
Verifying Constraints on Web Service
Compositions

Zhengang Cheng, Munindar P. Singh, and Mladen A. Vouk
Department of Computer Science
North Carolina State University
Raleigh, NC 27695-7535, USA

{zcheng, mpsingh, vouk}@eos.ncsu.edu

Abstract. Current service description and composition approaches consider simplistic
method invocation. They do not accommodate ongoing interactions between service
providers and consumers, nor do they support descriptions of legal protocols of in-
teractions among them. We propose richer representations which enable us to capture
more of the semantics of services than current approaches. Further, we develop al-
gorithms by which potential problems in service compositions can be detected when
services are configured, thereby leading to superior execution of composed services.

1 Introduction

Web services enable application development and integration over the Web by supporting
program-to-program interactions. Relevant standards include Web Services Description Lan-
guage (WSDL), Universal Description, Discovery and Integration (UDDI), and Simple Ob-
ject Access Protocol (SOAP) [6, 18, 5]. These are intended, respectively, for describing, dis-
covering, and invoking services. While current approaches represent much progress, they
carry the baggage of traditional distributed objects approaches. Services are integrated through
method invocation without regard to any higher-level constraints.

Current Web service techniques are limited to services where each operation is indepen-
dent. A common example is stock-quote lookup, where each stock query is unrelated to every
other query. But when we move from simplistic information lookup to interactive information
search or to e-commerce, especially for complex business-to-business settings, it becomes
obvious that current techniques are inadequate. In particular, we face two main challenges.

• What are useful ways of structuring the composition of services? Method invocation is ap-
propriate for closed systems, but services are inherently autonomous and often to be used
in long-lived interactions. For example, a long-lived interaction occurs in e-commerce
when you try to change an order because of some unexpected conditions or try to get a
refund for a faulty product. Even short-lived settings involve protocols, e.g., checking if
the service requester is authenticated and properly authorized before accepting its order.

• What are appropriate semantic constraints on how services may participate in different
compositions? As observed above, it may be required to compose services so as to carry
out certain kinds of interactions. However, if a given service does not support such in-
teractions, then the composition can fail at run time in unexpected ways. For example,



if an e-commerce service does not allow orders to be changed after a certain time has
elapsed, it may be unsafe to use this service in certain settings, even if it is superior in
other respects.

Current approaches, based on traditional closed systems, fall short of handling the above
situations. WSDL allows us to capture the various methods but does not support constraints
among those methods. Either too many methods will always be enabled or too few. However,
WSDL’s functionality is required to specify the methods supported by a service. Recently,
Web Services Flow Language (WSFL) was proposed to describe compositions of services
in the form of a workflow [14]. WSFL specifications tell us how different services ought
to be invoked, e.g., in terms of ordering and parallelism among them, but they don’t tell
us whether a particular service that is bound in the workflow will in fact deliver the right
interactions. XLANG [16] fits in Microsoft’s BizTalk Server architecture. It describes the
behavior of a single Web service. XLANG as it stands today provides a notation similar in
spirit to workflow languages.

Our contribution is in capturing deeper constraints on what services are willing to offer,
capturing richer requirements for service composition, and comparing the two to decide if a
particular service is appropriate for the intended composition. Roughly, we think of WSDL
as providing an underlying layer for our work. We enhance WSFL to define a service com-
position language that provides the necessary inputs to our reasoning approach. XLANG
specifications are envisioned to drive automated protocol engines that will ensure that the
specified message flows are obtained. Further, the intended direction is to define message
exchanges among Web services. In this expanded form, XLANG will relate to our approach
by providing elements of a service composition language.

Although the work reported here is still in an early stage of development, we believe
it addresses important real-world concerns in the future expansion of the semantic Web. In
particular, for the semantic Web technologies to penetrate real-life enterprise and scientific
applications, the semantic Web will need as strong a representation of actions and processes
as of data.

The rest of this paper is organized as follows. Section 2 introduces our representations and
Section 3 applies them for verifying service compositions. Section 4 shows how our approach
applies to service-level verification. Section 5 concludes with a discussion of the important
themes, some of the relevant literature, and directions for further research.

2 Representing Composition Constraints

Because of their autonomy and heterogeneity, services are naturally associated withagents.
Agents are long-lived, persistent computations that can perceive, reason, act, and commu-
nicate [10]. Agents act with varying levels of autonomy depending on environmental con-
straints and their previous commitments. Each agent provides a service and interacts through
the exchange of messages, which denote business documents. We propose the Agent Service
Description Language (ASDL) to describe the external behavior of agent services. An ASDL
specification describes the messages understood by a service along with an interaction pro-
tocol it follows. Like WSDL, ASDL can be published and accessed through a registry. We
propose the Agent Service Composition Language (ASCL) to describe the composition of
new services from existing services. The imported services represent an agent role with its



behavior described in its ASDL description. An ASCL specification describes the interaction
with other agent services.

2.1 Agent Service Description Language

ASDL enables us to define the behavioral characteristics of a Web Service. A Web service
that implements behavior to preserve its autonomy is considered a Web agent service. In
essence, ASDL is an behavioral extension to WSDL. It describes the constraints of service
invocation to capture the external visible relationship between the operations.

The external behavior of the agent is demonstrated by its interaction with other agents.
Such interactions occur through message exchanges. The internal implementation and rea-
soning logic is governed by the autonomy of the agent. For simplicity, we describe agent
behavior via a finite state machine that models the allowed operation sequences.

The behavior of a service provider describes the allowed invocation sequence of opera-
tions. Invocations of this service must satisfy this sequence. We describe the agent behavior
through a set of states and transitions between the states.

The state of an agent is used to maintain semantic constraints on actions. For example,
a seller may require a buyer to log in before ordering some thing. Thus we can describe
legal sequences of operation invocation. An operation state has a name for referencing and
the operation it represents. For example, we can represent a state for the “order” operation
defined in WSDL as follows.

<state name=”order” operation=”order”/>

ASDL contains states for all operations defined in WSDL with the name and operation
attributes same as the operation name. We allow empty states which only have a name, but
with no operation defined. They can be used to denote semantic states such as “ordered.”

An interaction can proceed from one operation to another only if allowed by the mod-
eled transitions. Each transition has a source operation and a destination operation. It may
associate a condition to specify when the transition can occur. For example, the following
specifies that the customer must successfully “Login” before “Ordering” any product. (The
gating condition “expr” can involve terms from the messages exchanged in the protocol.)

<transition source=”Login” target=”Order” condition=”expr”/ >

If there are no other transitions into “order,” the customer must log in before ordering.

2.2 An E-Commerce Example

Figure 1 describes the behavior of an agent who requires login first, then enables querying
and ordering products, leading to checkout and payment, and finally shipping.

We describe the seller’s behavior with a behavioral extension of WSDL.
<behavior name=”seller”>

<states>
<state name=”start” operation=””/>

<state name=”OQuery” operation=”Query”/>

<state name=”Ordered” operation=””/>

< /states>
<transitions>

<transition source=”Start” target=”Register” condition=”NULL”/>



 

Start 

Register 

N 

Login 

N 

Query 

Rok 

Order 

Lok Lok Rok 
Rok 

Ordered 

Ook 

Checkout 

N OQuery 

N 

N 

N 

N 

Payment 
&Shipping 

Cok 

Logout 

N 

Conditions: 
N: empty 
Rok: registration ok 
Lok: login ok 
Ook: order ok 
Cok: checkout ok 
 

Figure 1: Behavior of a seller agent

<transition source=”Start” target=”Login” condition=”NULL”/>
<transition source=”Register” target=”Query” condition=”Rok”/>

<transition source=”Register” target=”Order” condition=”Rok”/>

<transition source=”Login” target=”Query” condition=”Lok”/>

<transition source=”Login” target=”Order” condition=”Lok”/>

<transition source=”Query” target=”Order” condition=”NULL”/>

<transition source=”Order” target=”Ordered” condition=”Rok”/>

<transition source=”Ordered” target=”OQuery” condition=”NULL”/>

<transition source=”Ordered” target=”Checkout” condition=”NULL”/>

<transition source=”OQuery” target=”Checkout” condition=”NULL”/>

<transition source=”OQuery” target=”Order” condition=”NULL”/>

<transition source=”Checkout” target=”PaymentShip” condition=”Cok”/>

<transition source=”PaymentShip” target=”logout” condition=”PoK”/>

< /transitions>
< /behavior>

The following is a description of the transition conditions.

• NULL represents an empty condition.

• Rok, meaning registration OK, is a boolean expression based on the RegResult output
message, and can be evaluated when the buyer receives the RegResult message.

• Lok, meaning Login OK, is a boolean expression based on the LoginResult output mes-
sage.



• Ook, meaning Order OK, is a boolean expression based on the OrderResult output mes-
sage. It indicates that the product is successfully ordered.

• Cok, meaning Checkout OK, indicates that an invoice is successfully send to the buyer.

The stateOQueryrepresents that the buyer has ordered something and can check out at any
time.

2.3 Agent Service Composition Language

Agent Service Composition Language (ASCL) specifications describe the logic of how a new
service is composed from existing services. For reasons of space, we don’t include details of
ASCL syntax here. Suffice it to state that it enables services to be bound, and various flow
primitives (sequencing, branching, and so on) used to specify desired compositions.

3 Verification of Service Composition

Using the above representations, we can determine whether service interaction protocols will
be violated by the desired compositions. This can be done when services are bound—that is,
at configuration rather than at run time.

We have developed some algorithms for reasoning based on the above representations.
We lack the space to discuss these in detail. Briefly, these algorithms enable us to construct
behavior state diagrams, find legal operations, and build an execution graph. We present the
most interesting of these algorithms, which is for checking compliance of operation invoca-
tions.

To verify compliance at the operation level, we need the following data structures and
functions.

• Build a service transition graph for each imported services.

• Find legal operations. Based on the service diagram, we can find the legal next states for
a given current state.

• Remember history of invocation.

Given the above, following algorithm verifies a composition by traversing all possible execu-
tion paths.

1. Do a depth-first search on the resulted operation graph.

2. For each invocation of imported services, find the last state from the history, find the legal
set of operation-states for the last state and current service from the corresponding service
transition graph, check whether current operation is in the legal operation-state set. If not,
there is an error. Otherwise add current operation to the history.

3. Continue until the whole operation graph is traversed.



Say a buyer finds the seller’s service specification from the registry and would like to
use the service to purchase a product from the seller. Figure 1 describes the seller’s behavior
in ASDL. It is up to the designer of the buyer agent on how to utilize the seller service.
The verification algorithm is used for ensure that all possible execution paths in a service
composition are legal. The following are some simplified examples to show how a service
composition can be verified.

3.1 Sequential Composition

Suppose the buyer would like to implement the buy activity to buy products. (For brevity,
unnecessary XML tags are not shown below.)
<consume role=”seller” urlref=”seller.xml”/>

<activity name=”buy”>
<sequence>

<operation name=”login” performedby=”seller”/>

<operation name=”query” performedby=”seller”/>

<operation name=”order” performedby=”seller”/>

< /sequence>
< /activity>
Here the buyer invokes the login, query, and order operations of seller in sequence. Since

login, query, and order are on the execution path, it is obvious that the above sequence is valid
according to the seller’s behavior.

3.2 Complex Composition

Now we consider the case where a buyer uses two seller services.
<consume role=”S0” urlref=”seller0.xml”/>
<consume role=”S1” urlref=”seller1.xml”/>
<activity name=”buy”>

<operation name=”register” performedby=”S1”/>

<fork condition=”expr”>
<thread name=”t1”>

<sequence>
<operation name=”login” performedby=”S0”/>

<if condition=”expr”>
<sequence>

<operation name=”query” performedby=”S1”/>

<operation name=”order” performedby=”S0”/>

< /sequence>
< /if>
<operation name=”order” performedby=”S0”/>

< /sequence>
< /thread>
<thread name=”t2”>

<sequence>
<operation name=”query” performedby=”S0”/>



<switch variable=”name”>
<case condition=”expr2”>

<sequence>
<operation name=”order” performedby=”S0”/>

<operation name=”query” performedby=”S1”/>

< /sequence>
< /case>
<case condition=”expr3”>

<sequence>
<operation name=”query” performedby=”S0”/>

<operation name=”checkout” performedby=”S1”/>

< /sequence>
< /case>

< /switch>
<operation name=”order” performedby=”S0”/>

< /sequence>
< /thread>

< /fork>

< /activity>
The above activity contains afork construct. The threads in thefork construct are sequen-

tialized. Based on the algorithm, we can build the execution graph as Figure 2. From Figure
2, we can find the following possible execution paths:

• Path 1:S1:register, S0:login, S0:checkout, S0:query, S0:order, S0:query, S0:order. Path 1
is not valid. The operationS0:checkout, is illegal since sellerS0 requires the buyer to
ordersomething beforecheckout.

• Path 2:S1:register, S0:login, S1:query, S0:order, S0:checkout, S0:query, S0:order, S0:query,
S0:order. Path 2 is legal for both service providerS0andS1.

• Path 3:S1:register, S0:login, S0:checkout, S0: query, S0: query, S1: checkout, S0:order.
Path 3 is illegal for the same reason as path 1.

• Path 4:S1:register,S0:login, S1:query, S0:order, S0:checkout, S0: query, S0: query, S1:
checkout, S0:order. Path 4 is illegal, since the buyer has not ordered anything from seller
S1, before trying to checkout.

4 Service Level Verification

The above discussion dealt with verifying service composition at the procedural level. Now
we discuss verification at the service level. The service provider needs to verify that all pos-
sible invocation sequence of its exported services defined in its ASDL file are valid for all
services it imported.

However, we have to note that it is not possible to enumerate all possible invocation
sequences of a service. For instance, given a simple serviceS exposing two operations:a
andb, the number of possible invocation sequences is infinite, e.g.,a, b, ab, aa, bb, and so
on. Here our verification is based on its exported service behavior defined in ASDL file. For
example, the defined behavior is likea–>b. We need to verify that the sequencea, b is valid.



 

Thread t2

Thread t1

Start 

S1: register 

S0: login S1: query 

S0: order 

S0: checkout 

S0: query 

S0: order 

S0: query 

S0: query 

S1: checkout 

S0: order 

End 

Figure 2: A composed service

Suppose there is a another operationc, which does not have an intrinsic relationship with
a or b. We do not need to verify the validity of sequences involvingc, since operationc is
independent of operationa andb.

A service requester can be a final service consumer. It only use the service for its own
purpose. Others are service integrators. They consume imported services and export a new
service to the outside world. We need to find how verify at the service level.

For example, as in Figure 3, a serviceC is composed from imported servicesA andB.
ServiceC has two exposed operationsc1 andc2, and is then exposed as a new service to the
outside world services likeD andF. The behavior of serviceC is defined through a ASDL
file, and published into a public registry. The ASDL definition can then be used to build new
services manually or automatically. From the point view of ServiceC, it needs to ensure
that invocation sequences following published service behavior in ASDL from outside like
ServiceD, will not violate the restriction on the published behavior of servicesA andB. In
service level verification, it needs to check whether all possible defined invocation sequences
of operationc1 andc2 are valid.

Agents vary in their intelligence. Likewise, the services they provide can be simple or



complex. When a service consists only of behavior that can be captured by WSDL, the oper-
ations it supports are independent of each other. All invocation sequences of the stated meth-
ods are valid. For more complex services, some additional challenges must be addressed.
Specifically, we consider the following complications during service level verification.

• Acyclic Directed Graph: The agent behavior can be described as a finite state machine.
The verification can use algorithms similar to operation-level verification.

• Directed Graph with Loop: The agent behavior includes a loop. The verification algo-
rithms can unravel the loop by using a modifier to limit the depth of the loop.

• Complex Directed Graph: The agent behavior can only be described by a complex graph.
An example agent behavior could be like Figure 4, which consists of multiple loops in
the definition. The service consists of four operationsm1, m2, m3, m4with SandE des-
ignating the start and end state. How to verify a composed service against such complex
services remains a challenge to be addressed.

At the service level, we can build a global execution graph by substituting the execution
graph of each operation. For example, for a serviceC with exported operationsc1 andc2
following the behaviorc1 –> c2. The execution graph of operationc1 is connected to the
execution graph of operationc2, forming a global graph. Next, service compliance is checked
against the execution graph.

This algorithm can handle acyclic directed graphs well, but it is not well-suited to complex
graph that may include multiple loops as in Figure 4. In most practical situations, the service
compositions are mostly coarse-grained with the invoked services doing substantial work.
That is, the composition is relatively simple. The above algorithm should be enough for such
situations.

4.1 Service Level Verification Example

Now we illustrate service level verification through the example of a travel service provided
by a travel agent. The travel agent composes the services provided by hotel and airline agents.
Its service is then exposed to customers. The customer may employ a customer agent to use
the service.

We consider a simplified version of a travel agent. This only provides services such as
query, purchase, and cancel. The travel agent requires the customer agent to login or register
before purchase. A customer cannot cancel a ticket he has not yet bought. The airline and
hotel agents require the travel agent to login, respectively, before booking a ticket or hotel
room. They expose two operationslogin and bookingand require the behavior thatlogin
should precedebooking.

 

Service C 
 

c1 
c2 

Service A 

Service B 

Service D 

Service F 

Use 
Use 

Figure 3: Service-level verification



 

m1 m2 

m4 m3 E 

S 

Figure 4: Complex service behavior of an agent

The travel agent exposes three operations, namely,login, booking, andpurchase. Here, in
operationslogin andbooking, the travel agent will simply relay the request to the hotel and
airlines corresponding to thelogin andbookingoperations. In thepurchaseoperation, the
customer will send both login credentials and a booking request to the travel agent; the travel
agent will login to the airline and hotel agents, and book the ticket and room with them. The
exposed behavior of these operations is thatlogin should precedebooking, while purchase is
independent of the others. This scenario is illustrated in Figure 5. From the figure, it is easy
to see that the service is valid for the composition.

 

Hotel Agent 
 

Login 

Booking 

Airline Agent 
 

Login 

Booking 

Travel Agent 
 

Login 

Booking 

Purchase 

Use 

Use 

Figure 5: Travel agent scenario

Let us now consider an error situation. As shown in Figure 6, the travel agent exports
login andbookingoperations. However, it tries to export a behavior whereinbookingshould
precedelogin. In this case, the verification algorithm should detect the problem, becauselogin
should precedebookingas required in its component hotel agent.



 

Hotel Agent 
 

Login 

Booking 

Airline Agent 
 

Login 

Booking 

Travel Agent 
 

Booking 

Login 

Purchase 

Error Detected 

Use 

Use 

Figure 6: Service verification example: An error situation

5 Discussion

Although still in its infancy, the approach developed here seeks to facilitate the design and
implementation of complex Web services as compositions of other Web services. Addressing
this challenge is potentially of immense practical value. We believe it will be crucial to the
expansion of semantic Web services into mainstream business process applications.

Our work treats Web service providers as autonomous agents, which can make indepen-
dent decisions. ASDL exposes some behavior to the outside world. Our verification algo-
rithms check the validity of a composed service, thereby detecting potential problems during
the design phase of a composed service. We have developed a prototype tool to automatically
check the validity of services.

5.1 Related Themes

Now we discuss some important topics concerning how our approach relates with service
composition.

5.1.1 Automatic Service Composition

The above composition we considered is mainly at design time. For an autonomous agent, we
might desire the agent to automatically come up with a plan of execution (a service composi-
tion based on other services). This remains a very difficult task. The DAML-S proposal pro-
vides a part of the foundation of automatic service composition, but much additional progress
is necessary. DAML-S is a complex procedural language for web service composition. In par-
ticular, in order to achieve such a goal, the following problems must be addressed.

• Goal Definition: What states the composed service seeks to accomplish.



• Service Analysis: The agent should be able to analyze the goal and know what services
might fulfill the goal.

• Service Selection: With the desired services known, the agent should be able the select
individual services that can carry out the given task. This phase can be partially automated
by using the classification of registries like UDDI and by some third party service rating
services, e.g., [15].

• Execution Planning: To come up with a plan of execution.

Artificial intelligence tools such as Jess [7] may be applicable for reasoning, but defining a
goal may still be too difficult in practice. Consequently, the user might be more inclined to
compose the service himself.

Automatic Web service integration requires more complex functionality than SOAP, WSDL,
and UDDI can provide. The functionality includes transactions, workflow, negotiation, man-
agement, and security. There are several efforts that aim at providing such functionality, for
example, WSCL, WSFL, XLANG, BTP, and XAML. Entish [1] is also a relevant work in
this direction.

5.1.2 Transactional Support

In real applications, transactional properties of services are important. It is reasonable that the
service consumers or service providers may require two or more operations to be executed in
as a transaction.

However, many business processes may need to run for a long time and it is not appropri-
ate to run a whole process as a atomic transaction. Business processes can be modeled as long
running processes, where the states and data can be stored, and be activated repeatedly over
an extended period. To support such functionality, a messaging infrastructure, e.g., message
queuing, should be in place between the service provider and consumer.

5.1.3 Error Handling

Error handling has not been adequately addressed in the context of composed services. In the
real world, errors can occur anywhere between the service provider and service consumer.
The service consumer should handle even possible networking errors. Service providers
should expose the error messages in their ASDL. For example, the hotel agent might pro-
duce an insufficient funds error when attempting to charge the customer.

5.2 Literature

Besides Web services, the work described here touches upon extensive bodies of research on
the semantic Web, workflow modeling, protocols, and agent-based techniques. We lack the
space to review these in detail (but some were cited in the above discussion), but mention
representative work here.

• Semantic Web. DARPA Agent Markup Language (DAML) [9] enables the creation of
ontologies in the description of specific Web sites. DAML-S [2] is a Web service ontology
from the semantic Web community [4]. DAML-S provides a core set of markup language



constructs for describing the properties and capabilities of Web services. Some emerging
approaches add structure to service descriptions through the use of ontologies, e.g., [17].

• Workflow and process modeling. Klein & Bernstein develop a richer approach for de-
scribing and indexing services based on process models [12]. Verharen develops a con-
tract specification language, CoLa, to specify transactions and contracts [19]. Verharen’s
approach captures obligations involving actions, but does not allow the obligations to be
manipulated dynamically. This is a possible line of extension for the present work.

• Protocols. Barbuceanu and Fox [3] develop a language, COOL, for describing coordina-
tion among agents. Their approach is based on modeling conversations through FSMs,
where the states denote the possible states a conversation can be in, and the transitions
represent the flow of the conversation through message exchange. They try to handle ex-
ceptions through error recovery rules. HP’s Conversation Definition Language [8] has
similar goals to ASDL. CDL provides an XML schema for defining valid sequences of
documents exchanged between Web services. Like ASDL, it uses conversations to model
the externally visible interaction model of the Web service.

• Agent-based exception handling. Klein & Dellarocas exploit a knowledge base of generic
exception detection, diagnosis, and resolution expertise [13]. Specialized agents are ded-
icated to exception handling. Our approach is complementary, since it applies at design
time and does not require extensive intelligence.

5.3 Directions

This work opens up several interesting directions for research, some of which we are pursuing
actively. On the practical side, we are working on our prototype to enhance its representational
capabilities for services. On the theoretical side, it will be helpful to explicitly incorporate
extended transactions in our models to capture richer constraints on service behavior.

6 Acknowledgements

This work was supported in part by the DOE SciDAC grant/contract DE-FC02-01ER25484
NSF grants CSS-9624425 and DST-0139037.

References

[1] Stanislaw Ambroszkiewicz and Tomasz Nowak. Agentspace as a middleware for service integration. In
Proceedings of Engineering Societies in the Agents World II, pages 134–159, 2001.

[2] Anupriya Ankolekar, Mark Burstein, Jerry R. Hobbs, Ora Lassila, David L. Martin, Sheila A. McIlraith,
Srini Narayanan, Massimo Paolucci, Terry Payne, Katia Sycara, and Honglei Zeng. DAML-S: Semantic
markup for Web services. InProceedings of the International Semantic Web Working Symposium (SWWS),
pages 411–430, July 2001.

[3] Mihai Barbuceanu and Mark S. Fox. COOL: A language for describing coordination in multi agent
systems. InProceedings of the International Conference on Multiagent Systems, pages 17–24, 1995.

[4] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic Web.Scientific American, 284(5):34–43,
2001.



[5] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn, Henrik Frystyk
Nielsen, Satish Thatte, and Dave Winer. Simple object access protocol (SOAP) 1.1, 2000.
www.w3.org/TR/SOAP.

[6] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. Web services description
language (WSDL) 1.1, 2001. www.w3.org/TR/wsdl.

[7] Ernest J. Friedman-Hill. Jess, the Java expert system shell, 1997. herzberg.ca.sandia.gov/jess.

[8] Kannan Govindarajan, Alan Karp, Harumi Kuno, Dorothea Beringer, and Arindam Banerji. Conversation
definitions: Defining interfaces of Web services. http://www.w3.org/2001/03/WSWS-popa/paper20.

[9] James Hendler and Deborah L. McGuinness. DARPA agent markup language.IEEE Intelligent Systems,
15(6):72–73, 2001.

[10] Michael N. Huhns and Munindar P. Singh. Agents and multiagent systems: Themes, approaches, and
challenges. In[11] , chapter 1, pages 1–23. 1998.

[11] Michael N. Huhns and Munindar P. Singh, editors.Readings in Agents. Morgan Kaufmann, San Francisco,
1998.

[12] Mark Klein and Abraham Bernstein. Searching for services on the semantic Web using process ontologies.
In Proceedings of the International Semantic Web Working Symposium (SWWS), pages 431–446, July
2001.

[13] Mark Klein and Chrysanthos Dellarocas. Exception handling in agent systems. InProceedings of the 3rd
International Conference on Autonomous Agents, pages 62–68, Seattle, 1999.

[14] Frank Leymann. Web services flow language. TR WSFL 1.0, IBM Software Group, May 2001.

[15] E. Michael Maximilien and Munindar P. Singh. Reputation and endorsement for Web services.ACM
SIGEcom Exchanges, 3(1):24–31, 2002.

[16] Satish Thatte. XLANG, Web services for business process design, 2001. www.gotdotnet.com/team/xml-
wsspecs/xlang-c/default.htm.

[17] David Trastour, Claudio Bartolini, and Javier Gonzalez-Castillo. A semantic Web approach to service
description for matchmaking of services. InProceedings of the International Semantic Web Working
Symposium (SWWS), pages 447–462, July 2001.

[18] UDDI technical white paper, 2000. www.uddi.org/pubs/Iru-UDDI-Technical-White-Paper.pdf.

[19] Egon M. Verharen.A Language-Action Perspective on the Design of Cooperative Information Agents.
Catholic University, Tilburg, Holland, 1997.


