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for Trustworthy Service Selection
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Abstract—Developing, maintaining, and disseminating trust in
open, dynamic environments is crucial. We propose self-organizing
referral networks as a means for establishing trust in such envi-
ronments. A referral network consists of autonomous agents that
model others in terms of their trustworthiness and disseminate in-
formation on others’ trustworthiness. An agent may request a ser-
vice from another; a requested agent may provide the requested
service or give a referral to someone else. Possibly with its user’s
help, each agent can judge the quality of service obtained. Impor-
tantly, the agents autonomously and adaptively decide with whom
to interact and choose what referrals to issue, if any. The choices
of the agents lead to the evolution of the referral network, whereby
the agents move closer to those that they trust. This paper studies
the guidelines for engineering self-organizing referral networks. To
do so, it investigates properties of referral networks via simulation.
By controlling the actions of the agents appropriately, different re-
ferral networks can be generated. This paper first shows how the
exchange of referrals affects service selection. It identifies inter-
esting network topologies and shows under which conditions these
topologies emerge. Based on the link structure of the network, some
agents can be identified as authorities. Finally, the paper shows how
and when such authorities emerge. The observations of these simu-
lations are then formulated into design recommendations that can
be used to develop robust, self-organizing referral networks.

Index Terms—Adaptive systems, cooperative systems, dis-
tributed information systems, information services, multiagent
systems, referrals, self-organizing control, software engineering,
trust.

I. INTRODUCTION

THE WEB is moving from a collection of pages to a col-
lection of entities that provide and use services. Each ser-

vice can involve tasks that vary from serving information such
as Web pages to performing other complex tasks. The services
are not merely distinguished by their domain or their tasks, but
also in terms of other features of interest, such as the price,
performance (e.g., throughput), or other domain-specific aspect.
Hence, a service is described as aggregating multiple features.

The entities that provide and use services can be people or
businesses, each potentially supported by an automated assis-
tant. Because we deal with an open environment, the partici-
pating entities are autonomous and heterogeneous. Accordingly,
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we model them as agents in the computational system. The
agents exercise their autonomy to decide the actions they per-
form, with whom they interact, or how they carry out their tasks.

The agents that provide the same service may differ in the
way they implement their services, and the qualities of the ser-
vices they provide. Each service provider can autonomously de-
cide whom it serves and the quality of service it provides to
each consumer. Likewise, the agents who use or consume the
services vary in their needs and evaluations of services. Each
service consumer can unilaterally set its own standards for the
quality of service it would like to receive and potentially restrict
its interactions to those that meet its standards.

In general, service implementations are not revealed to the
consumers, nor to any other external parties. Not knowing the
service implementation makes it hard to judge the quality of a
service. Mechanisms based on a third-party evaluation of a ser-
vice implementation cannot be employed. Further, because the
expectations of each consumer are different, a third party cannot
evaluate service outcomes. Consequently, each consumer must
evaluate the service it receives.

A. Trust

Because the entities are autonomous and heterogeneous, se-
lecting the right service providers is a significantly greater chal-
lenge in large scale open systems than in traditional distributed
systems. The scale and dynamism of open environments imply
that a participant would not know and would not be able to keep
up with all potentially relevant participants. Large, open sys-
tems deviate from traditional systems primarily in the absence
of central servers, even directory servers. The openness of such
systems implies that there would be few regulatory restrictions
for ensuring that the services offered are of a suitable quality,
i.e., there are no guarantees about the quality of service provided
by the participants. Hence, only those servers whose quality of
service is acceptable by the participant will be relevant. Hence,
it is crucial to locate useful participants and recognize them as
trustworthy. This paper studies some key properties of trust.

For our purposes, trust is established between a service con-
sumer and a service provider with respect to a particular service.
Trust is inherently for a purpose and spans multiple dimensions.
A service provider may be competent in some services but not
in others. Accordingly, a consumer would (or would not) trust
a provider for a particular service. For example, you may trust
a travel agent for your travel needs, but not for your medical
needs. That is, trust is not a property of individual entities, but a
property of relationships based on individual actions. To ascer-
tain the trustworthiness of another party, one must clearly for-
mulate the service or individual actions in question. Even when
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these are made explicit, two consumers who interact with the
same provider may have different assessments of the provider’s
trustworthiness. This variance could occur because of different
evidence or different evaluations of the same evidence.

Accordingly, external third parties can neither establish the
trustworthiness of others, nor dictate which individuals should
be interacting with certain others. For this reason, each indi-
vidual has to choose whom to interact with, judge whether
they are trustworthy and establish trust in others based on her
own means. Such a process for establishing trust is precisely
based on the idea of self-organization. A self-organizing system
consists of parties who act based on local interactions (without
external control) and adapt to take into account useful parties
[3], [4].

B. Referrals for Self-Organization

A powerful way of ensuring that service providers and the
information sources that recommend them are trustworthy is by
accessing them through referrals [5], [6]. People commonly use
referrals in real life to find useful providers; conversely, busi-
nesses use referrals from customers to find other potential cus-
tomers. Referrals have been used in computational settings, but
their usage has been restricted by rigid exchanges of the refer-
rals, such as those used in domain name system (DNS).

We claim that flexible referrals are essential for locating
trustworthy services, and we propose that referrals form a key
organizing principle for engineering self-organizing applica-
tions that are targeted for open systems. Consumers can help
each other find desired service providers by giving referrals
to those trustworthy providers that have been useful for them.
A consumer can judge the quality of the services received
as well as the quality of the referrals (if any) that led to that
provider. In other words, each consumer has an empirical basis
for trust. More importantly, the consumers can self-organize by
adapting to one another. For example, based on its interactions
with others, a consumer can autonomously select the parties
with whom to interact further. An agent would link to another
party only if it has been useful in providing good services or in
providing referrals that led to good services. Thus, the agents’
associations with each other yield a self-organizing referral
network.

C. Peer-to-Peer Systems

At an architectural level, consumers and providers of services
are all peers, interacting without a need for a central server.
Hence, our referrals-based architecture can be thought of as a
peer-to-peer (P2P) architecture, where each peer acts as a client
and a server, by requesting as well as serving information. Even
though P2P architectures have been studied in the research
community for many years, P2P applications have started to
appear only recently. Gnutella [9] and Freenet [10] are two well-
known P2P systems, geared for locating files. These systems
allow peers to search for files in a network by propagating
queries to other peers (i.e., without a centralized server) and
to exchange files. Current studies of P2P systems focus on
lower level properties of the systems, such as the naming
schemes or bandwidth requirements. Our work emphasizes
the higher level interactions. In other words, even when all

architectural constraints are satisfied, participants still need to
identify other useful participants with whom they can interact.
For this reason, P2P systems must include an approach through
which peers can help each other find trustworthy peers who offer
high quality services. Even if some peers take on specialized
functions similar to directory servers, others must establish
that these specialized peers are indeed trustworthy, e.g., to
ensure that their service recommendations are not based on
ulterior motives, such as for paid-placement search engines,
or that any ulterior motives are factored in to determine a
suitable service.

D. Contributions and Organization

We have implemented a distributed platform using which
adaptive referral systems for different applications can be
built. To engineer and manage a referral system presupposes
guidelines to adjust its behavior. This paper investigates some
important guidelines for building such robust self-organizing
referral systems. In order to identify such guidelines, it studies
the behavior of self-organizing referral networks over sim-
ulations. The simulations give us the necessary controls to
tune various policies and parameters. The framework and the
test-bed that simulates the framework are powerful enough to
capture many real-life details (see Section II-C).

This work first shows that referrals can induce a natural
structure on the network of agents. This structure can then be
used to identify different application domains. Using a partic-
ular application domain (i.e., e-commerce domain), the paper
studies properties related to the performance and topology of
referral networks. The performance properties study the effi-
ciency and the effectiveness of referral networks. The analysis
of these properties result in interesting guidelines for selectivity
of referral exchanges.

The topology properties identify interesting network topolo-
gies. In certain contexts, some topologies can be harmful. We
identify when this is the case. These topologies are important to
point out because a network could be checked to see whether it
is evolving into these pathological topologies, and if so, certain
parameters can be adjusted to avoid them.

The rest of the paper is organized as follows. Section II
describes our technical framework, including details of our
model of referrals, the application domain, and our experimental
setup. Section III studies effectiveness and efficiency of referral
networks and identifies tradeoffs between the two aspects.
Section IV studies structural properties of referral networks,
including undesirable network structures. Section V summarizes
the main simulation results that can be incorporated as design
guidelines to build referral systems. Section VI discusses the
relevant literature and gives directions for further research.

II. TECHNICAL FRAMEWORK

We consider a multiagent system whose members represent
principals (people or businesses) providing and consuming
services. Services are understood abstractly, i.e., not limited to
current Web services standards. Specifically, the services could
involve serving static pages, processing queries, or carrying out
e-commerce transactions, but their details are not represented
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in this paper. Our study will concentrate on self-organization
of the agents.

The agents may offer diverse levels of trustworthiness and
are interested in finding other trustworthy agents. An agent be-
gins to look for a trustworthy provider for a desired service
by querying some other agents from among its neighbors. The
neighbors of an agent are a small subset of the agent’s acquain-
tances, adaptively selected based on their usefulness.

The agents are autonomous. A queried agent may or may not
respond to another agent by providing a service or a referral.
The querying agent may accept a service offer, if any, and may
pursue referrals, if any. When an agent accepts a service or fol-
lows a referral, there are no guarantees about the quality of the
service or the suitability of a referral. We do not expect that any
agent should necessarily be trusted by others: an agent decides
how to rate another as it sees fit. Notice that trust applies both to
the ultimate service provider and to the agents whose referrals
lead to that provider.

Each agent maintains models of its acquaintances. Each
model describes the expertise (the quality of the services it
provides), and the sociability (the quality of the referrals it
provides) of a given acquaintance. Both of these elements are
adapted based on service ratings from the agent’s principal.
Using these models, an agent applies its neighbor selection
policy to decide which of its acquaintances to keep as neigh-
bors. Key factors include the quality of the service received
from a given provider, and the value that can be placed on a
series of referrals that led to that provider. In other words, the
referring agents are rated as well.

The above framework accommodates the important prop-
erties of open and dynamic systems introduced in Section I.
First, the agents can be heterogeneous. That is, agents can be
of diverse designs and follow policies distinct from all others.
Second, each agent operates autonomously based on its local
policies. Third, each agent can adapt to the referral network by
modifying its offerings and their quality, its policies, and its
choice of neighbors.

A. Application Domains

The above framework enables us to represent different appli-
cation domains. Two important domains are e-commerce and
knowledge management, which differ in their notions of ser-
vice and how the participants interact. In a typical e-commerce
setting, the service providers are distinct from the service con-
sumers. The service consumers lack the expertise in the services
that they consume and their expertise does not get any better
over time. However, the consumers are able to judge the quality
of the services provided by others. For example, you might be
a consumer for auto-repair services and never learn enough to
provide such a service yourself, yet you would be competent
to judge if an auto mechanic did his job well. Similarly, the
consumers can generate difficult queries without having high
expertise. For example, a consumer can request a complicated
auto-repair service without having intimate knowledge of the
domain.

Fig. 1 shows an example configuration of service consumers
and providers that corresponds to a commerce setting. The
nodes labeled denote consumers and the nodes labeled

Fig. 1. Schematic configuration for e-commerce.

Fig. 2. Schematic configuration for knowledge management.

denote service providers. The links between the node denote
neighborhood relations. Consumers are connected to each other
as well as to the service providers. These links form paths that
lead to service providers. In this model, the service providers
are dead ends: they do not have outgoing edges, because they
neither initiate queries nor give referrals. Thus, their sociability
stays low. Their concrete and modeled expertise may of course
be high.

Fig. 2 shows an example network configuration in a knowl-
edge management setting. In this setting, the services are knowl-
edge services, i.e., correspond to giving answers to queries. The
consumers are not necessarily distinct from the service pro-
ducers. An agent may be knowledgeable in one domain and
hence respond to queries regarding that domain. Otherwise, it
might be looking for information services in another domain.
Hence, all the nodes are labeled with and denote consumers as
well as producers. Each agent can generate and answer queries,
as well as give referrals. This implies that potentially all agents
can have nontrivial expertise and sociability. A consumer might
lack the ability to evaluate the knowledge provided by someone
who has greater expertise. However, agents would improve their
knowledge by asking questions.

B. Agent Algorithms

Each consumer has varying levels of interest in receiving ser-
vices. The interests and expertise of the agents are represented
as term vectors from the vector space model (VSM) [7], with
each term corresponding to a different domain. The simulation
uses these term vectors to generate queries and answers for the
various agents.

Each agent is initialized with the same model for each
neighbor. If the initial model of a neighbor corresponds to low
expertise and low sociability values, the agent does not trust
its neighbors enough to query them. For this reason, the initial
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neighbor model contains a high expertise value and a high
sociability value. Thus, the initial model encourages the agents
to query their neighbors.

An agent that is looking for an answer to a query follows Al-
gorithm 1. An agent generates a query by slightly perturbing
its interest vector, which denotes that the agent asks a question
similar to its interests (line 1). More specifically, a simulation
parameter is set for the ratio of perturbation of the interest
vector. The querying agent takes its interest vector and for each
dimension randomly generates a new value from a range
that is adjusted by the perturbation ratio . Thus, for all dimen-
sions of the query , a random number is assigned between

and .
In applications that involve users, such as MARS [8], the first

line of Algorithm 1 would correspond to a user request or an
agent’s anticipation of such a request. Next, the agent computes
the list of neighbors that are likely to answer this query (line
2). We determine this through the capability metric. Then, the
agent sends the query to the agents on the matching list (line 3).

The capability of an agent for a query measures how similar
and how strong the expertise of the agent is for the query
[6]. Capability resembles cosine similarity but also takes into
account the magnitude of the expertise vector. What this means
is that vectors with greater magnitude are regarded as indi-
cating a higher capability for the given query vector. In (1),

is a query vector, is an expertise
vector and is the number of dimensions these vectors have.
This capability metric can also be used to measure how good
an answer is for a given query.

(1)

An agent that receives a query provides an answer only if its
expertise matches the query. If it does, then the answer is the
perturbed expertise vector of the agent. When an agent does not
answer a question, it uses its referral policy to choose some of
its neighbors to refer.

Back in Algorithm 1, an agent can receive messages from
other agents. These messages can either be referral messages
or answer messages. If an agent receives a referral to another
agent, it sends its query to the referred agent (line 7). After an
agent receives an answer, it evaluates the answer by computing

Fig. 3. Example search through referrals.

how much the answer matches the query (line 13). If the answer
matches the query more than a certain threshold, then the an-
swer is considered good, otherwise it is bad. Since the answers
are generated based on the expertise values of the agents, im-
plicitly, the agents with high expertise end up giving the good
answers. After the answers are evaluated, the agent updates the
models of its neighbors (line 14). Whereas in the simulations
the evaluations are performed with the capability metric, in real
life applications, the agent would directly or indirectly evaluate
the answer based on user feedback. When a good answer comes
in, the modeled expertise of the answering agent and the so-
ciability of the agents that helped locate the answerer (through
referrals) are increased. Similarly, when a bad answer comes in,
these values are decreased. At certain intervals during the sim-
ulation, each agent has a chance to choose new neighbors from
among its acquaintances based on its neighbor selection policy.
The number of neighbors is limited, so if an agent adds some
neighbors it drops some neighbors as well. The underlying in-
tuition is that an agent may interact with many other agents, but
would only trust a small subset of these acquaintances.

Example 1: Fig. 3 shows an example referral network, where
the nodes denote agents. Agent 1’s neighbors are agents 2 and 3,
agent 2’s neighbors are agents 4 and 5, and agent 3’s neighbors
are agents 5 and 6. Agent 1 poses its query to its neighbors,
agents 2 and 3. Agent 2 provides an answer, while agent 3 gives
a referral to one of its own neighbors, agent 5. Agent 1 then
sends its query to agent 5.

Together, the neighborhood edges among the agents induce
the structure of the given society. In general, as described above,
the structure is adapted through the decisions of the different
agents. Although the decisions are autonomous, they are influ-
enced by various policies.

C. Experimental Setup

This paper investigates the properties of the e-commerce do-
main via simulation. Studying the system through simulations
enables us to study the mechanisms of the agent societies by
giving us the necessary controls to adjust various policies and
parameters. The findings of the simulation can be used to sug-
gest certain kinds of mechanisms and representations for the
agents themselves in real applications.



400 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 35, NO. 3, MAY 2005

Fig. 4. Detailed architectural diagram.

The simulations contain 400 agents, between 5% and 25% of
which are service providers, and the remaining agents are con-
sumers. The reported simulations contain interest and expertise
vectors with four dimensions, where each dimension maps to
one domain. Consumers have low expertise, since they do not
offer any services themselves. The expertise of the providers
and the interests of the consumers are distributed evenly over
the domains. Each provider has expertise in just one domain
whereas a consumer may have interests in multiple domains.
The explained description of the population is fed into the sim-
ulator (see the population description box in Fig. 4).

Consumers have high interest in getting different services, but
they have low expertise, since they do not offer services them-
selves. Providers have high expertise but low sociability. Since
there are no humans to generate and evaluate queries, the in-
terest vectors are used to generate queries and the expertise vec-
tors are used to generate answers. Answers are evaluated using
the capability metric on the query and answer vectors. A chain
of referrals is followed for up to a given number of hops, and
then dropped. Intuitively, longer chains make smaller contribu-
tions to trust. For the simulations reported here, the chain length
is limited to 3.

Each agent has a fixed number of neighbors (4 to 8) and the
same initial model for each acquaintance. In the beginning of
the simulation runs, each agent is assigned neighbors randomly.
During the course of the simulation, each agent interacts with
other agents (i.e., acquaintances) and updates the models of its
acquaintances (both expertise and sociability) based on the an-
swers from the providers. After every two queries, agents can
change their neighbors as they see fit. The simulations are run
for 4–20 neighbor selections, as specified below for each ex-
periment. The details of the simulation, such as the number of
neighbor selections, number of hops, and so on are provided to
the simulator through a simulation description file as shown in
Fig. 4.

The simulation testbed is implemented in Java. Agents ex-
change messages using JBoss, a Java Message Service (JMS)
implementation. The simulations reported here were performed
on a PC with dual Pentium III 500-MHz processors and 1 GB
of RAM, and running Linux. Each simulation was run with

three different random seeds; the averages of the three runs are
reported.

The simulator starts by creating agents and message queues
based on the specifications in the the population descriptions.
Next, each agent is randomly assigned neighbors. After this
step, the simulator has a network of agents. The next step of the
simulator is the main loop. This loop can be considered as the
main simulation cycle and is repeated once for every neighbor
selection. In each cycle, all agents generate two queries and
follow Algorithm 1. At the end of the cycle, each agent con-
siders its set of acquaintances and selects its set of neighbors
using its neighbor selection policy. After the main loop of the
simulation, the current state of the agents (their current neigh-
bors and their models of acquaintances) are written to a file.
Metrics necessary to analyze the network can be computed after
the simulation ends.

III. EFFECTIVENESS AND EFFICIENCY

Effectiveness and efficiency of a referral network are key per-
formance indicators. The effectiveness of a network measures
how easily agents find useful providers. The efficiency of a net-
work measures the ratio of good answers to number of agents
contacted.

A. Effectiveness

We measure the effectiveness of the system using the direct
quality metric and the th best quality metric. Both metrics
are defined as obtained by an agent and then averaged over all
agents.

The direct quality viewed by an agent reflects, via (1), the
usefulness of the neighbors of the agent, given its interest and
their expertise. That is, it estimates the likelihood of the neigh-
bors themselves providing good service.

Next, we take into account all other agents, not just the neigh-
bors. Here, we measure how well the agent’s interest matches
the expertise of all other agents in the system, scaled down with
the number of agents it has to pass to get to the agent. That is,
the farther away the good agents are from the given agent, the
less is their contribution to the quality seen by the agent. Let
denote the interest vector of agent and denote the expertise
vector of agent . The contribution of agent to agent ’s quality
is given by

path
(2)

where the shortest path length is used in the denominator.
For a small population, it is reasonable to assume that each

agent can potentially reach all other agents to which it is con-
nected. However, in a large population, an agent will be able to
reach only a small fraction of the population. For this reason,
instead of averaging over all agents, we take the th best mea-
sure. That is, we measure the quality obtained by an agent by
its th best connection in the network. The choice for is non-
trivial. If is too big, each agent’s quality would appear to be
equally bad. However, if is too small, the quality will reflect
the neighbors quality as in the direct quality metric. For the re-
sults reported below, we use the th best metric to measure an
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Fig. 5. Effectiveness of referral policies.

agent’s quality and take to be twice the number of neighbors
that the given agent has.

A referral policy specifies which agents will be referred to a
querying agent. We consider some important referral policies.
We set the simulation variables appropriately so that an agent
answers a query only when it is sure of the answer. This ensures
that only the providers answer any questions, and the consumers
generate referrals to find the providers.

1) Refer all matching neighbors. The referring agent cal-
culates how capable each neighbor will be in answering
the given query (based on the neighbor’s modeled exper-
tise). Only neighbors scoring above a given capability
threshold are referred.

2) Refer all neighbors. Agents refer all of their neighbors.
This is a special case of the matching policy with the
capability threshold set extremely low (e.g., 0.1). This
resembles Gnutella’s search process where each node
forward an incoming query to all of its neighbors if it
does not already have the requested file [9].

3) Refer the best neighbor. Refer the best matching
neighbor. This is similar to Freenet’s routing of request
messages, where each Freenet client forward the request
to an agent that is the likeliest to have the requested
information [10].

We study the effectiveness of different policies by varying the
capability threshold. Fig. 5 plots this threshold versus the quality
of the network for different policies. In Fig. 5, the lines marked
All Matching show the Refer all matching policy for varying
thresholds on the axis. The case where the referral threshold
is set to 0.1 denotes Refer all. The lines marked Best Neighbor
plot Refer best neighbor, which is independent of the threshold.

Among the three policies, Refer all performs the worst for
all three populations. As seen in Fig. 5, when agents use this
policy, the quality never exceeds 0.085. Refer best neighbor per-
forms better than Refer all matching for small values of the capa-
bility threshold (e.g., 0.2). Compared to small thresholds, Refer
best neighbor ensures a certain level of selectiveness. Thus, it
performs better than Refer all matching with small thresholds.
For thresholds greater than 0.2, Refer all matching performs
better than Refer best neighbor, where the best threshold in-
creases with the percentage of providers in the society. Refer
all matching with high thresholds are more selective than Refer

Fig. 6. Effect of selectivity on efficiency.

best neighbor. Thus, higher thresholds generate better effective-
ness than Refer best neighbor.

Observation 1: Exchanging more referrals does not guar-
antee that the quality of the network will be high. The topology
of the network can prevent consumers from locating some of the
service providers.

When agents are less selective in their referral policies, they
exchange more referrals. However, sometimes even though re-
ferrals are exchanged, some agents may never be located, be-
cause they is no path to the provider from the requesting agent.
When this is the case, exchanging more referrals does not help
agents. A detailed analysis of this is presented in Section III-C.

B. Efficiency

Each agent in the referral network is autonomous and may
well have different policies to take care of different operations
such as answering a question or referring a neighbor. Thus, get-
ting at a node closer to a target provider does not guarantee that
the search is progressing. For example, in Fig. 1, may ask

but if is not responsive, then the search path becomes a
dead-end. Hence, the quality metrics introduced above are op-
timistic; in actual usage, a provider may not respond and other
agents may not produce helpful referrals. Hence, a high quality
network does not necessarily mean that the agents will reach the
services they are close to. To illustrate this point, we measure the
efficiency of finding answers. Efficiency is defined as the ratio
of the good answers received to the number of agents contacted.
Fig. 6 plots the capability threshold versus the efficiency for dif-
ferent referral policies.

Refer all matching with high thresholds (e.g., 0.4, 0.5) yields
the least efficiency. Since these policies are the most selective,
few referrals are given. Hence, most of the time, the agents
cannot find good answers, reducing the overall efficiency.
However, an approximately equal number of good answers
are found with both Refer all and Refer all matching with
smaller thresholds, but because Refer all matching is more
selective, fewer referrals are generated, resulting in fewer agents
being contacted. For this reason, Refer all matching with small
thresholds produces higher efficiency than Refer all. Refer best
neighbor is less selective than Refer all matching with high
thresholds (e.g., 0.4, 0.5). With such high thresholds, Refer all
matching may not yield a referral to any neighbor. However,
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with Refer best neighbor, one neighbor is always being referred
to. Hence, Refer best neighbor is more efficient than Refer
all matching with higher thresholds.

Observation 2: When few referrals are exchanged, good an-
swers are not found. When more referrals are exchanged, good
answers are found at the expense of contacting too many agents.
Hence, it is better to be less selective in exchanging referrals to
increase chances of finding good answers.

C. Analysis

We analyze the combined results on effectiveness and effi-
ciency in three cases. First, with higher thresholds of Refer all
matching, the agents can potentially reach the providers, but
since referrals are given highly selectively, most of the time
they cannot get referrals to locate the providers and pose their
queries. Second, with smaller thresholds of Refer all matching,
not only can the agents reach the providers, but since the refer-
rals are less selective, they can locate the providers and get good
answers. This is also the case for Refer best neighbor, although
with this policy the number of good answers received is smaller.
The third case is the most interesting one. With Refer all, agents
get good answers although the quality of the network is poor.

When the agents exchange more referrals (using Refer all or
for a lower threshold for Refer all matching), we would expect
agents to be able to locate providers better and get closer to
them. If the agents get good answers, then they are finding the
providers, yet their ability to reach the providers (measured in
quality) is still lower than with the other policies. The reason
for this is that whereas the agents are close to a few providers
(which ensures that they get good answers) they are isolated
from many other useful providers. That is, the topology of the
referral network may evolve in a way that isolates some of the
providers from the consumers. The next section studies these
possible undesirable topologies in greater depth.

IV. NETWORK TOPOLOGY

Recall that each agent chooses its neighbors based on local in-
formation only, without knowing which neighbors other agents
are choosing. Even though each agent is doing the best for itself,
the resulting graph may be undesirable.

At certain intervals during the simulation, each agent gets an
opportunity to modify its selection of neighbors based on its
acquaintance models. A neighbor selection policy governs how
neighbors are added and dropped. Such policies can strongly
influence the structure of the resulting graph.

What would happen if each agent chose the best service
providers as neighbors? Or is it better to choose agents with
higher sociability rather than higher expertise? To evaluate how
the neighbor selection policies affect the structure, we compare
three policies using which an agent selects the best of its
acquaintances to become its neighbors. Below, denotes the
weight assigned to sociability.

1) Weighted average. Sort acquaintances in terms of a
weighted average of sociability and how their expertise
matches the agent’s interests. ( is set between 0.1 and
0.9.)

Fig. 7. Referral network configurations.

2) Providers. Sort acquaintances by how their expertise
matches the agent’s interests. ( is set between 0 and
0.1.)

3) Sociables. Sort acquaintances in terms of sociability. (
is set between 0.9 and 1.)

The neighbor selection policies shape the topology of the net-
work. That is, the network topology evolves differently based
on how agents choose their neighbors. An obvious question is
whether any one of these topologies are better than others or
undesirable in certain settings. To answer these questions, we
study well-known graph types from graph theory, namely bipar-
tite graphs and graphs with weakly-connected components. We
first study whether these topologies have any advantages or dis-
advantages over other topologies. Next, we study whether any
one of the neighbor selection policies lead to such a topology.

A. Bipartite Graphs

A graph is bipartite if it consists of two independent sets,
i.e., two sets of pairwise nonadjacent vertices. When the simu-
lation is started, we know that there is one independent set, the
group of service providers. Since these do not have outgoing
edges, no two service providers can have an edge between them.
Thus the providers form an independent set. Now, if the con-
sumers also form an independent set, then the graph will be bi-
partite. Essentially, the consumers’ forming an independent set
means that all the neighbors of all the consumers are service
providers. Notice that if this is the case, then the consumers will
not be able exchange referrals. If the graph becomes bipartite,
the system loses all the power of referrals and all consumers
begin operating solely on the basis of their local knowledge. For
example, in Fig. 7, the network that contains the nodes and the
dotted and dashed lines form a bipartite graph. The consumers
can reach the providers but not each other.

Since the service providers do not have outgoing edges, they
will not refer to any new agents. Thus, the consumers will not
get to know new agents, and will not be able to change their
neighbors, making the graph stable. However, for each agent
there will be many agents that it cannot reach. Networks that
allow reachability to these agents will have better quality and
will thus be more desired than a bipartite graph. That is, the
quality of the bipartite graph is not optimal. If the nodes of the
network were rearranged into a topology other than that of a
bipartite graph, the quality of the network could be higher.
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Even if the graph is not bipartite, it could be extremely close
to a bipartite graph. Let’s say that the graph would be bipar-
tite if a large subgraph is bipartite. In other words, removing a
few edges from the graph would make the graph bipartite. This
is still dangerous, since the graph might quickly evolve into a
bipartite graph. Accordingly, we study the neighbor selection
policies to see if they can cause the graph to turn into a bipartite
graph. We use the number of edges needed to be removed as a
metric for determining how close the graph is to becoming bi-
partite. We observe that when each agent exercises the Providers
policy, if there are more providers than the number of neigh-
bors an agent can have, then the graph converges to a bipartite
graph. While this is the case for Providers, the same effect does
not hold for Weighted Average or Sociables, since with these
policies consumers may choose some other highly sociable con-
sumers as neighbors.

Whereas detecting if a graph is bipartite is easy, determining
the number of edges by which it differs from a bipartite graph
is in general NP-complete [11]. Here, however, the semantics of
the nodes serves to ease this problem. More specifically, one of
the independent sets is already known, i.e., the set of providers.
Let denote the number of edges between the consumers. When

is smaller, the graph is closer to a bipartite graph. If there
are no edges between consumers , then the graph is
bipartite.

Observation 3: When choosing neighbors, if agents prefer
only expertise (i.e., use Providers), then the network can evolve
into a bipartite graph, which prevents the consumers from ex-
changing referrals.

B. Weakly Connected Components

A weakly connected component of a graph is a maximal sub-
graph that would be connected when the edges are treated as
undirected [12]. Thus, different components have disjoint ver-
tices and are mutually disconnected. Consequently, consumers
can at best find service providers in their own components. This
means that if there is more than one weakly connected compo-
nent in a graph, then there is at least one consumer that will not
be able to find at least one service provider. Consider again the
network in Fig. 7. If the network contains all the nodes and edges
except the edge between and (shown with a dotted line),
then the network will have two weakly connected components.
When that is the case, consumers and cannot locate ser-
vice providers and , since neither nor can receive
referrals from the consumers that know or .

We observe that in a population where each agent exercises
Sociables, the graph ends up with more than one weakly con-
nected component. When agents follow Sociables, consumers
link up with other consumers only since the consumers are the
only sociable parties. This decreases the number of edges from
consumers to providers. For example, again consider the same
subset of the network in Fig. 7, where the network contains all
the nodes and edges except the edge between and . After
several iterations, if consumer were following Sociables, it
could modify its choice of neighbors by linking to and re-
moving its link to . would do this because being a
consumer would be more sociable than , a service provider
that does not provide any referrals. When all consumers act in

accordance with Sociables, the providers could be totally iso-
lated from the consumers.

Observation 4: When agents use Sociables, the network can
become disconnected. This may prevent the consumers from
locating some of the service providers.

C. Clustering

Watts defines the cliquishness of a graph as the likelihood of
the neighbors of an agent being neighbors with each other [13].
The cliquishness coefficient for each agent measures the ratio
of actual edges among its neighbors to all the possible edges
among the neighbors, as shown in (3). Below, denotes the
set consisting of node ’s neighbors. denotes all the edges
between the nodes in

(3)

The cliquishness of a graph is then defined as the average
of all the nodes in the graph.

Interest clustering denotes how similar the neighbors of an
agent are in terms of their interests. Equation (4) captures the
similarity between the interests of two agents, with the Eu-
clidean distance between two interest vectors and normalizes it
to get a result between 0 and 1 ( and are of length )

(4)

We measure interest clustering by a coefficient (5), similar in
motivation to Watts’ cliquishness coefficient. The interest clus-
tering measures how similar the interest vectors of an agent
’s neighbors (including itself) are to each other. The average

of all the agents’ interest clustering coefficients constitutes the
interest clustering of the graph. is high if the neighbors of
are neighbors with each other and even higher if they have sim-
ilar interests. In (5), denotes the set consisting of agent and
all of agent ’s neighbors, and denotes edges between the
agents in

(5)

Fig. 8 plots the interest clustering after every two neighbor
changes for different neighbor selection policies. The interest
clustering of the graph increases when the agents put greater
emphasis on sociability when choosing neighbors.

Observation 5: When agents value sociability more (follow
Sociables), agents with similar interests are more likely to be-
come neighbors. The agents with similar interests may have
located useful providers that match their own interests. These
providers may also be useful for the given agent. Thus, the
agents with similar interests can give well-targeted referrals and
be considered sociable.

Next, we study the correlation between interest clustering
and quality. Fig. 9 plots the quality of the network for dif-
ferent values of interest clustering (after every second neighbor
change). Each plot corresponds to a different neighbor selection
policy.
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Fig. 8. Increase in interest clustering over neighbor changes.

Fig. 9. Quality versus interest clustering.

We observe that interest clustering decreases with an in-
crease in quality. A decrease in quality indicates that some
consumers are getting farther away from the capable service
providers. Meanwhile, if the interest clustering is increasing,
then the agents are preferring to be neighbors with agents that
are similar to themselves rather than with the service providers.
Since the number of neighbors is limited, choosing agents with
similar interests over those with high capabilities decreases the
quality.

Observation 6: Becoming neighbors with agents with sim-
ilar interests does not guarantee finding useful service providers.

D. Authoritativeness

The PageRank of a Web page measures its authoritativeness
[14]. Informally, an authoritative Web page is one that is ac-
knowledged to be highly accurate or reliable. A Web page has a
high PageRank only if it is pointed to by Web pages with high
PageRanks, i.e., if other authoritative pages view this page as
authoritative.

Intuitively, the same metric can be applied to referral net-
works to measure the authoritativeness of agents. In the case of
referral networks, an agent would be considered authoritative if
it has been pointed to by other authoritative agents. Recall that
an agent is pointed to by other agents if it is providing useful
answers or referrals. Hence, if an authority finds another agent
useful and points at it, then it is reasonable that this agent be

Fig. 10. PageRank distributions for percentage of providers.

considered an authority as well. That is, the agents decide on
who is authoritative in the referral network.

The PageRank of an agent is calculated using (6), where
denotes the PageRank of agent denotes agents that have
as a neighbor, and denotes the agents that are neighbors of .
In addition to accumulating PageRanks from incoming edges,
each agent is assumed to get a minimum PageRank of

. Initially, each agent is assumed to be equally authoritative.
Iterative computations of (6) eventually stabilizes, yielding final
authoritativeness values for each agent

(6)

For our calculations, we pick to be 0.85 as is suggested in [14];
other values may also be reasonable. The calculated PageRanks
are not normalized to demonstrate the variance in maximum
PageRanks in different setups. The PageRanks of the agents are
calculated centrally by building a graph from the neighborhood
relations after the simulations. We study how the percentage of
actual providers in the network and the policies that the agents
follow affect the emergence of authorities.

1) Percentage of Providers: Intuitively, the percentage of
agents with high expertise plays a crucial role in the distribution
of PageRanks. For example, when there are too many service
providers in the system, we expect that the PageRanks will
tend to be shared among them. Having a small number of
service providers may ensure that service providers with high
authoritativeness will emerge. To study this point, we vary
the percentage of the providers in the system. We study three
populations with 5%, 10%, and 20% providers in them.

The histogram in Fig. 10 depicts the PageRank distribution
of three populations for PageRank values 2.5 and higher. The
solid lines denote the population with 5% providers, the dashed
lines denote the population with 10% percent providers, and the
dotted lines denote the population with 20% providers.

Observation 7: When the percentage of providers is high,
the PageRanks are clustered for small PageRank values. For
example, when the population has 20% providers, the number
of agents having PageRank higher than 2.5 is more than the
cases for the other two populations. For the higher values of
PageRank, the converse holds. For example, the only population
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Fig. 11. PageRank distributions for referral policies.

that allows PageRanks higher than 25 is the 5% provider pop-
ulation. There is an implicit competition among the providers.
When there are too many providers, they end up sharing the in-
coming edges. Therefore, only a few receive a relatively high
PageRank. When there are a few providers, those providers tend
to dominate more clearly.

2) Referral Policies: Next, we study the effect of referral
policies in the emergence of authorities. Since the population
with 5% percent providers allows the emergence of authorities
more, we continue with this population. After each simulation
run, the agents are ranked based on their PageRank. Fig. 11
shows the PageRank distribution of the top 50 agents (out of
a total of 400). If the agents use the Refer all policy, a few au-
thorities with high PageRanks emerge. For example, the first ten
agents in the Refer all plot receive PageRanks greater than the
first ten agents in two instances of the Refer all matching plot
(with thresholds 0.3 and 0.5).

[Further, Refer all creates a large variance among the PageR-
anks. For example, whereas the first agent gets a PageRank
of 54, the 50th agent gets a PageRank of only 0.23. Contrast
this with Refer all matching with a threshold of 0.5, where the
first agent gets a PageRank of 3.68 and the 50th agent gets a
PageRank of 1.58. The distribution of PageRanks using Refer
best neighbor falls between the distributions for Refer all and
Refer all matching with high thresholds. In other words, when
agents use Refer best neighbor, the highest PageRank is not as
high as for Refer all (36) but the difference in PageRanks of the
first and the 50th agents is still quite large.

Observation 8: Whereas more authorities emerge through
Refer all matching (with different thresholds), Refer all causes
the emergence of authorities whose level of authoritativeness is
higher.

Intuitively, the explanation for the above is that Refer
all is highly effective in disseminating information about
the providers. Agents are thus more likely to encounter the
providers and more likely to recognize their authoritativeness,
thereby yielding high PageRanks for some of them.

3) Neighbor Selection Policies: Fig. 12 plots the distribu-
tion of PageRanks with respect to some neighbor selection poli-
cies. The axis shows PageRanks and the axis denotes the
number of agents that get a PageRank greater than the PageRank
shown on the axis. denotes the weight of the sociability
in choosing a neighbor. The five plots correspond to Providers

Fig. 12. PageRank distributions for neighbor selection policies.

, Sociables , and three Weighted average
neighbor selection policies with different weights.

All curves, except the one for Sociables, are similar to each
other. In all four cases, only a few authorities emerge. How-
ever, the level of their authoritativeness is high. For example, for
Providers, while only 26 agents get a PageRank above 1, five of
them get a PageRank above 20. Increasing the effect of the so-
ciability slightly increases the number of agents with medium
authority but slightly decreases the number of agents with high
authority. For example, under Weighted Average, when the so-
ciability and the expertise are weighted equally, the number of
agents that get a PageRank above 1 is 44, while four of them get
a PageRank above 20.

Sociables does not follow this distribution. Initially, when not
too many providers have been discovered, choosing neighbors
only based on sociability does not help the agents find service
providers. Hence, when agents follow Sociables in the begin-
ning, most agents get average PageRanks (e.g., 158 agents get
a PageRank around 1).

Observation 9: For strong authorities to emerge, it is impor-
tant that the agents put a high value on the ability to produce
high quality of service.

If the agents prefer sociables, there is little grounding in
quality, and it is difficult to find good providers. Thus, strong
authorities do not emerge. However, once the network has
stabilized, sociability helps as there is a basis for good referrals,
and thus there is value in those who can give good referrals.

V. DESIGN GUIDELINES

Building applications of referral systems requires many de-
sign decisions. The above results yield design guidelines for
real-life applications of referral systems. Here, we outline some
possible applications of the properties observed in this paper.

Neither too many referrals nor too few referrals create high
quality referral networks (Observations 1 and 2). Hence, in a
referral system, it would be intuitive to encourage referrals but
ensure that not an excessive number of referrals is exchanged.
Similarly, some network topologies have been identified to be
potentially undesirable in some settings such as e-commerce
(Observations 3 and 4). A referral system could monitor if
the network is evolving into these topologies and take further
steps to prevent the network from exhibiting these properties.
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Observation 6 shows that becoming neighbors with similar
interests does not guarantee quality. Accordingly, a referral
system could also check whether agents are becoming clustered
in small groups. When this is the case, the referral system
can start functioning poorly.

As shown by Observations 7 and 8, having few providers in
the system and exchanging referrals both help identify authori-
ties. As shown in Observation 9, choosing neighbors only based
on sociability discourages the emergence of authorities. De-
pending on the application, the emergence of strong authorities
could be desired. Such an emergence shows that useful agents
are identified and used by the others to find information. This is
certainly important and could be enforced in a referral system.
Even though the referral system cannot decide on the policies
of its users, it can advise the users to adjust their policies appro-
priately. Conversely, for example, for a knowledge management
domain, strong authorities would indicate that some agents an-
swer substantially more queries than others. This overloading
may not be desirable in such a setting. A referral system can
then apply checks or use caching mechanisms to redistribute
the expertise more evenly. When such caching mechanisms are
used, agents can cache information that they have obtained from
others and serve them as best suits them [15]. The identification
of such properties of referral networks brings us closer to en-
abling self-organizing referral systems that can efficiently and
effectively operate in open and dynamic environments.

VI. DISCUSSION

We discuss some related approaches and point directions for
further research.

Multiple intelligent node document servers (MINDS) was
the earliest agent-based referral system [5]. Each node in the
MINDS system is allocated a set of documents. Nodes help each
other find documents in the network. Gradually, nodes learn how
the documents are distributed in the network as well as the rele-
vance preferences of individual users. Kautz et al. model social
networks statically as graphs and study various aspects of their
performance, such as the accuracy of the referrals, or the dis-
tance between a referrer and a questioner [16]. Our work, by
contrast, seeks to uncover the structural properties of the net-
work to design mechanisms that will improve the quality of the
network.

Yu and Singh study referral networks in the context of sci-
entific collaborations [17]. They show how the neighbor set
size and referral graph depth affect locating agents accurately.
Yu and Singh represent the referral process through weighted
graphs, where weights are attached to both agents and refer-
rals. They develop a method to minimize referral graphs so that
agents only follow most promising referrals, i.e., referrals with
high weights.

Kumar et al. develop an approach to infer web communities
from the link structure of the Web [18]. Kumar et al. propose
that any community structure should contain a bipartite core
where the fans and centers make up the independent sets. Fans
and centers are defined recursively, such that fans are pages that
point at good centers and centers are pages that are pointed to by
good fans. Kumar et al.’s approach assumes that if many fans

point to the same set of centers, then they are likely to be on the
same topic, and hence form a community. Our previous work
on communities compared referral networks to that of Kumar et
al. in depth [19].

Wang develops an approach for organizing agents into
communities based on the similarity of their interests and ex-
pertise [20]. Initially, each agent registers with a middle agent
randomly. Based on the queries received from the agents, the
middle agents exchange agents to ensure that agents that have
the same interests and expertise are handled by the same middle
agent. This approach uses clustering to improve the efficiency
of locating agents. When the agents’ interests and expertise are
more diverse, we believe that our Observation 6, i.e., clustering
does not favor quality, will dominate.

Sabater and Sierra [21] develop a system for reputation man-
agement where reputations are derived based both on direct in-
teractions and the social relations of the agents. They use the
number of interactions and the variance in ratings to derive the
the trustworthiness of the agent through direct interactions. To
assess the trustworthiness through indirect interactions, Sabater,
and Sierra use fuzzy inference to combine evidence from mul-
tiple witnesses.

Buskens studies the effects of network structure on building
trust [22]. Buskens simulates the interactions of buyers and
sellers that participate in iterated heterogeneous trust games
that encourage the cooperation and discourage the cheating of
participants. The buyers interact to exchange information on
the trustworthiness of the sellers. The buyers themselves are
assumed to be trustworthy. In our model, we do not assume
that the consumers are trustworthy. Hence, we also take into
account that some of the consumers may not give accurate
referrals. Thus, each consumer also models the trustworthiness
of other consumers. These models are then used to choose
neighbors for future interactions. Buskens does not consider
evolving network topologies, as we have done.

Shehory develops a decentralized approach for locating
agents [23]. Rather than returning referrals as here, the neigh-
bors themselves look for the desired agent. Shehory shows how
increasing the average path length can increase the efficiency
of agent location. In our approach, by choosing neighbors that
are most suitable for itself, each agent increases its chance
of getting good answers. By giving well-targeted referrals,
each agent increases others’ chances of finding good answers.
These self-organizations aspects are not directly addressed in
Shehory’s approach.

Pujol et al. use the positions of agents in a social network to
compute their reputation [24]. An agent receives a high reputa-
tion only if the agents that point to it also have high reputation,
similar to the notion of authority exploited in PageRank. Pujol
et al. calculate the reputations of authors where the reputation of
an author is defined as the number of citations received. How-
ever, Pujol et al. do not study different network topologies as
we have done here.

Our framework provides opportunities for further research.
The above results here report the simulations performed in the
e-commerce domain. One direction of research it to extend these
results to other application domains, especially to knowledge
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management. Another direction of research is to incorporate
other characteristics of applications, such as incentives for par-
ticipation, into the framework.
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