about how an agent should act given the protocols in which it is participating.

- Planning: generate protocol runs that satisfy the given protocols
- **n Opportunism**: Skip unnecessary states.
- Composition: Combine protocols through common commitment states.
- n Factoring: Substitute a subprotocol for another (e.g., a sophisticated negotiation protocol for accepting quote) as long as both protocols produce semantically equivalent computations.

NetBill Enhanced by CMs

Final state: No open commitments remain.

Meanings:

1. true

2. request

3. offer

4. $C_m goods \land accept \land promiseReceipt$

5. goods $\land C_c pay \land$ promiseReceipt

6. goods \land pay \land C_mreceipt

7. goods \land pay \land receipt

8. goods Ù promiseReceipt
 9. accept

Outline

n History, briefly:

n AI, communication, mentalism.

n Introduced 1991, applied late 1990s.

- n Commitments and spheres thereof.
- n Commitment protocols and machines.
- n Contracts.
- n Compliance.
- n Directions.

Compliance with Protocols

- Commitment machines deal with designing agents to obey protocols flexibly.
- But in open multiagent systems, agents are contributed by different vendors and serve different interests.
- n How can we check if the agents comply with the specified protocols?
 - Coordination aspects: traditional techniques.
 - Commitment aspects: representations of the agents' commitments in TL.

Verifying Compliance

- **n** Specification of commitment protocols:
 - n Models based on *potential causality*.
 - **n** Protocol:
 - ⁿ Commitments based on branching-time TL.
 - Domain-specific propositions and actions
 - Skeletons of roles essential for coordination
- **n** Run-time verification:
 - Respects design autonomy.
 - **n** Uses TL model-checking.
 - **n** Local verification based on observed messages.

Fish-Market Sample Execution

Fish-Market Local Observations

Message Patterns for Commitment Operations

Ensure that information about commitment operations flows to the right parties, to enable local decisions.

Run-Time Compliance Checking

n An agent can keep track of

- **n** Its pending commitments.
- Commitments made by others that are not satisfied.
- n It uses this local model to see if a commitment has been violated.

n An agent who benefits from a commitment can always determine if it was violated.

Outline

n History, briefly:

n AI, communication, mentalism.

n Introduced 1991, applied late 1990s.

- n Commitments and spheres thereof.
- n Commitment protocols and machines.
- n Contracts.
- n Compliance.
- n Directions.

Directions

- **n** Concepts and design:
 - n Simplified commitment and policy capture.
 - Manipulation of commitments based on varying context groups.
- n Protocols and machines:
 - Richer models of inference about commitments.
- n Compliance:
 - Determination of compliance under different cases of system architecture and information flow.
 - **Relationship to trust among participants.**
- Influence industry practice and standards.

Evaluation

- n Control Flow: Excellent graph primitives, some with iteration
- n Organizational abstraction: Not supported
- Conversations: Modeled as scripts (graphs), but not flexible
- **n** Cooperation: Not supported
- n Exception handling: Only low level, not semantic