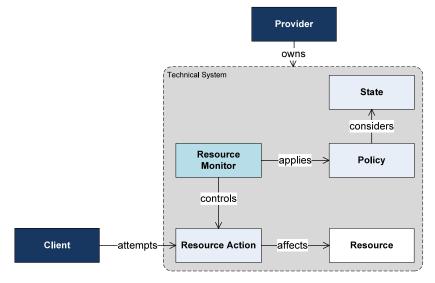
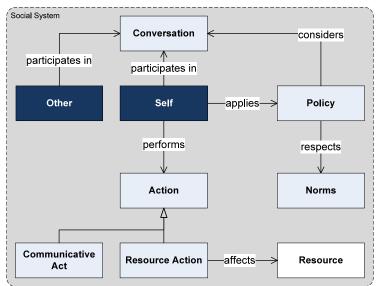

Can't We All Just Get Along?

Agreement Technologies and the Science of Security


Munindar P. Singh singh@ncsu.edu

Department of Computer Science North Carolina State University

Simple Normative Framework



Traditional View: Systems as Artifacts

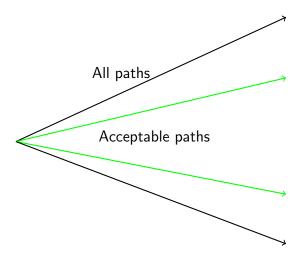
Proposed View: Systems as Societies

Conversations with autonomous parties; control over resources

Sociotechnical Systems

Combine IT with real-life societal considerations

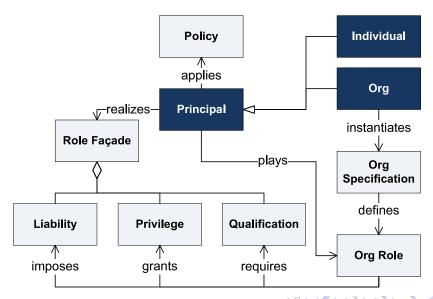
- System characteristics
 - ► Longevity and identity
 - Autonomy
 - Essentially a society
 - Characterized via norms, not operationally
- Member characteristics
 - Longevity and identity
 - Autonomy
 - Heterogeneity
 - Ability to deal with norms, e.g., via goals realized in policies
- Realization
 - ► Top down: Members fit into existing system
 - Adopt suitable goals given system norms
 - Bottom up: Members design new system
 - Negotiate suitable norms given individual goals


Regulation versus Regimentation

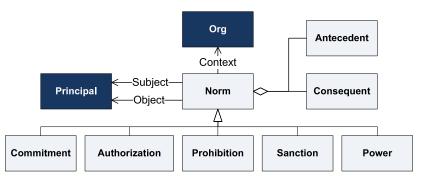
Amish Rumspringa

- Regimentation: preventing bad behavior
 - Fits a closed system
 - Reflects a pessimistic stance
 - Presumes a regimenting infrastructure
- Regulation: discouraging and correcting—though allowing—bad behavior
 - ▶ Fits an open system
 - Reflects an optimistic stance
 - Presumes a regulating social system

Regulation versus Regimentation


Amish Rumspringa: The Model Allows Bad Behavior

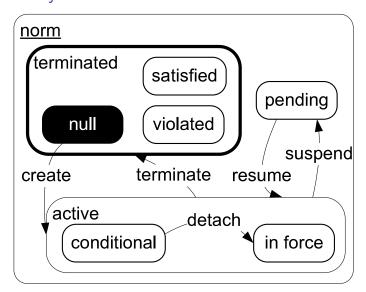
Conception of Norms, Orgs, and Policies


- Key concepts
 - Orgs host norms and members
 - Norms as standards of correctness
 - Internal policies of agents address norms
 - Decision making and behavior of agents address policies
- Societal structure relates to other important concepts
 - Trust
 - Engendered by norms
 - Assigned based on policies
 - Economic concepts
 - Incentives correspond to policies
 - Mechanisms correspond to norms

Governance Overview

Types of Norms

Unified logical form: Norm(subject, object, context, antecedent, consequent)



- Directed: capture accountability
- Declarative
- Composable
- Manipulable

Norms as Façades

Norm	Subject's Façade	Object's Façade
Commitment	Liability	Privilege
Authorization	Privilege	Liability
Power	Privilege	Liability
Prohibition	Liability	Privilege
Sanction	Liability	Privilege

Norm Life Cycle: 1

Norm Life Cycle: 2

Substate of a terminated norm

If ter	minated in	Then					
ant	con	Com	Aut	Pro	San	Pow	
false	false	null	null	null	null	null	
false	true	sat	vio	null	null	null	
true	false	vio	null	sat	null	vio	
true	true	sat	sat	vio	sat	sat	

Architecture

Differentiating from traditional software architecture

- Autonomy is key
 - Partly recognized in ULSSIS: Ultra-Large-Scale Software-Intensive Systems
- Abstraction: norms describe what, not how
- Opacity: internal policies are hidden
- Dynamism, both
 - Membership
 - Participation is not regimented
- Fractal structure of Orgs
 - ▶ Turtles all the way

Security Properties and Threats

To use as demonstration cases

- Properties
 - Least privilege
 - Separation of duties
 - ► Two-person rule (e.g., for nuclear missile launch)
- ▶ Threats
 - Denial of service
 - Information inference
 - Insider attacks

Challenge: Specification

- Framework
 - Operational model (aka "system spec")
 - Computable
 - Mathematical and abstract
 - Provides the underpinnings for correctness
 - Correctness (aka "property spec")
 - To be verified
 - Expressed on top of the operational model
- Specification modalities
 - Policies
 - Incentives
 - Sanctioning
 - Normative relationships

Challenge: Architectural Patterns and Properties

Parametric families of systems

- Examples of architectural patterns
 - Make at least one party accountable for each requirement
 - Make exactly one party accountable for each requirement
 - ▶ Ensure each Org controls its infrastructure
 - Ensure each Org provides identity for its members
- Examples of properties
 - The information inference vulnerability is avoided
 - Certain actions cannot be performed unless two agents agree

Challenge: Robustness

Guarantees of system states reached

- ▶ Under combinations of threats, e.g.,
 - Faults
 - Attacks
 - Specific agent policies
 - Collusion
- ▶ From the perspective of
 - Specific agents or roles
 - Org
 - External party, where relevant (?)
- In the context of
 - Particular infrastructure
 - Orgs

Challenge: Toward a Type Theory

Foundation for design of normative systems

- Explore well-known concepts in the present setting
 - Refinement of norms by norms
 - Realization of norms by role specifications
 - Conformance of roles to roles
 - Alignment of agents
 - Interoperability of roles
- Example fundamental theorem
 - Substituting a role by a conformant role preserves interoperability

Challenge: Requirements Engineering

- Designing an Org
 - Capturing requirements
 - Validating norms with requirements
- Multiparty design
 - Argumentation
 - Capturing design rationale
 - Evolution
 - Incorporating evidence

Highlights

- ► To understand security presumes
 - Autonomy and accountability
 - Standards of acceptable behavior
- A system as a society
 - Regulation, not regimentation
 - Orgs help delineate the social context
- A normative architecture
 - Dynamism
 - Support for incentives
 - ▶ Doesn't regiment interactions: members can violate norms
- Raising the abstraction level opens up additional possibilities
 - Mapping personal norms (psychology)
 - Organizational culture (social psychology)

Thanks!

Amit Chopra and Science of Security Lablet colleagues (Nirav Ajmeri, Simon Parsons, José Meseguer, William Scherlis)

http://www.csc.ncsu.edu/faculty/mpsingh/

