
Multiagent Policy Architecture for Virtual Business Organizations∗

Yathiraj B. Udupi
Department of Computer Science
North Carolina State University
Raleigh, NC 27695-8206, USA

ybudupi@ncsu.edu

Munindar P. Singh
Department of Computer Science
North Carolina State University
Raleigh, NC 27695-8206, USA

singh@ncsu.edu

Abstract

A virtual organization (VO) is a dynamic collection
of entities (individuals, enterprises, and information re-
sources) collaborating on some computational activity. VOs
are an emerging means to model, enact, and manage large-
scale service computations.

VOs consist of autonomous, heterogeneous members, of-
ten exhibiting complex behaviors. Thus VOs are a natu-
ral match for policy-based approaches. Traditional policy-
based frameworks emphasize reactive behaviors, wherein
an external request causes a policy engine to compute a re-
sponse. However, business service settings require richer
policies and call for proactive behaviors. A business not
only must respond to explicit requests, but also monitor its
environment, collate events, and potentially act in anticipa-
tion of events in order to ensure that its policies are sat-
isfied. Autonomous, heterogeneous, proactive entities are
best modeled as agents and, therefore, VOs are best under-
stood as multiagent systems.

Our main contributions are (1) a proactive multiagent
policy-based architecture, (2) a hierarchical model of pol-
icy monitoring, compliance checking, and enforcement for
VOs, and (3) a formalization of VOs. We evaluate our ap-
proach using a real business service scenario.

1 Introduction

Virtual organizations (VOs) are dynamic collaborative
collections of individuals, enterprises, and information re-
sources [5]. Traditionally such collaborative activities are
focused on data sharing and computation. This paper em-
phasizes VOs in business settings, especially where pro-
cesses support delivery of real-world (not just IT) services.
Because of legal and economic pressures, business environ-
ments provide richer policies than the more common sci-
entific computing environments. VOs, whether business or

∗This research was supported by the National Science Foundation un-
der grant ITR-0081742.

scientific, have key properties that distinguish them from
traditional IT architectures:

Autonomy. The members of a VO behave independently,
constrained only by their contracts.

Heterogeneity. The members of a VO are independently
designed and constructed, constrained only by the ap-
plicable interface descriptions.

Dynamism. The members of a VO join and leave with
minimal constraints. Thus, the configuration of a VO
changes at runtime.

Structure. VOs have complex internal structures, reflected
in the relationships among their members.

Importantly, even in cases where the above properties are
not required (such as within an enterprise where the mem-
bers are controlled by one party), it is appropriate to archi-
tect a VO as if it had the above properties. Taking these
properties to heart helps make the conceptual model neater
and the designs more easily reusable and extensible.

The above properties of VOs closely match the proper-
ties of multiagent systems. Agents are persistent compu-
tations representing independent principals: they are au-
tonomous and heterogeneous as a result. Multiagent sys-
tems are motivated from flexible human organizations and
consequently exhibit dynamism and structure. Thus the dis-
tinguishing properties of VOs are mirrored in multiagent
systems. As a result, we can leverage multiagent systems
to model VOs, especially as applied in service computing
[11, ch. 15–17].

The main contributions of this paper are (1) a proac-
tive, multiagent policy-based architecture for VOs; (2) a hi-
erarchical model of policy monitoring, compliance check-
ing and enforcement for VOs; and, (3) a formalization of
VOs. We compare our proposed policy architecture with
traditional policy architectures using an example from a real

PDPPIP

Policy
Store

User
PEP

Server Request

Response

(subject, resource,
action)

XACML

Request, attributes

Subject, resource,
environment attributes

Context Handler

Attributes XACML
Response

Figure 1. XACML policy framework

business scenario of VOs.

Organization. Section 2 describes the proactive policy
management architecture for VOs containing a hierarchi-
cal organizational structure. Section 3 provides a formal
representation for VOs. Section 4 describes a real business
scenario of a VO used to evaluate our approach. Section 5
discusses the relevant literature. Section 6 summarizes our
contributions and discusses future work.

2 Multiagent Policy Architecture

We briefly describe concepts on which our proposed ap-
proach builds. Section 5 describes other literature.

General policy architectures. The IETF Policy frame-
work was designed for managing network resources [6; 15],
but has a structure that applies more generally. This archi-
tecture assumes a network element (router, hub, or switch)
where resource allocation decisions are made. A policy en-
forcement point or PEP resides within the network element.
A policy decision point or PDP may be within or outside the
element; policy decisions are made here. A PDP may use
additional mechanisms to decide on an action.

XACML, the extensible access control markup language
[9], extends the IETF framework. XACML has an access
decision language used to represent a runtime request for
a resource. First, a policy associated with a resource is
located. Next, the attributes of the request are compared
with the rules, ultimately yielding a permit or deny deci-
sion. XACML supports a runtime per-request access con-
trol mechanism and is illustrated in Figure 1. When a re-
quest is received, the recipient’s policy enforcement point
(PEP), forwards the request to a context handler along with
some requester attributes. The context handler notifies the
policy decision point (PDP). The PDP collects the required
attributes from the policy information point (PIP) via the
context handler and the appropriate policies from the policy

store, and arrives at an authorization decision based on the
attributes and the policies. The PDP returns the authoriza-
tion decision back to the PEP, which enforces the returned
policy decision on the client. XACML supports obligations;
the PEP ensures that these obligations are met.

Grid policy architectures. Grid research has considered
VOs and policy architectures. However, Grid policies fo-
cus on resource usage, access control, membership, and re-
source management. Dumitrescu et al. [3] support usage
policy enforcement both at the VO level (for grid-wide poli-
cies), and at the site level (for local policies). Accordingly,
their architecture includes two kinds of PEPs: S-PEP (site-
level) and V-PEP (VO-level). An S-PEP ensures that only
jobs satisfying local policies run at a site; others are pre-
empted. A V-PEP schedules jobs on different sites. V-PEPs
interact with S-PEPs and schedulers to enforce VO-level
policies. Each PEP is supported by a monitoring distribu-
tion point (MDP), which gathers information about resource
usage and policy restrictions. MDPs are distributed but can
interact with other MDPs.

2.1 VO Policy Architecture Requirements
and Proposed Approach

In a dynamic VO, the object of a policy need not be a
passive entity but could also be an agent—usually one to
whom the VO might have delegated some responsibility and
granted some authority and visibility for the purposes of a
specified family of business interactions. A desirable policy
architecture would be flexible enough to capture dynamic
relationships between entities in VOs, and the context in
which the entities exist. Policies should kick in automati-
cally leading to the creation of new VOs with appropriate
assignment of roles and authorizations. We postulate the
following facets of a policy, which are necessary for the
practical policy management.

Creation. Policy scoping and creation corresponds to
forming new VOs, and creating contracts between ex-
isting or new VOs.

Enactment. Policy enactment means acting in a manner to
ensure compliance with the policies. Enactment in-
volves delegation management in hierarchies, enforce-
ment of policies, and so on.

Monitoring. Policy monitoring includes observing interac-
tions among different parties and their outcomes.

Compliance. Policy compliance checking means deter-
mining at runtime whether a policy has been violated.
It may include the anticipation of looming problems
that would cause a policy to be violated, and thus may
motivate evasive action.

The proposed approach goes beyond XACML in intro-
ducing additional architectural components geared toward
monitoring and compliance. It borrows, from traditional
grid policy architectures, the notions of monitoring and ag-
gregating distributed events, and hierarchical enforcement
of policies. However, we extend these notions in key re-
spects, including (1) history-based event monitoring and
gathering to support proactive mechanisms (2) compliance,
(3) modeling and handling recursively formulated VOs, and
(4) an architecture supporting autonomy and compliance.

2.2 Agent Representations

Our approach is centered on the notion of agents. An
agent is a computational entity with a persistent identity
that is proactive and interactive. As a base case, an agent
may be an individual, such as a person, business part-
ner, or resource. An agent may also be a VO. That is, a
VO is an agent that comprises other agents, in particular,
other VOs. We recently proposed an agent-based concep-
tual model for virtual organizations that emphasizes com-
mitments and contracts [12].

This subsection describes the constructs of goals and
policies that apply to agents, individuals or VOs. The next
subsection introduces constructs that are specific to VOs. A
member of a VO is referred to as its child, so that kinship
terminology such as parent, descendant, ancestor, can be
used.

Goals. The goals of an agent capture the states of the
world that the agent desires to bring about. Goals are most
naturally thought of as ends, but they can readily serve as
means to other goals. In connection with VOs, the goals
(ends) of some agents may cause them to enter into a con-
tract or form a VO. Conversely, the contracts that a VO en-
ters into may cause it to adopt goals (means), which could
potentially yield additional goals for its members.

Policies. Each agent has its policies based on its busi-
ness goals. An agent contains a PEP, a PDP, and a policy
store, which function as in XACML. Figure 2 describes our
agent architecture, which introduces two components, the
Policy Monitoring Point (PMP) and the Policy Compliance
Checking Point (PCCP), to support proactive behavior. The
PMP monitors the agent’s actions and its environment, and
stores its observations in an event store. The PCCP mon-
itors the event store. It can override the actions taken by
the PEP, and can cause actions based on anticipated events.
The events captured by an agent’s PMP include the agent
interactions and their outcomes, actions taken by the agent,
dynamic agent relationships, and the current state of the en-
tity represented by the agent.

PEP

Policy
Store

PDP

PMP

I
N
T
E
R
F
A
C
E

PCCP

E
V
E
N
T
S

Event
Store

Figure 2. A proactive agent policy architecture

2.3 Organizational Representations

Intuitively, business partners may interact by sharing re-
sources, requesting and providing services, delegating a
task to one another, fulfilling a commitment, and forming
contracts. Organizational representations formalize such in-
teragent concepts.

Commitments and organizational context. The central
primitive for expressing organizational interactions among
agents is that of commitments [10]. Commitments function
like directed obligations from a debtor to a creditor. Impor-
tantly, commitments are defined within an organizational
context. Commitments specify a condition that the debtor
is obliged to bring about. Conditional commitments asso-
ciate this condition with a precondition. Such commitments
provide a natural basis for contracts.

In essence, commitments reify aspects of agent inter-
actions and enable interactions to be treated as first-class
citizens in our representations. Six operations are defined
on commitments [10]. Of these, the following are studied
in this paper. A debtor of a commitment discharges it by
bringing about the stated condition. A debtor of a com-
mitment may delegate it to another agent: the outcome of
the delegation is that the delegatee becomes the debtor of
a commitment with the same condition and creditor as the
original commitment.

The motivation for explicitly representing the context of
a commitment is to delimit the scope of a commitment, so
as to enable the proper treatment of exceptions and opportu-
nities. In particular, commitments in real life are revocable:
often, an agent has no choice but to revoke a commitment
because of problems that may be, for instance, physical
(factory burned down), economic (oil prices shot up unex-
pectedly), or legal (cannot ship pharmaceuticals across na-
tional boundaries). The context of a commitment provides a
way to revoke or otherwise manipulate commitments. Del-
egation is an especially important variety of commitment

manipulation, and is discussed at length below.

Contracts. A contract among two or more agents encap-
sulates a related set of commitments. Typically, each of the
parties to a contract would be the creditor of some commit-
ment and the debtor of some commitment in the set. Also,
typically, most of the commitments would be conditional
and may refer to the conditions of other commitments in
the set.

Contracting parties become members of the same VO, in
essence. The act of contracting creates this VO. A contract
describes how the participating VOs engage and collaborate
with each other to deliver suitable services.

In the proposed approach, each commitment exists
within the scope of a context VO. This leads to a coher-
ence requirement for contracts: Each of the commitments in
the set that constitutes a single contract must have the same
VO as their context.

Delegation. The actions and interactions required for a
contract may be carried out by members of the contract-
ing VOs. The contracting VOs would delegate their com-
mitments (to achieve certain goals in the contract) to their
members. In business settings, delegation is routine. For
example, say North Carolina State University (NCSU) con-
tracts with the IDA Agency to have the COE building trim-
ming painted. The contract specifies the stated service.
NCSU delegates the tasks of scheduling, facilitating, and
judging the paint job to its Facilities department. IDA dele-
gates the job to its Raleigh division, which would deal with
NCSU Facilities.

Each party to the contract acts in accordance with its
policies. Because of delegation, lower organizations must
adopt the contractual restrictions determined by higher or-
ganizations, which might potentially cause some of their lo-
cal policies to be overridden. For example, Facilities may
have a local policy that allows a building to be painted only
on student holidays and IDA-Raleigh may have a policy to
paint the outside only if the ambient temperature is below
80◦. However, NCSU’s policy of getting the building ready
in time for school may necessitate overriding Facilities’ pol-
icy and force painting on a day that is not a holiday.

Structure. A VO potentially incorporates complex re-
lationships with its members and among its members. In
our approach, these relationships are expressed in terms of
goals, policies, and commitments.

For example, the goals of a VO can be propagated to its
members as goals, or may become the commitments of its
members. Likewise the policies of a VO would normally
be propagated as policies of its members. The policies of
a VO might control how the commitments among its mem-
bers evolve. Consequently, as an important example, if two
agents enter into a contract, besides the commitments that
are explicitly part of the contract, their behavior would be

PMP
PCCP

PMP

PCCP

PMP
PCCP

PMP
PCCP

Events
Summarizations

Figure 3. A hierarchical PMP–PCCP structure

constrained by the goals, policies, and commitments of their
common parent VO. For instance, the parent VO might de-
clare a contract invalid or successfully completed, or might
release one of the agents from its commitments according
to the contract. This level of flexibility is essential for a VO
to handle exceptions and accommodate opportunities.

Thus a VO can have policies, and an agent that is a mem-
ber of a VO would normally be expected to satisfy any poli-
cies defined by the enclosing VO.

2.4 Hierarchical Enforcement

To facilitate management, organizations usually need to
be hierarchical. The hierarchical structure of an organiza-
tion, coupled with the distributed nature of its members, has
interesting consequences on policy enforcement.

Figure 3 describes the hierarchical arrangement of PMPs
and PCCPs of multiple agents belonging to an organiza-
tional hierarchy. Each VO is an envelope that potentially
contains still more VOs as members. The PMP of a VO
talks to the PCCPs of its parent VOs (more than one in case
of multiple inheritance).

That is, each PMP summarizes events, and forwards
these summarizations to its parents’ PCCPs. The parent
PCCP assimilates summarized event streams from multiple
PMPs, and may initiate further action on the subordinate
agents. Depending on its policies, a parent PCCP can over-
ride the functioning of its children: this follows from the
computations specified above for an agent.

In the NCSU-IDA example, consider the situation when
IDA-Raleigh takes longer to finish painting than expected.
IDA-Raleigh’s PMP observes this slow performance and
notifies its PCCP. Now IDA-NC’s PCCP may override IDA-
Raleigh’s policy, and make its staff work even when temper-
atures exceed 80◦.

Contract
VO

NCSU IDA

COE COM NC

Facilities Raleigh Durham

Contract

EnactmentFinance

G: To paint COE

D: (IDA, NC, G)

D: (NC, Raleigh, G)

D: (NCSU, COE, G)

D: (COE, Facilities, G)

P: Paint only on
student holidays

P: Paint if T < 80 F

P: To ensure
quality of service

Figure 4. An example VO

3 Formal Representation

Based on the foregoing motivations, we formalize a VO
as follows. Recall that a VO is an agent; an agent must be a
VO or an individual.

Definition 1 A VO A is an agent defined via a tuple
〈M, G, P, S, D〉. Here M = {A1, . . . , An} is a set of
agents. G, P , S, and D are sets of formulas. The Ai are
the members, G are the goals, and P are the policies of A.
S is a set of commitments, each of which has a creditor and
a debtor drawn from M ∪ {A} and a context equal to A. D
is a set of delegations from A to Ai.

The goals of an agent are conditions (expressed as pred-
icates applied to arguments), which the agent must make
true, acting solo or collaboratively. The goals correspond
to events, services, or tasks. Figure 4 represents a VO with
two contracting members: NCSU and IDA. Only the non-
trivial G, P , D components are shown. The commitments
S are not shown, but correspond to the commitments of a
VO to accomplish the goals specified.

Point of enactment. As described above, a goal is a con-
dition to be achieved. For a well-formed VO, each goal
must be reflected in the conditions of one or more commit-
ments in a contract that exists within the scope of the VO.
The debtor of this commitment may delegate it to one of its
members. The delegation can continue down the VO struc-
ture. The point of enactment is the final debtor in the del-
egation path who directly discharges the commitment, and
accomplishes the goal.

Definition 2 A point of enactment Ae of a goal e in a VO
A, is a descendant of A that accomplishes e. That is, Ae is
the debtor for a commitment Se whose condition is e.

In Figure 4, the two rectangles enclosing ellipses refer-
ring to Facilities and Raleigh are the two points of enact-
ment, belonging to the NCSU and IDA VOs, respectively.

3.1 Formal enactment of contracts in a
VO

A contract may form in a top-down or bottom-up man-
ner. Our approach represents both varieties uniformly via
commitments. In a top-down setting, the contracting agents
are already part of the same VO (i.e., are siblings), whose G
component includes the goals of the contract. The contract-
ing agents can delegate their commitments to any of their
children. Figure 4 illustrates a contract enactment of this
approach. A contract is formed between NCSU and IDA,
both members of a common VO.

In a bottom-up setting, the points of enactment for a goal
are responsible for the formation of a new common parent
VO. A VO creation request can bubble up in the VO until it
arrives at a suitably authorized party, which can enter into
binding contracts. In both approaches, delegation path is
defined as follows.

Delegation path. A delegation path begins from the VO
within which a contract is formed, going down the VO hi-
erarchy to the points of enactment, in essence propagating
the commitments from the VO to the points of enactment.

Definition 3 A delegation path (qe) of a goal e in a VO A is
the path from the starting point of delegation (i.e., A), down
the VO hierarchy to a point of enactment Ae.

In Figure 4, the paths marked with thick arrows starting
at the Contract VO and ending at the points of enactment
are delegation paths for the goal to paint COE. One path
belongs to NCSU; the other to IDA.

Definition 4 Let Qe be the set of all possible delegation
paths for goal e of Ae. A path qe ∈ Qe is complete if the
successful discharge of the corresponding commitment (by
the point of enactment in qe), satisfies the policies of all the
agents in the path.

In Figure 4, path q: 〈VO → IDA → NC → Raleigh〉
is complete with respect to the goal, if the goal is enacted
in conditions with temperature lower than 80◦, and if the
desired quality of service is ensured. Path q is complete
because the policies at all levels are satisfied. However, if a
path q′ to the Durham node existed, and if IDA-Durham had
a policy restricting paint jobs to within Durham city limits,
then q′ would not be complete for the current goal, because
NCSU’s COE being located outside of Durham would cause
a policy to be violated. The path from VO to Facilities via
NCSU is also complete if the goal is enacted on a student
holiday, and if the quality of service is ensured.

The enactment of a goal by a VO requires its members to
have policy-compliant interactions to accomplish the goal.
And, especially, if there is a hierarchical structure, then

the policies at all levels higher than the point of enactment
should be satisfied.

The following theorems formally show the accomplish-
ment of VO goals.

Theorem 1 A goal e is accomplished by a VO if each path
in the set Qe is complete.

This theorem follows from Definition 4, because the respec-
tive commitment for each path is discharged in accordance
with the policies of all the agents in the path, thereby ac-
complishing the VO goal.

In our example, the goal to paint COE is accomplished
by the VO containing the members NCSU, IDA, and oth-
ers, provided both the paths are complete. This would be
true and the theorem would apply if the goal were enacted
on a student holiday, when the temperature was lower than
80◦, and the quality of service was ensured. Because of a
resulting incomplete path, the theorem would not apply if
Durham were included in the coalition. Theorem 2 general-
izes over Theorem 1 by considering all the goals in a VO.

Theorem 2 The goals G of a VO are accomplished if each
goal e ∈ G is accomplished in a manner that satisfies the
policies P , commitments S, and delegations D formed by
the VO and its members.

An interesting future direction is to study the scheduling
of goals in a VO using heuristics such as earliest time of
start and latest time of completion, and so on.

4 Evaluation: An Example Scenario

We consider a real business scenario of an insur-
ance claim processing previously studied in the CrossFlow
project [2]. We evaluate our approach with respect to the
following three aspects: (1) an ability to model real business
scenarios as hierarchical VOs, (2) proactive organizational
enactment of policies locally in an entity, and hierarchically
in a VO setup, (3) distributed event monitoring and compli-
ance in a hierarchical setup.

Figure 5 illustrates the roles and operations involved in
the claim processing. R1 is AGFIL, the insurance company,
who underwrites the policies and processes claims. R2 is
Europ Assist (EA), a 24-hr help-line service for receiving
claims. R3 is Lee CS (Lee), a consulting firm that handles
claims. R4 is Garage (Ga), a repairer. R5 is the assessor
(A), who assesses the repair cost estimates. R6 is the in-
sured (I), an insurance buyer. The roles of the insured and
the assessor are not shown in Figure 5. Each role is repre-
sented by an agent that instantiates our proactive architec-
ture.

In this scenario, we consider two VOs that are formed
dynamically. These VOs may overlap with each other. The

Gather Info

Validate info

Assign garage

Notify AGFIL

Notify
Lee
C.S.

Obtain
claim
form

Check
claim
form

Amend
estimate

Reconcile
info

Finalize
claim

Obtain
details

Contact
garage

Assign
assessor

Agree
repair

Check
invoice

Receive
car

Estimate
repair
cost

Inspect
car

Repair
car Invoice

Estimate
< 500

Europ
Assist Repairers

Lee CS

AGFIL

Figure 5. CrossFlow insurance claim scenario

nonempty components of these VOs, namely, Goals (G),
Delegations (D), and Policies (P) are listed below.

VO-1 I and AGFIL.
G: The insured has to buy a policy from AGFIL, and

AGFIL has to make the insured a policy holder.
P: The insured buys an insurance policy from AGFIL if

AGFIL’s quote is the best. AGFIL keeps the insured as a
policy holder if the insured does not attempt fraud.

VO-2 AGFIL, Lee, A, and Ga.
G: AGFIL finalizes the claim by reconciling details such

as repair estimates.
D: AGFIL delegates the commitments of claims moni-

toring to Lee. Lee delegates repair cost estimation to the
garage Ga. Lee delegates repair cost estimate assessment to
an assessor A.

P: Lee has a policy that an assessor be used if the repair
estimate is greater than $500.

Proactive policy enforcement. Consider VO-1. The in-
sured has a policy to select the insurance company that of-
fers the best quote for the insurance policy. His PMP can
keep track of the quotes provided by different insurance
companies who contact him from time to time and store
these as events in his event store. The PCCP monitors
these events and can override the current policy enforce-
ment by replacing AGFIL with another insurance company
that gives a substantially better quote. AGFIL’s PMP can
keep track of the insured person’s behavior in terms of the
claims processed earlier. The PCCP monitors these events
and can withdraw its policy if any fraudulent behavior is
detected.

Definition 5 An agent Ai is locally proactive (LP) if it ac-
complishes its goals based on monitoring events and proac-
tively enforcing its policies.

For example, if the insured party makes sure its insurance
company offers the best quotes, it would be an LP agent.
Likewise, if AGFIL drops policy holders who engage in

fraud, AGFIL too would be LP.

Hierarchical VOs. Some VOs exhibit a hierarchical struc-
ture, naturally modeled in our architecture, based on del-
egation of commitments. For example, VO-2, which is
formed among the entities AGFIL, Lee, the assessor, and
the garage, has a hierarchical structure. In this case, AG-
FIL (R1) has delegated the commitment of finding a garage,
handling repairs, and preparing invoices to Lee (R3). Here,
R3’s PMP reports the events of contacting a garage, prepar-
ing estimates, and sending invoices to the PCCP of its parent
entity R1. R3 has delegated the commitment of assessing
the car damage repair estimate given by the garage (R4) to
the assessor (R5). R5 reports events of its assessment to
R3. Here, R3 is committed to performing these goals for
R1. R1 can perform continuous compliance checks based
on these events sent by R3. R1 can impose policies on R3

and override the decisions taken by R3. For example, if R1

realizes that R3’s policy of contacting an assessor only for
estimates more than a limit (say, $500), has allowed some
fraud to go undetected, then it can override that policy by
enforcing another policy that brings down the limit (to say,
$250) in R3.

Definition 6 An agent Ai is hierarchically proactive (HP),
if it proactively enforces its policies on its child Aj by as-
similating events sent by Aj . Ai’s policies Pi may override
Aj’s policies Pj (written Pi � Pj).

Above, R1 is an HP agent and PR1 � PR3 .

Definition 7 A delegation path qe for a goal e, containing
a HP-VO Ai and its child VO Aj , with Pi � Pj , and e not
satisfying Pj , is complete, if the rest of the path without Pj

is complete.

In the above example, the path: 〈VO-2 → R1 → R3〉
is complete when R1 enforces a new policy, because R1’s
policies override those of R3.

Theorem 3 A VO goal can be accomplished and termi-
nated even in the presence of HP agents, and their over-
riding policy enforcements if all the delegation paths are
complete.

We know from Definition 7 that paths can be complete even
in the presence of HP agents. When all paths (including
paths having HP agents) are complete, the desired result di-
rectly follows from Theorem 1. In our example, the goals of
VO-2 are accomplished even in the presence of an HP agent
R1.

5 Literature

We survey approaches based on the traditional policy ar-
chitectures and some VO architectures that are relevant to

our proposed approach.

Rei. The Rei [8] policy language includes constructs such
as rights, prohibitions, obligations, dispensations, delega-
tion, and revocation. The architecture underlying Rei pre-
supposes a PDP-PEP representation. A resource manager
functions like a PEP. It consults the Rei policy engine (func-
tioning like a PDP), which produces a certificate specify-
ing permissions, their validity period, and such. The pro-
posed approach enhances such reactive policy mechanisms
by offering a proactive policy mechanism that incorporates
PMPs and PCCPs.

KAoS. KAoS is a collection of agent services that repre-
sent and reason about policies on a variety of platforms [13].
KAoS domain services enable agent-agent collaboration
and external policy administration by capturing groups of
agents, people, and other resources as organizations of do-
mains and subdomains. KAoS policy services provide the
specification and management of policies within these do-
mains, including conflict resolution and enforcement. The
domain manager ensures policy consistency and distributes
them to components called guards, which interpret them à
la PDPs. The enforcers take policies from the guards and
enforce them in a platform-specific manner à la PEPs. The
proposed approach is similar to KAoS in terms of using or-
ganizations. However, it provides a proactive policy archi-
tecture.

Utilization management, accountability, and secu-
rity. Wasson et al.’s framework specifies and enforces VO
policies in a centralized manner [14]. In their prototype,
VOs consist of three main components: GateKeepers (rep-
resenting the access points for resources), Enforcers (who
carry out VO enforcement actions), and a Bank (collects
resource utilization data). By contrast, our approach is de-
centralized enabling local sites or sub-VOs to specify and
enact their policies, albeit in a manner that respects the con-
straints of higher-level VOs.

Communities. A community consists of members
with similar objectives and similar resources to be shared.
Feeney et al. support a nested community architecture with
hierarchical policy enforcement, especially with respect to
conflict resolution [4]. Proposed policies about a resource
are checked for conflicts and recursively propagated to par-
ent communities until they reach the community owning the
resource, where they are deployed. Policy decisions at a
community are made via consensus among its members. In
our approach, a community can be modeled as a VO whose
policies reflect the consensus of its members. The VO agent
provides a locus for enforcing community policies and re-
solving conflicts among members.

Open distributed processing. RM-ODP is a reference
model for open distributed processing [7]. RM-ODP mod-
els several independent concerns or viewpoints, of which

the enterprise viewpoint is relevant here. The enterprise
viewpoint specifies a system and its environment as a com-
munity of (passive or active) objects formed for a purpose.
For example, we may have a financial community con-
sisting of people, banks, tellers, and such. An RM-ODP
community resembles a VO in this respect, but it also ad-
mits purely virtual entities such as bank accounts, and even
money. The enterprise viewpoint defines the VO members,
their roles, and their policies. The proposed approach can
be understood as an enhancement of RM-ODP as it provides
a proactive policy-based architecture for managing the in-
teractions between different VOs and their member agents.

6 Conclusion

This paper proposes a multiagent architecture for VOs
that treats VOs as consisting of agents, potentially VOs in
their own right. The nesting structure of VOs highlights the
freedoms and constraints on the VOs at each level. The key
advantages of this architecture are as follows.

Policy Modeling. The proposed architecture enables us to
go beyond the traditional emphasis on reactive poli-
cies. A business not only must react to explicit requests
(reactive) but also must monitor its environment, col-
late events, and determine how to act (proactive).

Policy Management. The proposed architecture recog-
nizes that VOs are distributed. It supports two com-
plementary perspectives. One is that there is a single
locus of policy enforcement. The other is that a dis-
tributed organization must have parts that collaborate
to enforce a given policy.

Relationships. The proposed architecture naturally sup-
ports complex nested structures. It supports manag-
ing the complementary properties of two VOs being
unaware of each other’s structure but gaining requisite
visibility to interact effectively.

Social reasoning mechanisms play an important role in
the design of agent architectures, enabling an agent to eval-
uate and reason about others using its dependencies with
others [1]. Service relationships among different entities
formed over a particular contract or a goal bring them to-
gether to form VOs. In an e-commerce setting, a service
provider may depend on a consumer, or a consumer may
depend on a provider. Dependencies are dynamic, because
they can be formed and revoked at run time. Social relation-
ships can form the basis of the policies of the entities in a
VO. These service relationships among VOs and other en-
hancements to our formal VO definitions will be considered
as future work. The relationships captured while describing
VOs can dynamically change and becomes crucial for de-
scribing VO behaviors.

References

[1] R. Ashri, S. D. Ramchurn, J. Sabater, M. Luck, and N. R.
Jennings. Trust evaluation through relationship analysis.
In Proc. of the 4th International Joint Conference on Au-
tonomous Agents & Multiagent Systems, pp. 1005–1011,
2005.

[2] CrossFlow/AGFIL. Insurance (motor damage claims) sce-
nario. (Tech. Rep.), CrossFlow Consortium. 1999.

[3] C. L. Dumitrescu, M. Wilde, and I. Foster. A model for
usage policy-based resource allocation in grids. In Proc. 6th
Intern. IEEE Wkshp Policies Distr. Syst. Netw. (POLICY),
pp. 191–200, 2005.

[4] K. C. Feeney, D. Lewis, and V. P. Wade. Policy based
management for Internet communities. In Proc. 5th Intern.
IEEE Wkshp Policies Distr. Syst. Netw. (POLICY), pp. 23–
32, 2004.

[5] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the
Grid: Enabling scalable virtual organizations. International
Journal of Supercomputing Applications, 15(3), 2001.

[6] IETF WG. Terminology for policy-based management. RFC
3198, Nov. 2001.

[7] ISO/IEC 10746, ITU: X.901 - X.904. The Reference Model
of Open Distributed Processing. 1995.

[8] L. Kagal, T. Finin, and A. Joshi. A policy language for a
pervasive computing environment. In Proc. 4th Intern. IEEE
Wkshp Policies Distr. Syst. Netw. (POLICY), pp. 63–74, June
2003.

[9] OASIS. eXtensible access control markup language
(XACML) version 2.0 specification document. OASIS Stan-
dard, Feb. 2005.

[10] M. P. Singh. An ontology for commitments in multiagent
systems: Toward a unification of normative concepts. Arti-
ficial Intelligence & Law, 7:97–113, 1999.

[11] M. P. Singh and M. N. Huhns. Service-Oriented Computing:
Semantics, Processes, Agents. Wiley, 2005.

[12] Y. B. Udupi and M. P. Singh. Contract enactment in vir-
tual organizations: A commitment-based approach. In Proc.
of the 21st National Conference on Artificial Intelligence
(AAAI), 2006.

[13] A. Uszok, J. Bradshaw, R. Jeffers, N. Suri, P. Hayes,
M. Breedy, L. Bunch, M. Johnson, S. Kulkarni, and J. Lott.
KAoS policy and domain services: Toward a description-
logic approach to policy representation, deconfliction, and
enforcement. In Proc. 4th Intern. IEEE Wkshp Policies Distr.
Syst. Netw. (POLICY), pp. 93–96, 2003.

[14] G. Wasson and M. Humphrey. Toward explicit policy man-
agement for virtual organizations. In Proc. 4th Intern. IEEE
Wkshp Policies Distr. Syst. Netw. (POLICY), pp. 173–182,
2003.

[15] R. Yavatkar, D. Pendarakis, and R. Guerin. A framework for
policy-based admission control. IETF WG – RFC 2753, Jan.
2000.

