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ABSTRACT
Developing, maintaining, and disseminating trust in open environ-
ments is crucial. We propose a graph-based representation of ser-
vices, which captures natural relationships among service domains
and provides a simple means to accommodate the accrual of trust
placed in a given party. When interpreted as a lattice, it enables
less important services (e.g., low-value transactions) to be used
as gates to more important services (e.g., high-value transactions).
Importantly, our graph-based representation can be applied in con-
junction with a social approach, such as the one based on refer-
rals. We first show that, where applicable, this approach yields
superior efficiency (needs fewer messages) and effectiveness (finds
more providers) than a vector representation. Next, we study trade-
offs between various factors that affect the performance of this ap-
proach.

1. INTRODUCTION
We consider the problem of trust in large-scale, decentralized

systems consisting of autonomous agents. In simple terms, the key
problem is how an agent (or trustor) should trust another agent (or
trustee). Trust is for a purpose. That is, a trustor would (or would
not) trust a trustee for a particular service. For this reason and to
relate our work to the recent interest on Web Services, we consider
a setting wherein different agents consume and provide services
to one another [Ankolekar et al., 2001]. The agents offer varying
levels of trustworthiness to others and are potentially interested in
finding trustworthy agents who provide the services that they need.

Trust can be established through three major means. Institutional
trust or trust in authoritative institutions or organizations is com-
mon in the off-line world. People trust in the power of these insti-
tutions to stabilize their interactions [Misztal, 1996, p. 26]. Current
distributed trust management approaches can be thought of formal-
izing institutional trust, because they assume that digital certificates
issued by various certificate authorities lead to trust [Castelfranchi
and Tan, 2001].

That is, these approaches usually assume that trust is established
merely through a chain of endorsements beginning with some trusted
authority. However, only the most trivial level of trust can be es-
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tablished through such a mechanism. For example, knowing that
a web-site carries a digital certificate issued by another known site
does not guarantee that the web-site will act in a trustworthy man-
ner.

For this reason, multiagent approaches seek to create trust based
on local or social evidence. Social trust is built through information
from others. This information could be testimonies from individ-
ual witnesses regarding the trustee, or from a reputation agency.
The context in which the ratings were given as well as the evalua-
tion of the services could vary by episode as well as by the parties
that give the ratings. The credentials of the information sources
(witnesses or reputation agencies) are crucial for interpreting this
second-hand information correctly. Unless the agents that give the
ratings are established to be trustworthy, their aggregate ranking
would not be sufficient to create trust. That is, in order to create
trust through second-hand information, the trustworthiness of the
information sources must be established as well [Sztompka, 1999,
p. 74]. A powerful way of ensuring that the sources themselves are
trustworthy is by accessing them through referrals [Singh et al.,
2001]. Local trust means considering previous direct interactions
with a trustee, which often are the most valuable in creating trust
for the following reasons. One, since the trustor itself evaluates
the interactions, the results are more reliable. Two, the context in
which the trustworthiness of the provider is evaluated is explicit
and relevant to the trustor.

Previous agent approaches for trust emphasize either its local or
its social aspects. By contrast, we develop an approach that takes
a strong stance for both aspects. In our approach, the agents track
each other’s trustworthiness locally and can give and receive refer-
rals to others. This approach naturally accommodates the above
conceptualizations of trust: social because the agents give and re-
ceive referrals to other agents, and local because the agents main-
tain rich representations of each other and can reason about them to
determine their trustworthiness. Further, the agents evaluate each
other’s ability to give referrals. Lastly, although this approach does
not require centralized authorities, it can help agents evaluate the
trustworthiness of any such authorities as well.

This approach enables us to address two properties of trust that
are not adequately addressed by current approaches. One, trust of-
ten builds up over interactions. That is, you might trust a stranger
for a low-value transaction, but would only trust a known party
for a high-value transaction. Two, trust often flows across service
types. That is, you might assume that a party who is trustworthy
in one kind of dealings will also be trustworthy in related kinds of
dealings.

Our main contributions are as follows. One, we introduce a
graph-based representation of services, and show how it enables us
to address the above two properties of trust. Two, we evaluate our



graph-based representation by comparing it to a vector representa-
tion used in previous work, which is itself more advanced than a
simple scalar representation. Graph representation enables trust to
be propagated across service types, whereas vector representation
does not capture the relation between services at all. Our results
establish that the additional expressiveness of the graph represen-
tation helps: a graph-based representation enables trustworthy ser-
vice providers to be found more effectively and efficiently. Three,
we perform a sensitivity analysis of the graph-based representation
to identify factors that affect its performance further.

The rest of this paper is organized as follows. Section 2 intro-
duces a graph-based representation for agents to model services.
Section 3 describes our referrals-based approach for trust and our
experimental setup. Section 4 compares this graph-based represen-
tation with a vector representation in terms of efficiency and effec-
tiveness. Section 5 discusses and experimentally evaluates factors
related to the performance of our representation. Section 6 dis-
cusses the relevant literature and outlines some directions for fur-
ther study.

2. GRAPH-BASED REPRESENTATION
We consider a setting with a fixed number of service types. Ser-

vice providers offer one or more of these services. Some of these
services may be related, i.e., being a good provider for one may im-
ply being a good provider for another. Conversely, some services
may be unrelated to each other.

One way of representing the set of services is through a vector
space model, where each element in the vector corresponds to a
different domain and the weight of the element denotes the fitness
of the service for that domain [Singh et al., 2001]. This is similar to
the vector descriptions of documents in information retrieval. The
vector representation is simple and quite effective if the elements
are independent, since a vector representation does not capture any
relationships between vector elements.

The second way is to represent the services as a graph, whose
nodes map to service types. The graph representation is more ex-
pressive in that it can capture relationships between service types
that a vector representation cannot. For example, a service provider
that has been found to be trustworthy for one type of service can be
considered for another type of service based on how well the ser-
vices relate.
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Figure 1: A totally-ordered service graph

Figure 1 shows a simple graph. Here, each node represents trans-
actions of different values.

���
denotes transactions worth ��� , ���

denotes transactions worth ���	� , and so on. The list next to each
node represents the trustworthy providers for that node. The agents
trusted for a node are a subset of the agents trusted for the lower

node. That is, if you trust someone for a �
��� transaction, you trust
him for a ��� transaction as well (e.g., ��
 ). The reverse need not
hold. You might trust many for transactions of ��� but probably
only a few for ���	����� transactions (e.g., � � ).
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Figure 2: An example service graph with weights

Figure 2 illustrates a setting with partially ordered services. Any
two services that are related are joined by an edge. Here an edge�������������

indicates that a provider who can perform
���

well may also
be able to perform

� �
well.

When an agent needs a provider for a service for which it knows
of no providers, it can potentially ask others or promote a provider
that it has used for another service. Promotions provide a system-
atic way to reuse previous experiences with the service providers.
A provider is tried for a new service only if it has performed well
for another service, and if performing well in the first service in-
dicates that the provider may perform well for the second service.
The likelihood of a service provider in a lower node to perform a
service in the upper node is represented by weights on the edges.
For example, the weight ��� � from

���
to
� �

means that a provider
of
� �

will likely be providing
���

half the time.
Notice that a service graph is maintained by each agent to au-

tonomously capture its experiences. Thus agents may have differ-
ing weights for the same pair of services. The weights are adjusted
independently by each agent. After delivering a service, a service
provider is rated by the consumer. The rating reflects the satis-
faction of the consumer. These ratings are used by the consumer
to decide if this service provider will be used again or referred to
other consumers. Service providers with low ratings are replaced
with service providers that can potentially get higher ratings.

When promoting a provider from
� �

to
� �

, two factors are con-
sidered: how trustworthy the provider is for

���
and how related

���
and

� �
are. We calculate the trustworthiness of the provider � at���

(  "! � ) through its ratings at
���

and the number of interactions (for� �
). The strength of the relation between

� �
and

� �
are given by the

edge weight, # � � . $
# � �&%  "! ��')(+*

(1)

The product of the edge weight with the average ratings projects
how much the agent can reproduce its ratings in

� �
. If this projected

value is greater than a promotion threshold
*
, then the agent can be

promoted to perform
� �

.
Notice that in the extreme case, if # � �-, � (the services are not

correlated), then the service provider is not expected to perform
well in

���
even if it performs well in

���
. Conversely, if a provider

is not trusted for
� �

(  ! � , � ), then the provider will never be pro-
moted to

���
irrespective of how correlated the two services are.



The weights that denote the relation between two services are
estimated by each agent, which can update the weights in its graph
based on its experiences. Hence, two agents can have different
weights for the same edge. The graph weights are updated after
promoting a provider and testing it for the higher service. The
weights are tuned using a simple linear update mechanism. If a
promotion from

���
to

���
is successful, i.e., if the provider gets a

good rating in
� �

as well, then # � � is increased. Similarly, # � � is
decreased when a promoted provider gets a bad rating in

���
. The

increase (or decrease) in the weight is proportional to the new rat-
ing of the service provider in

���
.

3. EXPERIMENTAL SETUP
We investigate the properties of interest using agents who sim-

ulate requesting, providing, and evaluating services. The agents
act in accordance with the following abstract protocol [Yolum and
Singh, 2003]. When an agent desires a service, it begins to look for
a trustworthy provider for the specified service. The agent queries
some other agents from among its neighbors, which are a small
subset of the agent’s acquaintances. A queried agent may either an-
swer giving the identifier of a service provider who can potentially
perform the desired service or may give referrals to other agents.
The querying agent may accept a service offer, if any, and may
pursue referrals, if any.

The agents are autonomous and may not respond to another agent.
When an agent responds, there is no guarantee about the quality of
the answer or the suitability of a referral. Likewise, no agent is
necessarily trusted by others: an agent unilaterally decides how to
rate another agent.

Each agent maintains models of its acquaintances, which de-
scribe their expertise (i.e., the quality of the answers they provide),
and sociability (i.e., the quality of the referrals they provide). Each
agent is initialized with the same model for each neighbor, but up-
dates its models of its acquaintances based on interactions with
them.

Algorithm 1 Find-Provider()
1: Generate query for service type �
2: promotedProviders = promoteLocally(� )
3: if (promotedProviders != null) then
4: Add promotedProviders to providerSet
5: else
6: Send query to matching neighbors
7: while (!timeout) do
8: Receive message
9: if (message.type == referral) then

10: Send query to referred agent
11: Record referral
12: else
13: Add answer to providerSet � answer contains a provider

id. �
14: end if
15: end while
16: end if
17: for � , � to � providerSet � do
18: Evaluate provider( � )
19: Update agent models
20: Update service graph
21: end for

An agent that is generating a query follows Algorithm 1. Each
agent starts by generating a query for a service (line 1). The dis-

Algorithm 2 promoteLocally(� )
1: for � , � to � nodes � do
2: for � , � to � providers(i) � do
3: � = providers( � )( � )
4: if (  "! � % # � � (+*

) then
5: if (numberOfInteractions(p) ��� ) then
6: Add � to promotedProviders
7: end if
8: end if
9: end for

10: end for
11: return promotedProviders

tribution of requests for services captures the following intuition.
In real life, we would expect most requests to be for services with
intermediate risk rather than for services with little or too much
risk. For this reason, we use a normal distribution to model the fre-
quency of the incoming requests. As a result, the services

� �
and�
	

get the least number of requests, whereas services
� 
 , ��� , and��


get the most requests.
The agent promotes all the service providers that qualify to be

promoted to perform this new service (line 2). If there are no such
providers, then the agent sends the query to a subset of its neighbors
(line 6). The main factor here is to determine which of its neighbors
would be likely to answer the query. An agent that receives a query
can either answer by returning the identifier of a service provider
or giving a referral to another agent who is likely know of a service
provider for the requested service.

If an agent receives a referral to another agent, it sends its query
to the referred agent (line 10) and records the referral link (line
11). Simply put, the referrals generated for each query are used
to update acquaintance models based on the quality of the service
that is ultimately received from the providers found. After an agent
receives a provider identifier or promotes a provider within, it eval-
uates the provider (line 18). We simulate this evaluation by looking
up an evaluation value from a predefined table.

After the answers are evaluated, the agent uses its learning pol-
icy to update the models of its neighbors (line 19). In the default
learning policy, when a good answer comes in, the modeled exper-
tise of the answering agent and the sociability of the agents that
helped locate the answerer (through referrals) are increased. Sim-
ilarly, when a bad answer comes in, these values are decreased.
Hence, the agents that give answers as well as the agents that give
referrals are rated. At certain intervals during the simulation, each
agent has a chance to choose new neighbors from among its ac-
quaintances based on its neighbor selection policy. Key factors
include the expertise and the sociability of the agents.

The experiments use 100 service consumers and 32 service
providers for nine types of services. Each agent has three randomly
picked neighbors. Each agent generates 50 queries and may change
its neighbors after every 5 queries. Each query denotes the desired
service type; e.g.,

� �
,
� �

, and so on. Notice that not all 32 ser-
vice providers offer all the services. The key property we want to
capture in modeling the distribution of the service providers is that
in real life, we would expect more service providers to offer easier
services than harder ones. Hence, the number of providers would
decrease as the service gets more specialized. With this intuition,
the experiments are set up such that most of the 32 service providers
can perform services that are lower down the graph, whereas only a
few of them can perform harder services, say,

��	
, the most special-

ized service. We capture this intuition by decreasing the number of
providers approximately by half between two consecutive nodes.
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Figure 3: Distributions of the service providers

For example, while 15 service providers offer service
� �

, only � of
them provide

� 
 . The number of service providers for each type of
service is given in Figure 3.

4. COMPARISON OF REPRESENTATIONS
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Figure 4: The distribution of the agents for different values of
effectiveness (After 10 queries)

Using this experimental setup, we compare the service graphs
with the vector representation in terms of effectiveness and effi-
ciency. A representation is effective if it allows agents to find the
desired service providers. A representation is efficient if it allows
the service providers to be found with as few messages as possi-
ble. In order to compare the effectiveness and the efficiency of the
two approaches, the simulation is run with the same initial setup,
same number of queries per consumer, and the same number of
neighbors. After getting an answer, each consumer evaluates the
service provider in the answer. The service providers that get a rat-
ing above a threshold considered useful. For these experiments, the
service providers provide services consistently. That is, a service
provider that has provided a service will again perform the same
quality of service.

To measure effectiveness, we find the percentage of the queries
that have resulted in finding a useful service provider. That is, the
ratio of queries that lead to useful service providers to all the gener-
ated queries is calculated. We look at the effectiveness after every
five queries for the graph-based representation and the vector rep-
resentation. We look at two cases of the vector approach: one with
referrals, two without referrals.

Both in Figure 4 and in Figure 5, the � axis is the effectiveness
percentage and the � axis is the number of agents. Both graphs
plot the number of agents that achieve greater than or equal to the
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Figure 5: The distribution of the agents for different values of
effectiveness (After 20 queries)

effectiveness percentage. The first graph shows the distributions
after the �	� th query and the second graph shows them after the� � th query.

In Figure 4, agents that employ service graphs achieve higher ef-
fectiveness than both of the vector approaches. The agents that use
a vector with referrals generally do better than the agents without
the referrals, except for one effectiveness value � � . That is, there
are more agents that achieve at least ��� percent effectiveness in the
vector approach without referrals, though the difference is minor.

The agents with the service graph achieve higher effectiveness
rates in the second graph (Figure 5), too, though now the difference
between the vector (with referrals) and the service graph approach
is smaller. The performance of the vector approach increases as the
agents learn about their neighbors and change their neighbors ac-
cordingly. After the � � th query, both approaches achieve an effec-
tiveness rate of ����� , thus we do not show that in a different graph.
However, when referrals are not employed, the effectiveness of the
agents barely increases (Figures 4 and 5, solid lines). The average
effectiveness for the no-referral case oscillates between 	���� and
���
� . Having no referrals causes two disadvantages to the agents.
One, obviously they can pose their queries only to their neighbors,
and incompetent neighbors cannot provide answers. Two, since
there are no referrals, the agents interact with few other agents and
learn only a small part of the society. Hence, when they change
their neighbors, the set of agents they choose from is small and
pseudo-random. Figure 6 plots the average effectiveness of all 100
agents after every five queries. We conclude that the consumers can
locate trustworthy service providers more effectively with a graph-
based representation than with a vector representation.
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Next, we compare the average number of agents contacted per



query (over 30 queries). Figure 7 plots this efficiency value for
both approaches. The average value for the vector approach (with
referrals) is ��� � , for the vector approach (without referrals)

� � ��� ,
and ��� �
� for the service graph approach. In other words, the ad-
dition of referrals increases the number of contacted agents for the
benefit of increased effectiveness. The service graph approach, on
the other hand, yields a higher efficiency than both of the vector
approaches as well as higher effectiveness.
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Figure 7: Efficiency of the representations

Recall that initially, each agent knows of two service providers
for possibly different services. For the results reported above, the
initial distribution guaranteed that at least one agent in the system
knows of a provider for each service. Consider a case, where none
of the agents initially knew of a provider for

� 	
. In the vector

approach, no matter how hard each agent searches for the provider
through its neighbors, it will not be able to locate a provider for�
	

. Whereas in the service graph approach, if an agent knows of
a provider for

���
or

���
, then it can promote the service provider

to
��	

. Thus, whereas the vector approach will definitely not find a
provider, the service graph approach may find a provider through
promotions from lower services.

Service graphs are most useful when the services are related,
though even if the services are orthogonal the service graph would
be equivalent to a vector representation. Thus, the service graph
would in the worst case perform as well as the vector representa-
tion. There might only be one potential disadvantage. Following
the previous scenario, assume that none of the service providers are
trustworthy for service

��	
. In this case, the service graph approach

will promote service providers up only to find that they cannot ful-
fill

� 	
. Neither approaches will find a service provider, but the vec-

tor approach will use less time, whereas the service graph approach
will try several providers (through promotions) and fail later.

5. EVALUATION
We study how the initial setting, promotion threshold, and the

number of previous interactions affect promotion accuracy and ef-
fectiveness of finding trustworthy service providers. For each ex-
periment, we report averages from three simulation runs (additional
runs yield similar results).

5.1 Control Variables
Initial Setting The initial environments can differ in two main
ways. The first factor is how much the neighbors can help each
other in finding service providers, since providers can be found
through referrals as well as through promotions. To study the per-
formance of the service graph representation, we seek to reduce
the effect of referrals and prior knowledge of an agent. Therefore,

we use a setting where each agent only knows of two providers for
service

���
, the lowest service. This setting forces agents to pro-

mote the providers and test them for higher services. In addition, at
least in the beginning, agents cannot give well-targeted referrals for
higher services, since none of them knows of a trustworthy provider
for higher services.

The second factor is related to how much the agents are ini-
tially willing to try new service providers. This factor, termed trust
prejudice, captures whether an agent is willing to trust newcomers
[Jonker and Treur, 1999]. We capture this intuition through the ini-
tial graph weights. For example, if initially all the weights are � ,
then the agents are willing to try out all new service providers in
all types of services. Conversely, when the weights are all � , the
agents have the prejudice that no agents can be trusted.

We evaluate our approach using three initial settings. In the ho-
mogeneous setting, each agent starts with the graph shown in Fig-
ure 2. In the trusting setting, the graph edges are the same but the
weights are higher (meaning the agents trust others more). In the
heterogeneous setting, each agent starts with random weights on
random edges of its own.

Promotion Threshold The estimated weight between two ser-
vices is adjusted based on previous promotions between the two
services. Intuitively, the promotion threshold denotes how much
risk an agent is willing to take in its promotions. If the threshold for
promoting up is low, then the agents will promote more providers,
but might find out that more of these providers cannot perform the
service. On the other hand, if the agents are reluctant to promote,
then they might miss a chance to find a provider for a desired ser-
vice. In Algorithm 2,

*
refers to the promotion threshold.

Number of interactions The overall rating of a provider at the
previous service should be reliable. It is widely accepted that the
number of previous interactions increases the accuracy of the trust
assessment [Falcone and Castelfranchi, 2001]. That is, the aver-
age rating may not be representative if the total number of inter-
actions are few. In other words, a service provider with a rank-
ing of 0.7 over three interactions might be trusted more than a
provider with a ranking of 0.8 over one interaction. In our ap-
proach, agents use the number of interactions as a gating factor
so that only those providers that have proved sufficiently trustwor-
thy in another service, which is sufficiently closely related to the
service under consideration, and such that the agent has interacted
with these providers often enough to trust them adequately. In Al-
gorithm 2, � refers to the required number of interactions.

5.2 Results
Promotion Accuracy Intuitively, high promotion accuracy cap-
tures the fact that only trustworthy service providers are promoted
up the graph. Promotion errors are measured by the average num-
ber of wrong promotions performed by the agents.

Figure 8 plots the promotion error for varying promotion thresh-
olds. For all three curves, the error drops when the promotion
threshold increases. That is, when agents take fewer risks, they
make fewer mistakes. The heterogeneous setting has higher weights
for more edges than the other two setups, and hence allows more
promotions. For this reason, it is more prone to errors.

Next, we study the effect of number of interactions on promo-
tion error. For each value of the promotion threshold, we plot the
average promotion error. Figure 9 shows three plots for the homo-
geneous setting, corresponding to one, two, and three required in-
teractions prior to promotion. The promotion error decreases with
the number of previous interactions. For a threshold of ��� � � , for
example, when the required number of previous interactions is just
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one, the promotion error is almost 	 . When the number of inter-
actions is increased to two, the error drops below � . When the
number of interactions is further increased to three, the error be-
comes less than

�
. In all three curves, increasing the promotion

threshold decreases the promotion error, though the improvement
is more significant for fewer interactions.
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Effectiveness Recall that effectiveness measures how often con-
sumers find trustworthy providers for the desired services. Thus,
achieving a high promotion accuracy is not enough for good per-
formance. The agents should also achieve high effectiveness.
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Again, we first look at the effect of initial setting on the effec-
tiveness. Figure 10 plots three effectiveness curves for the three
initial settings. This time the random setup achieves higher effec-
tiveness than the other two setups. Since the random setup assigns

weights to many edges, and hence allows more promotions, many
providers—useful or not—are promoted and tested, resulting in al-
most always finding a provider.
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Figure 11 plots three effectiveness curves for varying values of
the promotion threshold using homogeneous initial setting. Again,
each curve corresponds to a case where different number of previ-
ous interactions is required. Independent of the number of interac-
tions, if the threshold is high, the effectiveness is very low. Inter-
estingly, for smaller values of the threshold, we see agents achieve
a higher level of effectiveness (find more trustworthy agents to in-
teract with) if the number of interactions are fewer. This is the
opposite of the curves for the promotion accuracy, where we saw
that the number of interactions decrease the promotion error. In
other words, high promotion accuracy rarely coexists with high ef-
fectiveness. For example, in Figure 9 when the number of previous
interactions is set to three (with threshold ��� � � ), the promotion er-
ror is below � . But, effectiveness for the same setup is not even� �
� .

Performance
,

Effectiveness
%

Accuracy The reason for the
inverse relation between promotion accuracy and the effectiveness
is that if the consumers are cautious and promote reluctantly up the
graph, they might miss many useful promotions, leading to sub-
optimal effectiveness.
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Figure 12: Effectiveness and promotion error trade-off

Figure 12 plots this performance value based on Figure 9 and
Figure 11. Neither extremes of the promotion threshold ( ��� ��� and��� � � ) achieve high performance. The lower threshold suffers from
high promotion error, while the high thresholds lacks effectiveness.
Optimal performance lies in the middle values of the promotion
threshold. Among these, the performance is always better when the
number of interactions is either � or

�
. This suggests that the third



interaction does not add much value to the performance. Among
the � and

�
interaction cases, except for one value of the threshold

( ��� � � ),
�

interaction case outperforms the � interaction case. In
general, this result suggests that it is better to be less cautious, trust
more, and make some mistakes to be able to exploit a wider range
of promotions.

6. DISCUSSION
Lattice-based access control models have been used in computer

security to regulate information flow [Sandhu, 1993]. Each node in
the lattice denotes a different set of security privileges, called se-
curity classes. The more sensitive security classes are placed upper
in the lattice. The information flow is only allowed from the lower
security classes to the higher ones. Thus, even though the less con-
fidential information from lower security classes can be carried to
the upper security classes, no confidential information flows down.
This is similar to how we handle service types. Providers that can
perform services higher up the lattice can also perform lower ser-
vices. In addition, we promote providers from lower service types
to higher ones based on the providers performance on the lower
services.

Wille use concept lattices for knowledge discovery in databases
[2001]. The data objects are classified into meaningful concepts
based on common attributes. The concepts, then are arranged in
a line diagram, which represents the concepts and the subconcept
relationships among concepts. This representation is a structured
way to visualize and analyze information.

Referrals capture the manner in which people normally help each
other find trustworthy parties [Nardi et al., 2000]. MINDS, based
on the documents used by each user, was an early agent-based re-
ferral system [Bonnell et al., 1984]. Kautz et al. model social
networks statically as graphs and study some properties of these
graphs, e.g., how the accuracy of a referral to a specified individual
relates to the distance of the referrer from that individual [1997].

Yu and Singh [2002] develop an approach for distributed rep-
utation management where a reputation of an agent is computed
based on testimonies of the witnesses using the Dempster-Shafer
theory of evidence. They show how this model can be used to de-
tect agents that are non-cooperative or agents that abuse their rep-
utation by slowly decreasing their level of cooperativeness. Since
the witnesses are found through referrals, Yu and Singh’s approach
captures social trust. Local evaluations are captured through belief
functions, but relationships among service types are not captured.

Barber and Kim [2001] propose an approach wherein agents use
a belief revision algorithm to combine evidence they receive from
other agents. In addition to providing evidence, each agent specifies
its level of confidence in the evidence. Barber and Kim’s approach
captures social trust, but contrary to our approach, the trustwor-
thiness of agents who provide evidence are not considered. Their
approach does not consider local evidence, i.e., the previous inter-
actions of the trustor with the trustee.

Pujol et al. [2002] develop an algorithm to find the reputation of
an agent based on its position in a social network. The Web pages
of users are taken as a basis to come up with the social network.
If an agent is pointed to by agents with high reputation, then the
agent is also considered to have high reputation, similar to the no-
tion of authority exploited in search engines such as Google. Pujol
et al. use their approach to find the reputations of authors where
the reputation of an author is defined as the number of citations re-
ceived. Even though each agent can calculate its own reputation
based only on local information (i.e., the agents that point at it),
a central server is needed to access others’ reputations. This ap-
proach does not capture local trust, since direct interactions are not

taken into account. It captures social trust since the reputation of
an agent is derived through how other agents have linked to it, but
has no means to correct it based on local observations of an agent.
In other words, the link structure is static and the positions of the
agents do not change based on their interactions. In our approach,
we allow agents to change neighbors using the neighbors’ ability to
give referrals as a heuristic. This allows us to rate the sources.

Sabater and Sierra [2002] develop a system for reputation man-
agement where reputations are derived based on direct interactions
as well as the social relations of the agents. They use the number of
interactions and the variance in ratings to derive the the trustworthi-
ness of the agent through direct interactions. To assess the trustwor-
thiness through indirect interactions, Sabater and Sierra use fuzzy
inference to combine evidence from multiple witnesses. In this re-
gard, their approach captures both social and local trust. On the
other hand, Sabater and Sierra do not offer a mechanism to propa-
gate trust across related services as we have done here.

Sen and Sajja [2002] develop a reputation-based trust model used
for selecting processor agents for processor tasks. Similar to our
notion of service providers, each processor agent can offer varying
performance. Agents are looking for trustworthy processor agents
to interact with using only evidence from their peers. Sen and Sajja
propose a probabilistic algorithm to find the number of agents to
query to guarantee finding a trustworthy party. In our framework,
we model the peers based on their prior performance and choose
whom to ask for help based on these models. Thus, agents also de-
cide the trustworthiness of the information source. However, in Sen
and Sajja’s framework, these models are not captured. All peers are
treated the same independent of their previous behavior. This ap-
proach does not handle local trust, since previous interactions of an
agent with processor agents are not taken into account.

The above approaches derive the trustworthiness of agents based
on direct or indirect previous interactions. Our approach empha-
sizes the propagation of trust to related contexts as seen fit by an
agent. In this respect, our graph-based representation complements
the above approaches. Once the trustworthiness of an agent is de-
rived, our approach can decide how this can be reused in other con-
texts.

7. DIRECTIONS
Currently, we propagate trust based on a provider’s trustworthi-

ness for a single service. However, sometimes it would help to
combine the trustworthiness of the provider in several services. For
example, if a service is composed of several smaller services, the
trustworthiness of the provider in all the subservices will affect the
trustworthiness of the provider in the composed service. This prob-
lem is also acknowledged by Sabater and Sierra [2002]. In future
work, we plan to study such improvements to our model as well
as evaluate our model with respect to different distributions for re-
questing and providing services.

8. ACKNOWLEDGMENTS
This research was supported by the National Science Foundation

under grant ITR-0081742. We thank the anonymous reviewers for
helpful comments.

References
Anupriya Ankolekar, Mark Burstein, Jerry R. Hobbs, Ora Lassila,

David L. Martin, Sheila A. McIlraith, Srini Narayanan, Massimo
Paolucci, Terry Payne, Katia Sycara, and Honglei Zeng. DAML-
S: Semantic markup for Web services. In Proceedings of the



International Semantic Web Working Symposium (SWWS), July
2001.

K. Suzanne Barber and Joonoo Kim. Belief revision process based
on trust: Agents evaluating reputation of information sources. In
R. Falcone, M. P. Singh, and Y.-H. Tan, editors, Trust in Cyber-
societies, volume 2246 of LNAI, pages 73–82. Springer-Verlag,
2001.

Ronald Bonnell, Michael Huhns, Larry Stephens, and Uttam
Mukhopadhyay. MINDS: Multiple intelligent node document
servers. In Proceedings of the 1st IEEE International Confer-
ence on Office Automation, pages 125–136, 1984.

Cristiano Castelfranchi and Yao-Hua Tan. The role of trust and de-
ception in virtual societies. In Proceedings of the 34th Hawaii
International Conference on System Sciences (HICSS 34), vol-
ume 7, pages 7011–7018. IEEE Computer Society Press, Jan-
uary 2001.

Rino Falcone and Cristiano Castelfranchi. The socio-cognitive dy-
namics of trust: Does trust create trust? In R. Falcone, M. Singh,
and Y.-H. Tan, editors, Trust in Cyber-societies, LNAI 2246,
pages 55–72. Springer-Verlag, 2001.

Catholijn M. Jonker and Jan Treur. Formal analysis of models for
the dynamics of trust based on experiences. In Proceedings of
the 9th European Workshop on Modelling Autonomous Agents in
a Multi-Agent World, (MAAMAW), LNAI 1647, pages 221–232.
Springer Verlag, 1999.

Henry Kautz, Bart Selman, and Mehul Shah. ReferralWeb: Com-
bining social networks and collaborative filtering. Communica-
tions of the ACM, 40(3):63–65, March 1997.

Barbara A. Misztal. Trust in Modern Societies. Blackwell Publish-
ers, Cambridge, MA, 1996.

Bonnie A. Nardi, Steve Whittaker, and Heinrich Schwarz. It’s not
what you know, it’s who you know: Work in the information age.
First Monday, 5(5), May 2000.
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