
Toward Web Services Interaction Styles

E. Michael Maximilien
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120

maxim@us.ibm.com

Munindar P. Singh
North Carolina State University

Department of Computer Science
Raleigh, NC 27695

singh@ncsu.edu

Abstract

Service-Oriented Architectures (SOAs) are fundamen-
tally changing the way in which we conceptualize and de-
sign business applications. An SOA-based application typ-
ically composes various distributed functions, including
some possibly provided by external parties such as inde-
pendent businesses. The key advantage of SOAs is the re-
sulting dynamism, since the composed parts can be read-
ily swapped out in favor of others of like functionality. SOA
environments thus reflect the dynamism of human socioeco-
nomic environments where businesses interact, collaborate,
and expose services to each other in order to jointly create
value. This paper presents a multiagent model for Web ser-
vices and catalogs architectural styles that are key for SOA
applications. It conceptually evaluates the styles by show-
ing the kinds of service usages and the resulting dynamic
interactions that they enable.

1. Introduction

Like real-world services, Web services embody relation-
ships between entities who interact. Each Web service inter-
action involves at least a service provider and a service con-
sumer. These relationships are reflected in the interactions
between the participants. The interactions represent usage
patterns and depend on the kinds of services offered. For
instance, the usage of a service providing stock quotes re-
quires in short-term interactions since the service consumer
has only limited needs from the service—an input symbol
results in a ephemeral stock quote value. At the opposite end
of the longevity spectrum are interactions, such as purchase
processes, which potentially last days (e.g., until goods are
ordered and payments clear).

The above two interactions vary in terms of their dura-
tion. However, interaction styles also vary based on other
criteria, such as how dynamic the intended interactions

are, how cooperative the consumers are, how cooperative
the providers are, and so on. The basic idea is that the
types of interactions mimic business environments where
autonomous parties provide services to each other and may
form collaborative groups. For example, consumers in real-
life settings can share quality ratings of the services and ser-
vice providers that interest them to develop a sense of their
evolving reputation, and thus to decide how much trust to
place in them.

Since Web services represent functionalities exposed by
different providers, they can be naturally characterized as
autonomous, policy-driven agents [13, 16]. Viewing ser-
vices as agents enables us to augment the interaction styles
of Web services as interactions between and among service
provider agents and service consumer agents. These styles
are worth studying because they yield high-level characteri-
zations of interactions, which would help us realize and im-
plement superior SOA applications more effectively.

1.1. Contribution

Our primary contribution is in the creation of a cata-
log of interaction styles between and among consumers
and providers of Web services. By augmenting the repre-
sentation of service providers and consumers with software
agents, we are able to capture a richer set of dynamic and
autonomic interaction styles.

Our catalog forms the initial layout of a pattern lan-
guage to discuss Web services interactions. This is in the
spirit of software pattern languages [11, 15]; however, our
patterns are different. Instead of reusable software compo-
nents implementing a well-known and needed function, our
patterns represent reusable interactions between consumers
and providers of business functions to achieve a higher-
level business solution to a business problem. For instance,
by sharing monitored quality data, service consumer agents
can help each other assess the trustworthiness of service
providers and service implementations.



1.2. Organization

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of the background for our Web ser-
vices agent-based framework. Section 3 gives an extensive
catalog of different interactions styles in Web services, dis-
cussing each along with an abstract diagram. Section 4 gives
a conceptual evaluation of the abstract interaction styles by
giving concrete examples of current (or, sometimes, possi-
ble) usage in real-world applications. Section 5 discusses
the related work in the worlds of Web services, multiagent
systems, and software patterns. Finally, Section 6 presents
some directions for future research.

2. Background

The vision of SOA calls for business functions to be
modeled as Web services so as to enable a multitude of
competitive service providers and implementations for each
function, leading to a marketplace of services. In particu-
lar, a service consumer may interact with many providers
for each service. A consumer may also interact with other
consumers of that service (past and present). In essence, ser-
vice consumers and providers form a virtual ecosystem.

The scale of the service market presupposes automation
in dealing with it. For instance, the process of service dis-
covery can be automated using semantic techniques [17].
To support that goal, overlaying a multiagent architecture
on top of Web services gives us a platform in which to un-
derstand as well as automate Web services interactions.

We introduce a software service agent to each Web ser-
vice used by a service consumer. The service agent exposes
the interface exposed by the underlying service. Moreover,
it exposes an additional agent-specific interface. Since ser-
vice agents appear as Web services, they are easily in-
corporated into an application and minimize agent-specific
changes in the application. We implemented this archi-
tecture as the Web Services Agent Framework (WSAF)
[13]. Likewise, a similar agent can be attached to ser-
vice providers and automate aspects of their interactions
with consumers and with other providers. Service provider
agents could learn about the consumers’ preferences and
provision their service implementations accordingly.

In addition to service consumer and provider agents, our
multiagent architecture enables the creation ofrendezvous
nodes oragenciesthat enable agents to share information.
Examples of agencies are those used for the collection
of quality of service (QoS) data obtained from consumer
agents and shared after service usage.

ServiceConsumer ServiceProviderInteractionsAgencies
Figure 1. IS1: Direct consumer-to-provider in-
teraction style. Consumers typically use ser-
vice registries (at design-time) to discover
and to select a service provider and a service
implementation.

3. Interaction Styles

Using Garlan and Shaw’s definition of architecture
styles [12] as inspiration, we define Web services interac-
tion styles as follows.

Definition 1 (Web Services Interaction Styles)A fam-
ily of interaction patterns reflecting interactions between
and among consumer agents, provider agents, service im-
plementations, and associated agencies intended to accom-
plish a high-level business goal of the service consumer
and service provider. Each style represents specific con-
straints on the interactions of the parties involved.

We begin with a catalog of interactions styles possible
in an SOA and briefly show how our agent-based frame-
work can be used to implement these styles. The styles in-
crementally build on each other by considering additional
constraints and entities in the ecosystem. Section 4 evalu-
ates the styles by describing classes of problems where they
apply naturally.

We distinguish two primary classifications of consumer-
to-provider interaction styles: simple interactions and
agent-mediated interactions. Simple interactions occur di-
rectly between a consumer and a provider. Agent-mediated
interactions use an intermediary agent [18, 7] that facili-
tates some aspects of the interaction. We concern ourselves
primarily with agent-mediated interaction styles since they
enable richer solutions. Table 1 summarizes the interac-
tion styles.

With direct interactions, as depicted in Figure 1, the ser-
vice consumers and service providers interact directly. Typ-
ically, each provider publishes its service interfaces and im-
plementations in well-known registries. The consumer, at
design-time, discovers a service interface, selects an appro-
priate implementation, and creates the necessary local prox-
ies to bind to the service. In general, this interaction style is
passive, since it occurs at design-time and a designer man-
ually carries out the steps of interface discovery and imple-
mentation selection and binding.



No. Style name Agents’ capabilities Description

1 Direct NA Consumers directly interact with providers. At design-time, con-
sumers use common registries to discover, select, and bind service
providers and implementations

2 Consumer agent-
mediated

Binding, selection, QoS
monitoring, improve ser-
vices, and negotiation

Consumers interact with providers using an intermediary agent. The
consumer service agent automates some of the consumer’s design-
time and runtime tasks. Examples include agents used to bid on prod-
ucts on behalf of consumers, e.g., bidding agents on eBay

3 Provider agent-
mediated

Add service functional-
ity, provider collaboration
and negotiation

Providers use intermediary agents to dynamically improve their ser-
vice implementations and to dynamically collaborate with each other
and present functionally richer services to consumers than otherwise
possible

4 Consumer agent-
mediated with re-
ferrals

Binding, selection, QoS
monitoring, improve ser-
vices, and consumer col-
laboration

Consumers interact with providers using an intermediary agent who
in turn can also interact with other peer agents. Using referrals, con-
sumer service agents collaborate to improve their tasks. An example
is consumers collaborating to filter out products and services in on-
line marketplaces, such as Amazon.com zShops’ feedback system

5 Consumer and
provider agent-
mediated

Binding, selection,
QoS monitoring, and
consumer-provider col-
laborations and negotia-
tions

Both consumers and providers use intermediary agents. The con-
sumer and provider service agents can interact directly to negotiate
on behalf of their principals

6 Consumer and
provider agent-
mediated with
referrals

Binding, selection, QoS
monitoring, consumer-
provider collabora-
tions and negotiations,
and consumer-only and
provider-only collab-
orations and negotia-
tions

Both consumers and providers use intermediary agents who can also
both collaborate with other peer agents. Provider service agents can
collaborate to dynamically provide capabilities that otherwise they
would not

Table 1. Summary of Web services consumer-to-provider interaction styles.

The agent-mediated interaction styles use an agent me-
diator to automate some of the design-time tasks performed
by the human designer in the direct interaction case. We dif-
ferentiate three primary types of mediations: consumer-only
mediation, provider-only mediation, and two-sided (con-
sumer and provider) mediations. For each style, we fur-
ther distinguish the case where the mediation is achieved
solo from the case where the meditation is achieved using
a group of other peer agent-mediators—forming a referral
chain.

Figure 2 illustrates the consumer-only mediated interac-
tion style. The consumer uses a service agent to mediate
its interactions with service providers and implementations.
The main mediation tasks performed by the consumer ser-
vice agents include:

• Determining trustworthiness of service provider and
implementation.

• Selecting service implementations.

• Binding service implementations.

The consumer service agents can share knowledge
and opinions about their interactions with selected ser-
vice providers and the providers’ service implementa-
tions. Sharing knowledge and opinions help the commu-
nity of consumer service agents improve their future tasks
[14].

In contrast with the consumer agent-mediated interac-
tion style, we can also place the agent on the provider. Fig-
ure 3 illustrates this case. A key advantage of this approach
is that the provider’s agent can help the provider learn the
consumers’ needs and thereby dynamically improve its ser-
vice implementations.

We augment the consumer-only mediation interaction
style by allowing the consumer service agents to directly
communicate. Figure 4 illustrates this case. By directly



ServiceConsumer ServiceProvider1ServiceProvider2ServiceProvider3Service consumer agent InteractionsAgencies
Figure 2. IS2: Consumer-to-provider interme-
diary service agent interaction style. Con-
sumers use intermediary service agents to
automate some of their design-time and
runtime tasks and decisions. Agents con-
sult agencies and service registries to find
providers and share data.ServiceConsumer ServiceProvider1Service provider agent1 ServiceProvider2Service provider agent2 ServiceProvider3Service provider agent3InteractionsAgencies
Figure 3. IS3: Provider intermediary service
agents. The agents help the providers to dy-
namically improve their services, e.g., use
agents to learn consumer needs to improve
service implementation’s QoS.

keeping a list of other consumer service agents, the agents
create peer groups for collaboration. This approach natu-
rally leads to referrals [19]. Each consumer service agent
can advertise its expertise and offer advice to other con-
sumer service agents. For example, a consumer service
agent that has discovered an excellent service implemen-
tation that consistently satisfies its quality preferences, can
advertise its historical quality usage experiences with that
implementation as well as endorsing the service provider.
Other consumer service agents use the information to make
their service implementation selection decisions. This ap-
proach differs from using collective data for quality repu-

ServiceConsumer1 ServiceProvider1ServiceProvider2ServiceProvider3Service consumer agent1ServiceConsumer2 Service consumer agent2 Referral InteractionsAgencies
Figure 4. IS4: Consumer-to-provider interme-
diary service agent interaction style with re-
ferrals. The consumer service agents keep
a list of other collaborator consumer agents
which it uses to enhance its abilities.

tation calculation, since in this case the historical quality
data being considered is from one consumer with a particu-
lar preference history.

The final kind of agent-mediated interaction style places
intermediaries with both the service consumer and provider.
Figure 5 showcases this interaction style. The addition of
mediating agents on the provider enables dynamic inter-
actions. For instance, the consumer and provider agents
could directly negotiate agreements on quality levels. Elfa-
tatry and Layzell [8] give an overview of negotiating in
service-oriented environments that fits into our approach.
Dynamic price negotiation, using auction mechanisms, is
another possibility. Further, the provider agents could pas-
sively learn the shared quality opinions collected by con-
sumer service agents and dynamically improve their ser-
vice implementations—of course, we are assuming that the
provider agents are allowed read-only access to the shared
opinions.

We can extend consumer and provider service agents
to accommodate referrals as we did for the consumer me-
diation interaction style. An advantage of adding referrals
to provider service agents is to assign implicit trust (or
endorsements) of one provider to another non-competing
provider, perhaps one exposing complementary services.
Also, providers could collaborate to dynamically merge ser-
vices; thereby, offering a combined service that exposes ser-
vice qualities that the service providers would not be able
to achieve individually. The providers would then agree and
negotiate on how to share the revenues from the combined
service.



ServiceConsumer Service consumer agent ServiceProvider1Service provider agent1 ServiceProvider2Service provider agent2 ServiceProvider3Service provider agent3InteractionsAgencies
Figure 5. IS5: Consumer and provider intermediary service agents interaction style. Consumers and
providers use intermediary service agents. The agents interact with each other on behalf of their
principals, e.g., negotiate QoS levels guarantees.

ServiceConsumer1 ServiceProvider2ServiceProvider1ServiceProvider3
ServiceConsumer2
ServiceConsumer3

Service consumer agent2Service consumer agent1Service consumer agent3 Service provider agent1Service provider agent3 ReferralInteractions Agencies Service provider agent2
Figure 6. IS6: Consumer and provider intermediary service agents interaction style with referrals.
The agents keep lists of peer collaborator agents.

Figure 7 summarizes the interaction styles that we pre-
sented showing how they build on each other.

4. Conceptual Evaluation

Architectural concepts such as the interaction styles that
we propose are often not easy to evaluate empirically. The
styles that we propose combine intuitions gleaned from
years of research into distributed software by us and by oth-
ers. It is still instructive to evaluate them, however, if only
to better understand the circumstances in which they are
helpful. The best evaluation for this purpose is by consider-
ing some important usage scenarios where the styles would
help solve some important problems. These problems in-

volve challenges in autonomic computing, creating ecosys-
tem of services, dynamically improving service capabilities,
and improving services with referrals, respectively.

4.1. Autonomic Computing

With the addition of software agents to service-oriented
architectures (Table 1: IS2), we are able to automate var-
ious aspects between the interacting parties. Specifically,
agents enable autonomic interactions for SOA in the fol-
lowing ways:

Service trust. SOA success depends on dynamically estab-
lishing trust between the interacting parties. Consumer



IS1C PA C PA PC PA C PAC PC PAR C C PAR C P
IS2 IS3IS4 IS5IS6P R R

Figure 7. IS1–6: Summary of Web services interaction styles, showing how they build on each other.

service agent mediators yield a general framework to
allow consumers to better determine service trust.

Service selection.The selection occurs at runtime and de-
pends on the service’s trust level, which itself partly
depends on the service’s nonfunctional characteristics.
How can service selection be automated? Our frame-
work provides an initial answer to this question. By at-
taching software agents to the consumers of services,
we are able to automate service selection in a princi-
pled manner. Our approach, therefore, automates the
selection interactions of service consumers to service
providers.

Service binding. Our service agents enable the following
kinds of bindings:

• Late and dynamic binding, in which the service
implementation, after selection, is bound at run-
time. The consumer-to-provider binding is dele-
gated to the service agents.

• Lazy binding, which refers to when the service
implementation is bound at the time of first need.
A lazy interaction allows the consumer to only
bind to the service when it is needed. This inter-
action style can minimize cost of binding, since if
a service is never needed during a particular run it
is never bound. The possible cost reduction is the

key difference, since lazy binding avoids binding
altogether whereas late binding merely delays it.

• Rebinding, wherein using policies our service
agents can capture the conditions necessitating a
rebind. For instance, when an error occurs dur-
ing service usage, the consumer’s policy may be
to rebind. However, after a number of retries, the
consumer’s policy may be to engage in a reselec-
tion, potentially selecting an alternative service
implementation better matching the consumer’s
preferences.

4.2. Monitoring Services

Our service agents are intermediaries between service
consumers and service providers. As such, they can monitor
the usage of services. With the help of shared conceptual-
ization for services and QoS, the agents can capture quality
data and share them via common agencies. In so doing, the
agents enable service consumers to indirectly interact. The
consumers share objective and subjective opinions on their
selected services. This sharing of quality data enables QoS-
based service trust models used by the consumers. Simi-
larly, service agents added to providers (Table 1: IS3 and
IS4) could learn the needs of consumers and how their ser-
vice implementations are performing and, therefore, poten-



tially dynamically improve their service implementations’
qualities.

4.3. Dynamic Service Improvements

The addition of intermediary service agents can enable
dynamic and selective improvements of the service imple-
mentations and consequently the consumer’s interactions
with the implementations. The intermediary agent filters all
service requests and responses and thus can be programmed
to add layers of functionality that the original service did not
initially expose. Examples of dynamic capability improve-
ments of services are:

Security. The agents are programmed to secure the inter-
actions between the consumers and the providers. For
instance, for service implementations not supporting
the WS-Security specification [2] a service agent could
be programmed to interpose itself in the consumer-to-
service interaction and implement the specification on
their behalf.

Transactions. Adding transactions to services is usually
thought of as the responsibility of the provider. How-
ever, what if the selected service does not implement
the necessary transaction protocols but remains the
best alternative of all available services—maybe due
to other highly desirable qualities? In this case, the
service agents could be programmed to layer trans-
actional capabilities to the consumer-to-service inter-
action, e.g., by implementing suitable specifications,
such as WS-AtomicTransaction [5].

Negotiations. With the addition of service agents on both
consumers and providers (Table 1: IS5 and IS6), we
could have the agents engage in dynamic negotiations
to facilitate better matches of their policy needs. This is
in contrast to approaches of passively relying on opin-
ions of past interactions to make service selection deci-
sions. Instead, with negotiations, we would allow con-
sumers and providers to match actively and dynami-
cally.

4.4. Service Referrals

Our multiagent architecture enables richer interactions
among service consumers. For instance, each consumer ser-
vice agent could keep a set of other collaborating consumer
service agents (Table 1: IS4). These collaborator agents
could then communicate directly, sharing their experiences
with each other, and bypassing the common agencies. Such
referral-style interactions could especially be interesting in
the context of agents forming smaller communities of ex-
perts and novices searching for service implementations
meeting certain specific quality criteria [19, 20].

5. Related Work

We divide related work into the following categories:
(1) the pattern literature, in particular, software architecture
patterns and software design patterns; and (2) the multia-
gent systems (MAS) literature and the growing literature on
SOA—particularly works merging these two worlds.

5.1. Patterns

Pattern languages for various aspects of software sys-
tems from requirements, to analysis, to design, and software
management are documented in [3, 10, 4]. Early work by
Garlan and Shaw [12] motivated the architectural aspects
of software but not necessarily in terms of patterns. More
recently, Clements et al. [6] developed a thorough system
of documenting software architectures. While none of these
works specifically discuss interactions for Web services, our
definition of Web services interaction styles is directly in-
spired from Garlan and Shaw’s definition of software ar-
chitecture styles and the pattern systems and languages that
they discuss form the basis of our effort.

Another important related work is Fielding and Taylors
conceptualization of the current Web architecture as Repre-
sentational State Transfer (REST) [9]. REST can be thought
of as a simple architectural style that treats a Web inter-
action as the execution of a (finite) state machine, whose
transitions occur as the participating agents select links. In
essence, REST provides a simple form of session manage-
ment corresponding to the evolution of a shared state. REST
is fundamental and supports our approach. However, our in-
teraction styles layer interesting structures on top of REST
that are geared for different uses involving Web services.

Our approach is founded on the basic idea that Web ser-
vices are dynamic Web resources. Not only do they have a
dynamically changing or temporal characteristic that differ-
entiates them from static resources but in light of SOAs, this
temporal characteristic reflected in evolving ratings can and
should be modeled by providers and consumers alike.

Thus not only does representational state transfer take
place when you interact with a given service, but many
threads of state transfer take place—one for each of the key
functions that we delineated, including modeling their qual-
ities, sharing information about them, and consumer and
provider centric mediation. In effect, our approach captures
the multiple dimensions along with interactions need to be
studied.

5.2. MAS and SOA

The use of multiagent systems and middle agents to fa-
cilitate Web usage is discussed in [18, 7]. While not fo-
cusing specifically on Web services, these works lay the



groundwork for modeling the Web as a system of interact-
ing agents.

More recently, the DAML-S coalition [1] try to describe
a complete ontology for making Web services usable by
software agents. Their ontology is now called OWL-S, the
Web Ontology Language for Services. Early results for dy-
namically discovering services using agents and OWL-S is
presented in [17]. Our previous work [14] tries to comple-
ment the OWL-S efforts by adopting a similar agent archi-
tecture and focusing on nonfunctional aspects of services.

6. Discussion

As SOAs come about, it is becoming clear that the result-
ing ecosystem of service consumers and providers is lead-
ing to the creation of a service marketplace. Understand-
ing the various interactions between service consumers and
providers not only enables us to better understand the dy-
namism of the resulting marketplace, but also yields an un-
derstanding of the higher-level resulting business solutions
that can be created using Web services. Using a multiagent
framework that overlays Web services, we enable the au-
tomation of consumer and provider interactions. To better
grasp the various possible interactions between and among
service consumers and providers, we proposed a classifica-
tion of interactions styles.

Implementing some of the proposed interactions is a
challenge and will necessitate future research, such as into
referrals among collaborating service consumers and nego-
tiations between consumers and providers to dynamically
improve service capabilities. For instance, providers spe-
cializing in security or specific domain capabilities, e.g.,
searching or mining content, can have their agents expose
these functionalities to other service providers and there-
fore allow them to exploit these capabilities and enrich their
own services to satisfy a consumer need. These specialized
services could be advertised to other service provider agents
for that explicit purpose, similar to how in the finance indus-
try there exist credit processing and insurance services that
local banks interact with in order to help them customize
and better offer direct financial services to their customers.

An area for future research is in the creation of a com-
plete pattern language for service interactions. The above
classification is an initial step toward such a language. Such
a language would provide service architects and designers
prebuilt high-level business solution patterns.

7. Acknowledgments

We thank Paul Maglio of IBM’s Almaden Research Cen-
ter and Nirmit Desai of NC State University for useful dis-
cussions, and the anonymous reviewers for their comments.

References

[1] A. Ankolekar et al. DAML-S: Semantic Markup for Web
Services. InProceedings of the International Semantic Web
Working Symposium (SWWS), pages 411–430, July 2001.

[2] B. Atkinson et al. Web Services Security (WS-Security),
Apr. 2002. Specification.

[3] P. Bramble, A. Cockburn, A. Pols, and S. Adolph.Patterns
for Effective Use Cases. Addison-Wesley, 2002.

[4] F. Buschmann et al.Pattern-Oriented Software Architecture,
Volume 1: A System of Patterns. John Wiley & Sons, Read-
ing, MA, 1996.

[5] L. F. Cabrera et al. Web Services Atomic Transaction (WS-
AtomicTransaction), Sept. 2003. Specification.

[6] P. Clements et al. Documenting Software Architectures:
Views and Beyond. Addison-Wesley, Boston, 2003.

[7] K. Decker, K. Sycara, and M. Williamson. Middle-Agents
for the Internet. InProceedings of the 15th International
Joint Conference on Artificial Intelligence, Nagoya, 1997.

[8] A. Elfatatry and P. Layzell. Negotiating in Service-Oriented
Environments.Communications of the ACM, 47(8):103–108,
Aug. 2004.

[9] R. T. Fielding and R. N. Taylor. Principled Design of the
Modern Web Architecture.ACM Transactions on Internet
Technology, 2(2):115–150, May 2002.

[10] M. Fowler. Analysis Patterns: Reusable Object Models.
Addison-Wesley, Boston, 1996.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995.

[12] D. Garlan and M. Shaw. An Introduction to Software Archi-
tecture. Technical Report CMU-CS-94-166, Carnegie Mel-
lon University, Pittsburgh, PA, Jan. 1994.

[13] E. M. Maximilien and M. P. Singh. A Framework and On-
tology for Dynamic Web Services Selection.IEEE Internet
Computing, 8(5):84–93, Sept. 2004.

[14] E. M. Maximilien and M. P. Singh. Toward Autonomic Web
Services Trust and Selection. InProceedings of 2nd Interna-
tional Conference on Service Oriented Computing (ICSOC),
pages 212–221, New York, Nov. 2004. ACM Press.

[15] D. C. Schmidt, R. E. Johnson, and M. Fayad. Software Pat-
terns.Communications of the ACM, 39(10), Oct. 1996.

[16] M. P. Singh and M. N. Huhns.Service-Oriented Computing:
Semantics, Processes, Agents. John Wiley & Sons, Chich-
ester, UK, 2005.

[17] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan.
Automated Discovery, Interaction, and Composition of Se-
mantic Web Services.Journal on Web Semantics, 1(1):27–
46, Sept. 2003.

[18] G. Wiederhold. Mediators in the Architecture of Future
Information Systems.IEEE Computer, 25(3):38–49, Mar.
1992.

[19] P. Yolum. Properties of Referral Networks: Emergence of
Authority and Trust. Ph.D. thesis, North Carolina State Uni-
versity, Raleigh, 2003.

[20] B. Yu. Emergence and Evolution of Agent-based Referral
Networks. Ph.D. thesis, North Carolina State University,
Raleigh, 2001.


