
Governance of Cross-Organizational Service Agreements:
A Policy-Based Approach∗

Yathiraj B. Udupi

Department of Computer Science

North Carolina State University

Raleigh, NC 27695-8206, USA

ybudupi@ncsu.edu

Munindar P. Singh

Department of Computer Science

North Carolina State University

Raleigh, NC 27695-8206, USA

singh@ncsu.edu

Abstract

Many real-life organizations are hierarchies of largely

autonomous, heterogeneous members (individuals or other

organizations), often exhibiting rich policies. We restrict

our attention to organizations that monitor their environ-

ment, collate events, determine compliance of their behav-

iors with their policies, and potentially act in anticipation

of events to ensure the satisfaction of their policies.

This paper models cross-organizational service agree-

ments as resulting in the formation of organizations. This

paper emphasizes the importance of proactive policy-based

governance in organizations (modeled as multiagent sys-

tems) and provides a novel architecture supporting policy

monitoring, governance, and enactment.

This paper provides an initial formalization and dis-

cusses the compliance and completeness of behaviors pro-

duced from specified policies. To demonstrate the practical

utility of this approach, it is implemented using an existing

policy engine and messaging middleware.

1 Introduction

Hierarchical service organizations, termed Orgs here, are

structures of entities such as individuals and organizations

that exhibit complex behaviors and rich policies. Many

real-life organizations can be modeled as Orgs. In partic-

ular, Orgs apply wherever distributed resources need to be

administered. In business settings, Orgs arise in scenarios

such as cross-organizational service agreements, contracts,

partnerships, supply chains, and so on. Because of the au-

tonomy of the participants, governance is a better metaphor

for administrating Orgs than traditional management. Gov-

ernance involves the processes by which autonomous en-

∗With partial support from NSF (grant ITR-0081742) and the Center

for Advanced Computing and Communication (CACC), NCSU.

tities agree to collaborate and share resources. Complex

relationships and contracts may bind the members of the

Orgs within them. For example, Orgs apply in the area of

provisioning of services, where sophisticated service level

agreements are required to manage the resources and ser-

vices controlled by multiple organizations. Business pro-

cess outsourcing (BPO) relates to the recent expansion of

services businesses. BPO involves refactoring an enter-

prise’s processes so that external parties are engaged, yield-

ing improvements such as efficiency and reliability. In gen-

eral, service computing causes key processes to spread over

multiple organizations, but present techniques do not handle

them well.

We seek to improve the modeling and governance of

complex Orgs through innovations in policy architecture.

Traditional policy-based frameworks emphasize reactive

behaviors, wherein an external request causes a policy en-

gine to compute a response. Reactive policy frameworks are

adequate for applications such as routing packets or con-

trolling access to data items. However, Orgs in business

or scientific scenarios inherently require richer policies and

proactive behaviors. For example, in scientific computing,

an Org representing a “production grid” would deal with

resources (e.g., instruments in labs or observatories), repre-

senting the real world. In order to ensure the satisfaction

of its policies and contracts, such an Org must not only re-

spond to explicit requests, but must also monitor its envi-

ronment, collate events, determine compliance of its inter-

actions, and potentially act in anticipation of events. For

example, a grid facility may assign preemptive priority to

hurricane modelers, to react to emergent environmental sit-

uations so as to generate more accurate warnings for the

public. Preemptive scheduling, though apparently simple,

remains a major challenge in grid computing [5].

Modern needs, such as resource sharing in cyberinfras-

tructures, and accommodating IT and other service engage-

ments, speak to the importance of policy-based governance.

This paper emphasizes the importance of proactive policy-

based governance in Orgs and provides an enhanced multi-

agent architecture supporting such governance. This work

differs from earlier research on organizations and policies

in the following key ways.

Policy formulation and enactment. This paper empha-

sizes not a policy engine but a multiagent architecture

in which policies can be perspicuously formulated. It

provides the operational semantics for the propagation,

resolution, and enactment of policies.

Event-based monitoring. This paper enables the proactive

behavior of Orgs in checking compliance with their

policies, by enabling Orgs to communicate relevant

events to each other.

Contributions. This paper extends Udupi and Singh’s

[9] proposal of policy-based multiagent architecture for or-

ganizations. It (1) formalizes organizations with a proac-

tive agent-based policy architecture supporting a hierarchi-

cal model of policy monitoring, governance, and enactment;

and (2) discusses the compliance and completeness of over-

all behaviors from specified policies. To demonstrate its

practical utility, this approach is implemented using an ex-

isting policy engine and messaging middleware.

Organization. Section 2 formally describes Orgs and fur-

ther motivates policy-based governance. Section 3 presents

the proposed multiagent policy governance architecture.

Section 4 evaluates the proposed approach conceptually and

discusses some important consequences. Section 5 offers a

comparative evaluation of the present approach with respect

to the related work.

2 Hierarchical Organizations

Our approach is centered on the notion of agents. Orgs

are multiagent systems, each individual and Org being mod-

eled (recursively) as an agent. An Org in this sense either

corresponds to a real-life organization with its existing hier-

archical member relationships, or is dynamically created to

govern the service agreements formed between two or more

peer Orgs. Each agent maintains a set of policies and con-

figuration facts. Configuration facts describe the structures

in which an agent participates. They include information

about their existing relationships such as commitments and

contracts, organizational structure, power relationships, and

so on. Section 3 describes policies at length.

Definition 1 An Org O is an agent defined by a tuple

〈M, P, C〉. Here M = {A1, . . . , An} is a set of members;

P and C are sets of formulas. The Ai are the members of

O and P are the policies of O. C is a set of configuration

facts that include relationships such as commitments.

Each agent monitors and records events, which corre-

spond to environmental observations or the actions of this

and other agents. Based on these events and their policies,

agents modify the configuration and choose their actions.

Commitments. Commitments form the basis for ser-

vice agreements. Commitments are directed obligations

from a debtor agent to a creditor agent, but arising within

the scope of a context Org. A commitment is defined as

C(A, B, F, U, Id), where A is the debtor, B the creditor,

U the context, F the discharge condition, and Id the iden-

tifier. The context Org provides the means to handle any

exceptions by revoking or otherwise manipulating the com-

mitment.

We study the following commitment operations (based

partly on [8]). Commitments are created in the context of

an Org. A debtor discharges the commitment when the dis-

charge condition holds. A debtor may cancel a commit-

ment, or may delegate it to another agent. A creditor may

assign it to another agent. A context Org or a creditor may

release a commitment, and a debtor or a creditor may es-

calate a commitment to a context Org, indicating any addi-

tional requests or complaints.

2.1 An Example Scenario

Consider a (fictitious, but realistic) scenario where the

Department of Energy (DOE) and the Department of Com-

merce (DOC) coexist within an Org Org-DOC-DOE, which

is created as a context for the service agreements between

DOC and DOE. Figure 1 illustrates this scenario. The

dashed edges indicate the hierarchical organizational struc-

ture. DOC contains NOAA, which contains the National

Hurricane Center (NHC). Likewise, DOE contains National

Labs (NL), which contains Argonne (ANL) and Oak Ridge

(ORNL). Here the leaf nodes, e.g., NHC and ANL, are in-

dividual agents; the other nodes are Orgs. Enactment can

occur at multiple level in the hierarchical structure. Hence,

other service agreements or relationships can exist between

members resulting in the formation of new Orgs. For exam-

ple, Org-NOAA-NL is created as a context for NOAA and

National Labs, and Org-NHC-ANL for NHC and ANL.

ANL, a descendant of DOE, provides grid computing fa-

cilities to the NHC, which performs hurricane modeling.

ANL is committed to NHC to providing the computing ser-

vice. NHC commits to ANL to ensure accurate scheduling

and supervision of the grid jobs, and also to make timely

payments for the services obtained.

2.2 Challenge: Preemptive Scheduling

Previous research has motivated the need for grid appli-

cations to be proactive to handle crises, such as hurricanes,

earthquakes, and so on [5]. A challenging use case here is

DOC DOE

NOAA
National

Labs

NHC ANL ORNL
Enactment

...

Service

agreements

Organizational

structure

Org-DOC-

DOE

Org-NOAA-

NL

Org-NHC-

ANL

Figure 1. An example hierarchical scenario

that of preemptive scheduling of resources such as in the

light of critical events. For example, let’s revisit the ex-

ample of Figure 1. Say, certain events analyzed by NHC

indicate an emergency hurricane situation causing a surge

in NHC’s computational resource requirement beyond what

is currently being offered by ANL. In this scenario, NHC

makes a request for additional resources in the Org-NHC-

ANL context to ANL. In case the request cannot be granted,

ANL or NHC may escalate it to Org-NHC-ANL. If NHC

escalates, Org-NHC-ANL will check the request before de-

ciding its action. If the request is legitimate and if ANL

cannot grant it, then Org-NHC-ANL can inform National

Labs of the situation by escalating it further to Org-NOAA-

NL. In well-designed organizations, exceptional situations

can be handled locally. Thus forwarding of escalations is

rare, but can propagate up to the topmost Org. The higher

Orgs enforce their policies preemptively. The higher Orgs

may preempt some service agreements in favor of others.

Here, Org-NOAA-NL would request National Labs to pro-

vide the additional resources to NHC. National Labs may

cause ANL to give up its other service engagement to sup-

port NHC fully instead.

This might appear to be quite easy. Yet, preemptive

scheduling features as a challenge problem for production

grid applications because current architectures and policy

models do not support acquiring the right requirements or

modeling and placing the desired policies correctly to pro-

duce desired behaviors without hardcoding or human inter-

vention. This paper develops the necessary architecture that

would enable such proactive policy-based governance.

3 Policy-Based Governance

The multiagent definition of Orgs supports a policy-

based governance architecture. Each agent (individual or

Org) that has nonnull policies instantiates a policy engine

that controls its communicative and other actions, including

those in response to environmental events and the commu-

nicative actions of others.

Traditional policy architectures are generally reactive,

and act on a per-request basis. For example, XACML, the

extensible access control markup language policy frame-

work [7], has an access decision language used to represent

a runtime request for a resource. First, a policy associated

with a resource is located. Next, the attributes of the request

are compared with the rules, ultimately yielding a permit or

deny decision. Policy decisions are handled using an archi-

tecture that consists of the policy enforcement point (PEP)

and the policy decision point (PDP).

The proposed approach goes beyond traditional architec-

tures by emphasizing proactive monitoring and compliance.

3.1 Policy Architecture Requirements

In a dynamic organization, the object of a policy need

not be a passive entity but could be an agent—usually one

to whom the organization might have delegated some re-

sponsibility and granted some authority and visibility for

the purposes of a specified family of interactions. A de-

sirable policy architecture should be flexible enough to cap-

ture dynamic relationships between entities, and the context

in which the entities exist. Policies should kick in auto-

matically leading to the creation of new Orgs, or changing

membership in existing Orgs.

The present approach goes beyond XACML in introduc-

ing architectural components geared toward monitoring and

compliance. It borrows, from traditional grid policy ar-

chitectures [4], the notions of monitoring and aggregating

distributed events, and hierarchical enforcement of policies.

However, it extends these notions via (1) event monitoring

and propagation, (2) compliance checking aided by moni-

toring, and (3) policy modeling and enactment in Orgs.

3.2 Agent Policy Architecture

Figure 2 describes our agent architecture. An agent con-

tains a PEP and a PDP as in traditional policy architectures.

But the PEP and the PDP provide additional features with

the aid of two new components: Policy Monitoring Point

(PMP), and Policy Organizational Point (POP). These are

the main modules that constitute our “M-O-D-E” (PMP: M,

POP: O, PDP: D, PEP: E) architecture. An agent connects

to an event bus [2] to send and receive events. The PMP

helps to make this agent policy architecture event-based, yet

proactive. Whereas a traditional PEP would merely allow or

disallow a requested event based on the PDP, here, the PEP

can perform an action different from any event that might

have been requested. In particular, a domain action may be

taken even if there is no explicit external event specifically

triggering that action; the triggering condition might be in-

PEP PDP

PMP

POP

Event Bus

History Policies Configuration

Domain event Organizational event

Configure event patterns

Event

Any event

Request

Permit,

Deny,

Direct
Read,

Update

Domain

action

Organizational

action
(Environmental or

communicative action)

Environmental adapter Other Agents

Figure 2. Architecture of policy-driven agent

ternal to the agent, such as based on its prior commitments,

events stored in the history, or merely the passage of time.

POP. The POP manages “organizational” relationships,

which are reflected mainly in the configuration store and

the policies. Thus the POP potentially changes the behav-

ior of the PDP by modifying the policies that the PDP ap-

plies. In essence, the POP “reconfigures” an Org by per-

forming operations on the commitments that apply to the

parties involved, or requesting such operations from other

agents, such as a higher-level Org.

PMP. The PMP is crucial in enabling proactive event-

driven behavior. It observes or monitors an event stream

that can include communicative actions (described in Sec-

tion 3.4) and environmental events. PMP captures specified

event patterns from the stream(s), as instructed by the POP.

Some communicative actions are organizational events that

add or manipulate the contents of the various stores of the

agent. Other events are domain events that include re-

quests and responses. The PMP dispatches the organiza-

tional events to the POP, which may apply its policies and

take the appropriate actions on the data stores. The PMP

sends events to the PEP for further processing. All events

are stored in the history.

The PEP’s actions are relayed back to the event bus,

and thus visible to its own PMP. If an action performed

by the PEP involves any changes in its stores (e.g., events

such as the creation or manipulation of a commitment),

the PMP sends the action as an organizational event to the

POP, which may perform an appropriate action on the cor-

responding store.

3.3 Policy Enforcement

The hierarchical structure of an Org, coupled with the

distributed nature of its members, has interesting conse-

quences on policy enforcement. Specifically relevant poli-

cies on an Org can be pushed to its members, ensuring that

a member not only complies with its local policies, but also

with the policies of its ancestor Orgs. The policy architec-

ture also supports events being propagated between an Org

and its members.

Figure 3 represents a segment of a hierarchy with an Org

and two of its children (To improve legibility the event bus

is shown as a separate module (but connected) for the top

Org and its two children). The event flows indicate that

agents can send events to their parents, siblings, or children.

PEP PDP

PMP

POP PEP PDP

PMP

POP

PEP PDP

PMP

POP

Actions/Policies

Actions Actions

ObserveObserve

Observe

Actions

Actions Actions

Figure 3. Hierarchical enforcement schematically

Policy Types. We define three kinds of policies: local

(PL), hierarchical (PH), and forwarded (PF). The local

policies of agent A (PL(A)) are policies that are set au-

tonomously by the agent. The forwarded policies of agent

A (PF (A)) are the agent’s policies that it propagates to its

descendants. The hierarchical policies of agent A (PH(A))
are the forwarded policies derived from A’s ancestors.

For example, in our DOE–DOC scenario, DOE may

have a local policy to offer the “best” graded QoS when

dealing with DOC, or with DOC’s descendants. DOC may

have a local policy to contact only DOE, or DOE’s de-

scendants for any high-performance requirements. The lo-

cal policies of DOE and DOC mentioned above are also

their corresponding forwarded policies, and hence are prop-

agated down to their respective descendants, including ANL

and NHC. The hierarchical policies of NHC and ANL in-

clude the forwarded policies of their ancestors NOAA and

DOC (for NHC), and National Labs and DOE (for ANL).

A parent Org propagates its forwarded policies to its

children via communicative actions. Here, we note that

PF (A) ⊆ PL(A) ∪ PH(A). The PMP of a child receiv-

ing the policies may trigger an organizational event that is

sent to the POP. The child’s POP would (if the source is

confirmed as a genuine ancestor) add the new policies to its

policy store. The hierarchical policies of an agent override

its local policies, in order to allow the higher-level organi-

zations to enforce their policies on their descendants.

Definition 2 A policy pi overrides a policy pj (pi � pj), if

an agent considers pi over pj to make a policy decision.

Property 1 ∀pH ∈ PH(A), pL ∈ PL(A), pH � pL: The

hierarchical policies pH ∈ PH(A) of agent A override its

local policies pL ∈ PL(A).

In the DOE–DOC scenario, consider a situation when

ANL has a local policy that allows offering only lower grade

QoS during a particular time period. However, one of the

DOE policies overrides this local policy ensuring the “best”

QoS being offered to NHC at all times.

3.4 Policy-Based Control of Agent Ac-
tions

Enacting cross-organizational service agreements in-

volves agents performing several actions to manage their

commitments and their configuration. The policies of an

agent control its actions by specifying rules that force the

agent to take certain actions or respond to the actions of

other agents. We consider two kinds of actions.

Domain Actions are certain the “functional” or applica-

tion operations performed by the agent. Examples include

running a simulation, allocating a light path in an optical

network, a grid service provisioning, and so on. Domain

actions may enable the manipulations of the configuration

facts. For example, discharging a commitment may involve

performing one or more domain actions.

Communicative Actions. In an organizational setting,

commitments formed among agents may be manipulated.

A communicative action may specify administrative opera-

tions on such configuration facts. The execution of a com-

municative action might result in one or more agent domain

actions. For example, the creation of a commitment may

result in multiple domain actions to discharge the commit-

ment.

Definition 3 A communicative action is expressed as oper-

ationName(A, B, Θ), where A is its sender, B its recipient,

and Θ its subject.

The relevant operations are domain actions, commitment

operations, and administrative operations such as request,

accept, deny and so on. For the commitment operations,

Θ would be the commitment on which the operation per-

formed, or may be the policy being propagated. For exam-

ple, a commitment C1 can be created by A1 and communi-

cated to A2 using the communicative action of create(A1,

A2, C1).

4 Evaluation

Our policy architecture emphasizes the proactive aspects

of policy management. Monitoring events is crucial for

proactive policy-based governance. The Org architecture

addresses challenges such as preemptive scheduling. This

section also motivates a formal analysis of how agents’ ac-

tions comply with policy. Hierarchical policy enforcement

may look simple, but is expressive because we generate hi-

erarchical Orgs flexibly and with potential overlaps. Our

policy architecture handles hierarchical relationships within

an Org such as a real-life organization, as well as peer to

peer relationships resulting from cross-organizational ser-

vice agreements.

4.1 Challenges: Preemptive Scheduling

Figure 4 (left) revisits the scenario of Section 2.2. When

an ancestor Org receives an escalate of a commitment from

a descendant, the ancestor Org can check if it is legitimate,

and perform any compensatory action. If it is unable to sat-

isfy the escalate, it can forward the escalate up in the hier-

archy. In the present case, National Labs preempts ORNL

from any of its other service engagements (not shown in the

figure), and delegates the NHC commitment to ORNL.

Figure 4 describes how our agent policy architecture

handles this scenario. It shows a messaging sequence di-

agram indicating the communicative actions and their pro-

cessing by the different components of the architecture.

Handling Conflicts and Escalations An agent can po-

tentially form multiple commitments with different agents.

An agent’s commitments may potentially conflict because

of timing or resource constraints. For example, Figure 5

shows a scenario where ANL is simultaneously committed

to both NHC and the data mining department (DM) of Visa.

ANL denies NHC’s request for additional resources because

of the two conflicting commitments.

Our policy architecture resolves such conflicts with the

help of escalations and the dynamically created Org struc-

ture. An agent involved in multiple simultaneous commit-

ments may assign preemptive priorities to selected commit-

ments. In the above example, the conflict between the two

commitments created by ANL can be detected via a logic

engine. ANL might have a policy to handle such conflicts

by canceling one of its commitments on the basis of the

specified priorities. More importantly, such priorities would

be specified by a higher-level Org when the service agree-

ments are initially made. Priority assignments may depend

on the order in which the agreements are created. For exam-

ple, if NOAA-NL agreement is created first, NOAA may re-

ceive the highest priority for hurricane and earthquake mod-

eling, while Visa may receive the best possible priority for

data mining.

(3) escalate (6) release

(5) request

for a new C to

NHC

NOAA
National

Labs

NHC ANL

Org-NOAA-

NL

Org-NHC-

ANL

(4)

escalate

(1) request

(2) deny

ORNL

(7) delegate

(8) discharge

Org-NOAA-

NL
NHC

[M O D E]

ANL
Org-NHC-

ANL

cancel(ANL, NHC, C1)

LEGEND - M: PMP, O: POP, D: PDP, E: PEP

request(NHC, ANL, C1)

National

Labs
ORNL

escalate(Org-NHC-ANL, Org-NOAA-NL, C1)

release(NL, ANL, C1)
request(Org-NOAA-NL, NL, createNewC(NHC))

[M O D E] [M O D E][M O D E][M O D E][M O D E]

delegate(NL, ORNL, C2(ORNL, NHC,…))

escalate(NHC, Org-NHC-ANL, C1)

informDelegate(NL, NHC, C2(ORNL, NHC,...))

discharge(ORNL, NHC, C2(ORNL, NHC,...))

Figure 4. A messaging sequence diagram for the preemptive scheduling scenario

NOAA
National

Labs

NHC ANL

Org-NOAA-

NL

Org-NHC-

ANL

VISA

DM

Org-VISA-

NL

Org-M-ANL

ORNL

request

deny

escalate

request to

handle NHC’s

request

escalate

Figure 5. A conflicting commitments scenario

In the above example, depending on the priorities speci-

fied for the service agreements (NL-NOAA and NL-VISA),

when NL receives a request to handle an escalate from one

of its higher Orgs (Org-NOAA-NL or Org-VISA-NL), NL

can either release ANL from NHC or DM and delegate to

ORNL, or can release ANL from DM, and put it on hold.

Privacy constraints sometimes limit the handling of es-

calates directly by the lower Orgs. For example, Org-ANL-

NHC cannot resolve NHC’s escalate, because ANL may not

share any information about its Visa contract while denying

NHC’s request. Hence escalates may be forwarded up the

hierarchy until one of the Orgs can resolve it.

Org Creation Path versus Escalation Path. We observe

that the path of the escalations reverses the path in which

the Orgs are created. However, the creation path could be

longer than the escalation path. As a case in point, once a

commitment is assigned, the assigner may not want to hear

if it does not work out. For example, when a bank B1 sells a

loan to B2, and B2 cannot collect on it, then B2 has to deal

with the borrower on its own, not through B1.

4.2 Compliance and Completion

The compliance and completion of an action is deter-

mined based on the policies in effect and the events ob-

served. Below P is a policy, a is an action, and |= means

entailment.

Definition 4 P |= a means that logical rules P require ac-

tion a given the facts. P, a 6|= false means that action a

is consistent with (permissible based on) the set of rules P

given the facts. P, a |= false means that action a is prohib-

ited by the set of rules P , given the facts.

An action a(A) performed by agent A is policy com-

pliant if a(A) complies with the policies, events, and facts

stored by A (〈PH , PL, Eh, Fc〉). Fc is a set of configuration

facts, and Eh is the set of events in the history. Below FC

and Eh are fixed and are not included in the definitions and

postulates.

Postulate 1 states that an action must be done if it is re-

quired by the hierarchical policies of an agent. Agents in

Orgs are not completely autonomous. Hierarchical policies

have a higher precedence than local policies. Using Prop-

erty 1, we see that (when PH requires action a), even if ac-

tion a is not permissible with the local policies of the agent,

a must be done, because the hierarchical policies override

the local policies.

Postulate 1 If PH |= a, then A must do a

Postulate 2 states that an action must not be performed if

it is not permissible by the hierarchical policies.

Postulate 2 If PH , a |= false (PH prohibits a), then A

must not do a

Postulate 3 states that when PH permits a, a must be

performed if required by the local policies.

Postulate 3 If PH , a 6|= false (PH permits a) and if PL |=
a, then A must do a

Postulate 4 states that action a must not be performed

when not permissible by the local policies, and not required

by PH .

Postulate 4 If PH 6|= a (PH does not require a) and if

PL, a |= false (PL prohibits a), then A must not do a

Postulate 5 states that when PH and PL both permit a,

but not require a, then a may be performed.

Postulate 5 If PH and PL do not require a and if

PH , PL, a 6|= false (PH and PL both permit a) A may do a

The above postulates group the hierarchical policies of

an agent which is a collection of the forwarded policies of

its ancestors (PH = PF (Aroot) ∪ . . . ∪ PF (Aparent)). In

PH , the forwarded policies of the root agent Aroot override

those of its child and so on.

Definition 5 An action a of an agent A is said to be pol-

icy compliant if it is not prohibited by A’s policies when it

occurs.

Action Path. An action path in an Org is a sequence of op-

erations that occur within its scope, i.e., across its descen-

dants, in enacting a service agreement. The configuration

administered by the Org agent evolves due to these oper-

ations, as the relationships among the administered parties

change. An action path for a commitment is a sequence of

operation beginning from its create and ending with its dis-

charge, cancel, or release. Action paths for other kinds of

configuration facts are similar.

Definition 6 A commitment action path CAP is a finite se-

quence of tuples 〈ai, Ai, Ci〉 (i ranges from 0 to n), each

representing a manipulation of the commitment Ci. Here

a0 is the create of C0 by agent A0, Ci+1 results from ac-

tion ai applied on Ci, and an is either discharge, cancel, or

release.

For example, in the NHC–ANL scenario, if ANL

discharges the commitment by itself, then the ac-

tion path is 〈create(ANL, NHC, C), ANL, C〉 and

〈discharge(ANL, NHC, C), ANL, C〉.

Definition 7 An action path is compliant if each of its ac-

tions is policy compliant when it occurs.

The following theorem establishes that all action paths

in the proposed architecture are compliant.

Theorem 1 An action path formed in an Org is compliant.

Proof: In an Org, the hierarchical policies are aggregated

with the local policies of an agent. We know from Postu-

lates 1 and 3 that any action required by the hierarchical

policies of an agent, or required by the local policies of an

agent and permissible by the hierarchical policies, must be

performed by the agent. At other times, when PH or PL

prohibit an action, then that action must not be performed

(Postulates 2 and 4). An agent may perform an action other-

wise when both PH and PL permit it (Postulate 5). Hence

all actions taken by the agents in an Org are permissible

both by their local and hierarchical policies and are policy

compliant by Definition 5. Thus the theorem follows from

Definition 7.

Definition 8 An Org is complete for a configuration fact

when an action path for that fact exists within that Org. An

Org is complete if it is complete for all relevant configura-

tion facts.

Potentially, an Org could be incomplete if no compliant

actions were to exist under some circumstances. However,

our definition of compliant action paths includes those that

end in discharge, cancel, or release. By thus expanding the

possibilities for the final action of an action path, we cre-

ate more opportunities for an action path to exist. Further,

our architecture prioritizes upper-level policies over lower-

level policies. But an architecture cannot by itself ensure

completeness.

For example, it is possible for the descendants of an Org

to interfere with each other. In general, it is possible for

two descendants of an Org (neither of which is an ancestor

of the other) to have mutually conflicting policies. Barring

such interference, an Org can complete for a configuration

fact although the configuration may be violated externally.

Theorem 2 captures this intuition.

Definition 9 Two actions are independent if either can oc-

cur and if both occur, they can occur in either order with the

same resulting state.

Theorem 2 An Org is complete if all pairs of actions of all

pairs of its descendants (neither of which is an ancestor of

the other) are independent.

The above notion of completeness does not entail a

“happy” ending. For example, NL may complete the com-

mitments it delegates internally by releasing all of them, al-

though that might cause NL to cancel its commitment to

NOAA. Ultimately, completeness resulting in all commit-

ments being discharged depends upon the various parties

having the right policies for the circumstances in question.

In particular, the cancel or release of a commitment may

cause the creation of other commitments. The design of

such policies is an important topic beyond the scope of this

paper.

5 Discussion

The foregoing presented a multiagent policy architecture

to govern cross-organizational service agreements. The key

differentiating features of this approach can be summarized

as follows:

Proactive Policy Modeling. It enables us to go beyond the

traditional emphasis on reactive policies. A production

grid not only must react to explicit requests (reactive)

but also must monitor its environment, collate events,

and determine how to act (proactive).

Distributed Policy-Based Governance. It recognizes that

Orgs are distributed. It supports two complementary

perspectives. One is that there is a single locus of pol-

icy enforcement. The other is that a distributed Org

must have parts that collaborate to enforce a given pol-

icy, which is achieved by hierarchical policy aggrega-

tion going downwards and escalates going upwards.

5.1 Implemented Prototype

We have implemented a prototype based on the proposed

architecture using a policy engine based on Jess and conven-

tional messaging middleware. This prototype demonstrates

the policy-based enactment of commitments including the

scenarios discussed above. A simulation has been set up

with multiple agents each with its own rule engine commu-

nicating with others via messaging middleware.

Future work. This paper opens up important future direc-

tions in the field of Services computing. We consider han-

dling specific cases of conflicts among service agreements,

commitments, and other social relationships among agents

as future work. As an important real-world scenario, we are

also working on a case study in the domain of resource shar-

ing in multiorganizational IT infrastructures, focusing on a

governance model for sharing of IT services. We are devel-

oping design patterns and templates for specifying Orgs and

their policies. An important future exercise is to identify

strategies for conflict resolution and policy enforcement.

5.2 Related Work

Compared to our previous work [9], we have simplified

the model and developed the “M-O-D-E” architecture, ac-

commodating hierarchies more precisely.

Policy Languages We consider two such policy languages.

Rei [6] supports constructs such as rights, prohibitions, obli-

gations, and so on. The architecture underlying Rei has a re-

source manager that functions like a PEP. It consults the Rei

policy engine (functioning like a PDP), which produces a

certificate specifying permissions, their validity period, and

such. By contrast, our approach considers organizational

architecture explicitly and could be realized using Rei.

Ponder [3] supports obligation policies as event triggered

condition-action rules. Our approach offers a more general

proactive architecture, and a high level vocabulary based on

commitments.

Policy Architectures Grid services research has consid-

ered policy architectures. Grid policies focus on resource

usage, access control, membership, and resource manage-

ment. Dumitrescu et al. propose scientific data grids based

on usage policies [4]. The usage policy enforcement hap-

pens both at the VO level (for grid-wide policies) (VO-level

V-PEP), and at the site level (S-PEP for site policies). V-

PEPs interact with S-PEPs and schedulers to enforce VO-

level policies. Each PEP is supported by a monitoring dis-

tribution point (MDP), which gathers information about re-

source usage and policy restrictions. MDPs are distributed

but can interact with other MDPs. Our approach handles

general cross-organizational interactions and can support

grid-like VO architectures.

Normative Systems Boella et al. propose a conceptual

model of virtual organizations as normative multiagent sys-

tems [1]. They demonstrate the dynamic aspects of orga-

nizations using different types of interactions between the

normative systems and the agents playing specific roles.

Our architecture goes beyond the above in providing an ex-

pressive organizational structure, and policy-based gover-

nance.

References

[1] G. Boella, J. Hulstijn, and L. van der Torre. Virtual organi-

zations as normative multiagent systems. In Proceedings of

the 38th Annual Hawaii International Conference on System

Sciences, pages 192–201, 2005.

[2] D. E. Chappell. Enterprise Service Bus. O’Reilly, 2004.

[3] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The pon-

der policy specification language. In Proceedings of Interna-

tional IEEE Workshop of Policies for Distributed Systems and

Networks (POLICY), pages 18–38, 2001.

[4] C. L. Dumitrescu, M. Wilde, and I. Foster. A model for usage

policy-based resource allocation in grids. In Proceedings of

6th International IEEE Workshop of Policies for Distributed

Systems and Networks (POLICY), pages 191–200, 2005.

[5] N. Group. NGG2 Expert Group Report: Require-

ments and Options for European Grids Research 2005–

2010 and Beyond. July 2004. Available at URL:

http://www.semanticgrid.org/docs/ngg2 eg final.pdf.

[6] L. Kagal, T. Finin, and A. Joshi. A policy language for a per-

vasive computing environment. In Proceedings of 4th Inter-

national IEEE Workshop on Policies for Distributed Systems

and Networks (POLICY), pages 63–74, June 2003.

[7] OASIS. eXtensible access control markup language

(XACML) version 2.0 specification document. OASIS Stan-

dard, Feb. 2005.

[8] M. P. Singh. An ontology for commitments in multiagent sys-

tems: Toward a unification of normative concepts. Artificial

Intelligence and Law, 7:97–113, 1999.

[9] Y. B. Udupi and M. P. Singh. Multiagent policy architec-

ture for virtual business organizations. In Proceedings of

the IEEE International Conference on Services Computing

(SCC), pages 44–51, Sept. 2006.

