
Agent-Based Service Selection ?

Raghuram M. Sreenath a Munindar P. Singh b;�

aIBM, 3039 Cornwallis Road, Research Triangle Park, NC 27709, USA

bDepartment of Computer Science, North Carolina State University, Raleigh NC

27695, USA

Abstract

The current infrastructure for Web services supports service discovery based on a

common repository. However, the key challenge is not discovery but selection: ulti-
mately, the service user must select one good provider. Whereas service descriptions

are given from the perspective of providers, service selection must take the perspec-

tive of users. In this way, service selection involves pragmatics, which builds on but

is deeper than semantics.

Current approaches provide no support for this challenge. Importantly, service se-

lection di�ers signi�cantly from product selection, which is the problem addressed

by traditional product recommender approaches. The assumptions underlying prod-

uct recommender approaches do not hold for services. For example, a vendor site

knows of all product purchases made at it, whereas a service registry does not know

of the service episodes that may involve services discovered from it. Also, traditional

approaches assume that users are willing to reveal their evaluations to each vendor

site.

This paper formulates the problem of service selection. It reformulates two tradi-

tional recommender approaches for service selection and proposes a new agent-based

approach in which agents cooperate to evaluate service providers. In this approach,

the agents rate each other, and autonomously decide how much to weigh each other's
recommendations. The underlying algorithm with which the agents reason is devel-

oped in the context of a concept lattice, which enables �nding relevant agents.

Since large service selection datasets do not yet exist, for the purposes of eval-

uation, we reformulate the well-known product evaluations dataset MovieLens as

a services dataset. We use it to compare the various approaches. Despite limiting

the ow of information, the proposed approach compares well with the existing

approaches in terms of some accuracy metrics de�ned within.

Key words: service selection, agents, recommendation and rating systems

Preprint submitted to Elsevier Science 20 October 2003

1 Introduction

In traditional closed environments, programmers manually con�gure their soft-
ware systems so that the desired components can be linked in and used. This
task proves quite onerous in large-scale distributed systems, especially when
the components are heterogeneous (of di�ering and largely unknown design
and construction) and autonomous (representing di�erent interests and not
necessarily acting in a trustworthy manner). In general, heterogeneity and
autonomy are the de�ning characteristics of modern open information envi-
ronments.

Web Services The emerging Web services approach partly addresses
the above problem. Software components are modeled as services. Service
providers publish descriptions (such as using the Web Services Description
Language (WSDL) [WSDL, 2002]) of the services that they support to one or
more registries (following the Universal Description Discovery and Integration
(UDDI) registry standard [UDDI, 2002]). A prospective service consumer can
query a registry to obtain information for service implementations that meet
a speci�ed description. This is clearly a great help in the case of a large-scale
system, because it disseminates information about the available components
to those who would wish to use such components in their software systems.
In fact, the programmer is no longer needed in the critical path, because ser-
vices can be found and bound dynamically and automatically by the software
system.

Let's examine how the above Web services approach addresses the problem of
con�guring distributed systems in large-scale open information environments.
First, con�guration involves a decision to select a particular service implemen-
tation. The traditional approach o�ers no support for this decision. However,
we can consider how it would deal with the heterogeneity and autonomy of
the services being bound. The heterogeneity aspect of con�guration is handled
well, because we do not need to know about the internal construction of the
Web services. And, additional semantics can potentially be accommodated
(see below). By contrast, the autonomy aspect of con�guration is not handled
well, because there is no support for expressing whether the autonomous be-
havior of a service is desirable and no means to inuence the con�guration
process.

? This research was supported by the National Science Foundation under grant
ITR-0081742.
� Corresponding author
Email addresses: sreenath@us.ibm.com (Raghuram M. Sreenath),

singh@ncsu.edu (Munindar P. Singh).

2

Semantic Web Services Richer representations of Web services are be-
ing developed. A major class of e�orts is motivated from the Semantic Web
activities [Berners-Lee et al., 2001; Hendler and McGuinness, 2001]. Some
approaches add further structure to service descriptions through the use of
ontologies, e.g., [Trastour et al., 2001]. DAML-S [DAML-S, 2002]) is based
on DAML, the DARPA Agent Markup Language. DAML-S provides an up-
per ontology and core set of markup language constructs for describing the
properties and capabilities of Web services. It enables searching for services
according to their functionality. DAML-S' main contribution is in specifying
the structure of the processes through which services are implemented.

Architecturally, the semantic approaches �t well into the current Web services
approach, because the current strategy of publishing service description to a
repository and matching descriptions are naturally extended to accommodate
semantic descriptions. Besides descriptions, recent research in this area has
considered either matchmaking or sophisticated reasoning, e.g., via planning,
to compose services [McIlraith et al., 2001]. There is clearly much value in
semantic descriptions of Web services, which can enable better matchmaking
than syntactic descriptions alone.

Selection The current Web services architecture as well as the current se-
mantic Web enhancements address the problem of service discovery but not
of service selection. Broadly, discovery deals with �nding service implemen-
tations that meet a speci�ed description; in essence the discovered services
are deemed equivalent in meeting the speci�ed description. In the same vein,
selection deals with choosing a service implementation from among those that
are discovered for the given description. Discovery is a prerequisite for selec-
tion, but it is selection which is the main problem. In fact, being too complete
at discovery can only make selection harder. The better a repository becomes
in terms of the number of service descriptions published to it the worse it
is for selection, because it would produce longer and longer lists of potential
services.

We make a distinction between service description and service selection. In
order to use Web services successfully, both aspects must be addressed. Ser-
vice description is handled by DAML-S and other competing standards such as
UDDI and WSDL. Service selection is what we address in this paper. Thus, the
main aspects of DAML-S (e.g., describing the process models for composed
services) are orthogonal to our present topic. In other words, when several
services match the given criteria of behavior or functionality, we still need
to select the best one. The DAML-S authors acknowledge the importance of
automatic service selection. For this purpose, DAML-S includes various func-
tional attributes, which include some quality of service parameters. However,
the meaning and usage of the functional attributes has not been elaborated

3

yet. It appears from the informal descriptions that values for these attributes
are meant to be supplied by the service providers themselves or by some in-
dustry standardization entities. In general, we would expect such evaluations
to be best supplied by service consumers rather than by providers; if an in-
dustry standard quality measure is available, it too would be based on the
consumers. Maximilien and Singh develop a richer conceptual model for qual-
ity attributes [2002]. The approach proposed here is able to work with any set
of service quality attributes, including when individual attributes of services
are not explicit.

For our present purposes, it is clear that regardless of the conceptual model
of attributes, the selection of services would usually be based on criteria that
are not included in the descriptions posted by the providers. These other,
more context-sensitive, criteria are addressed through the concept lattice used
in the proposed approach. These criteria relate better to a form of meaning
that is pragmatic rather than semantic. Pragmatics can be thought of as a
specialization of semantics [Singh, 2002]. That is, selection is a key aspect of
semantic Web services that existing work has not addressed adequately.

Contributions This paper makes the following main contributions for ser-
vice selection. One, it shows how to formulate the problem of service selection
building on top of the current Web services architecture. Two, it reformu-
lates existing techniques so they can support service selection, and proposes a
new service selection approach based on interactions among agents mediated
through an application of concept lattices. Three, it proposes a methodology
for evaluating service selection techniques. Four, it shows how the methods
considered compare along di�erent metrics.

Organization The rest of this paper is organized as follows. Section 2 in-
troduces service selection in contrast with product selection, discusses current
approaches, and gives technical motivation for our proposed approach. Sec-
tion 3 develops an approach that augments the current Web services architec-
ture with a community-based algorithm to select services. Section 4 describes
our experiments, including how we reformulate two existing approaches for
services and how we map an existing product dataset to evaluate service
selections. Section 5 summarizes our key contributions and conclusions and
discusses some directions for future research.

4

2 Service Selection

In the following, we consider a set of participants who can be service consumers
(when they request a service) and service providers (when they o�er to provide
a service implementation). For simplicity, we assume that each provider o�ers
no more than one implementation for a given service. Now we consider how a
consumer selects one provider.

Service discovery involves mapping a service description to a set of services. In
its basic form, service selection involves mapping a set of services to a service|
this can be thought of as the best service; in a more general form, service
selections maps a set of services to a ranking of the services in that set. At this
abstract level, this problem is the same as product selection, which involves
mapping a set of products (usually implicit in a vendor's catalog) to a product
or a ranking of products. Because of this similarity between all selection tasks,
it is appropriate to compare selection techniques on an even footing, whether
they be intended for products, services, or anything else. Section 2.1 discusses
traditional approaches for selection. However, service selection settings have a
number of properties that distinguish them from traditional product settings.
Consequently, we need to deviate from traditional product selection techniques
as well. Section 2.2 presents further motivation for service selection.

2.1 Traditional Approaches for Selection

It is worthwhile to �rst consider traditional approaches for product or web-site
selection. The traditional approaches of interest include product recommen-
dation, reputation management, peer-to-peer, and referral systems.

2.1.1 Content-Based Filtering

Content-Based Filtering is a static approach for selecting among web-sites
(or other kinds of information, such as news items) [Dumais et al., 1988]. It
involves �ltering web-sites or documents in terms of the keywords that oc-
cur in them. This approach could be applied to services by indexing the text
descriptions of services based on the words that occur in them, possibly allow-
ing boolean search queries on them. However, this would be a step backward
from Web services, which involve formal descriptions and support discovery of
services based on those descriptions. Moreover, it would still not address the
problem of selection.

5

2.1.2 Social Information Filtering

Another major family of approaches is Social Information Filtering, which
refers to the generic technique of making recommendations based on relation-
ships between users and on their subjective judgments. Of these, the most
well-known is Collaborative Filtering (CF) [Breese et al., 1998; Sarwar et al.,
2000]. CF is widely used at established e-commerce sites such as amazon.com.
In CF, users' votes for di�erent products are stored centrally|the votes often
are simply captured as the purchases made by a given user. A user is given
recommendations based on the votes by other users who are similar to the
given user. In simple terms, if Alice and Bob both bought books A, B, C, and
D, they may be deemed similar. Now if Alice also bought book E, a CF system
may recommend that Bob buy book E.

CF works for individual product sites because they know which users pur-
chased what products. However, a service registry that �nds matching services
for a particular request would not know whether a requester went on to use
one of those services and, if so, which one. The distribution of Web services
makes CF inapplicable for service selection.

Nakamura and Abe present generalized learn relationship (GLearn) as an ap-
proach that enables users to combine evidence from other users [1998]. GLearn
is a generalized version of the weighted majority algorithm (WMA). WMA is
a popular online learning approach, which supports combining multiple pre-
dictions [Littlestone and Warmuth, 1994]. Its main idea is to attach weights
to several expert predictors, each of which makes binary (yes/no) predictions
given an instance of the problem. WMA calculates a weighted majority of
these predictions and comes up with an overall binary prediction. If the over-
all prediction is wrong, WMA reduces the weights of all the predictors that
voted incorrectly. WMA can be applied by each user to assign weights to
other users. Nakamura and Abe generalize WMA to accommodate nonbinary
evaluations|we adapt their approach for service selection and compare it to
our approach.

2.1.3 Reputation Systems

Commerce sites such as eBay support a mechanism whereby parties who trans-
act can give numeric scores to each other. The scores are aggregated to yield
a reputation. Reputation systems, e.g., Sporas [Zacharia et al., 1999], come up
with a single score for a service provider. In general, service providers with
higher reputations would be preferred more.

However, a single aggregate score may not be appropriate for all users. This is
because users would have di�erent needs, which may lead them to emphasize
di�erent features of the services. What would matter most for a user are the

6

scores given by users whom the given user has reason to value. Sites such as
eBay are closed. Scores given therein apply to eBay transactions only. Other
sites, such as Epinions [2002], enable users to rate any product or service, but
there are no constraints on the scores|the raters may have never used the
given product or service. Users can decide which of the other users to trust or
block. However, there is no support for �ne-tuning these scores.

More importantly, reputation systems provide a coarse-grained way to dis-
seminate evaluations. Scores given by a user are potentially shown to all,
whereas the scores received by a user by default originate from whoever cared
to publish an evaluation. This contrasts with real life. For example, we would
be reluctant to reveal important evaluations to anyone but our friends or to
entertain scores given by anyone but our friends.

2.1.4 Peer-to-Peer Systems

The problem of a centralized database is overcome by peer-to-peer (P2P) sys-
tems, which are distributed systems with no central authority or management.
Searching for a service provider reduces to querying peers for the kind of ser-
vice required. For example, Gnutella one of the most successful P2P systems
[Kan, 2001], supports sharing �les over the Internet. The system assigns a set
of neighbors to each user. When the user requests a �le, a query is sent out
to all of his neighbors, who in turn may forward the query to their neighbors,
and so on until the requested �le is found.

Search in P2P systems is geared toward discovery rather than selection. In
principle, search can yield multiple services and there is no basis for selecting
any of them. This might be acceptable for some users when they wish to
download a music �le and do not care about the source, but it would matter
in general. A major drawback of this approach is that trust is not associated
with the suggestions given by the peers. For example, no guarantees are made
about the quality of the �les that are found via Gnutella.

2.1.5 Referral Systems

A referral system is a kind of a P2P system where the peers not only provide
services directly, but may also refer requesters to other peers [Singh et al.,
2001]. Each peer is represented by a software agent. These agents maintain a
changing list of neighbors, which are their trusted peers. Whenever a service is
needed, the agent contacts its neighbors. A neighbor may o�er to provide the
service or may give referrals to other peers. The referrals act as endorsements.
The originating agent uses its rating of a peer to decide whether to select it as
a service provider or to follow its referrals. Ultimately, if a suitable service can
be found, the agent has a basis for deciding whether to select it. Importantly,

7

the agent would evaluate the service it ultimately receives. Based on this
evaluation, it would change its evaluation of the selected service provider and
the peers who gave referrals to that provider.

Referral systems can be potentially quite powerful. However, using them would
cause us to deviate from the standard Web services architecture. To maintain
practicality, we would like to introduce agents for service selection in a more
limited manner that is compatible with the existing architecture.

2.2 Motivation for Collaborative Evaluation

User
Product

site
(catalog)

Scores
given by
users to
products

search

score
product

User
recommend

Service
registry

Provider

User

search

User

publish

Provider

publish

use one or more times

score provider

Fig. 1. Product selection (l) and service selection (r)

Figure 1 shows schematics of typical product and service selection. For product
selection, a \use product" link is not shown to reduce clutter and because a
product is not an entity in the architecture. The scores assigned to products
by users may be implicit (often simply capturing whether the user purchased
the given product) and are typically stored by the product site; these scores
could be stored by independent reputation agencies if they are explicit.

Some key similarities between service and product selection were identi�ed at
the beginning of this section. However, service selection is inherently di�erent
from product selection for the following reasons. One, services are distributed.
In particular, a broker or registry does not itself provide any of the services
it lists. That is, the registry helps a service user �nd a provider, but would
not have any control on the actual service invocation and delivery, whereas a
product site would know that a particular product was shipped. Two, once a
service provider has been discovered and selected, a service user could invoke
the provider multiple times. The registry would not even be aware of the repeat
users of a provider. Three, because service episodes are richer and more highly
context sensitive than product usage, central approaches curtail the autonomy
of users to combine scores as they see �t. Even products are distributed, they
would not match with services; rather the analogy would be between services
and product vendors, which can be thought of as services providing products.

8

Because of the above properties, it is potentially important for someone receiv-
ing a recommendation for a service to identify the source of the information.
However, this conicts with privacy: honest scores would generally not be
revealed publicly.

This leads us to our approach where the service consumers �rst use existing
registries to discover the providers that support the interfaces they are inter-
ested in. Next, if possible, the consumers query other consumers to help them
select an appropriate provider. After each service episode, the consumers score
the provider and also rate the other consumers whose recommendations led
to the given provider. This rating of consumers acts a feedback mechanism
which helps the consumer the next time it needs to select a service provider.
We discuss relevant aspects of our approach below.

� Memory-based. Memory-based CF keeps a history of user evaluations, and
makes predictions based on correlation between users' histories [Breese
et al., 1998]. Model-based CF builds a probabilistic model by identify-
ing features that are signi�cant in making a prediction. Our approach is
memory-based, but considers each agent's memory separately.

� Online. O�ine methods consider an entire history of user evaluations to
make predictions for the users. By contrast, online methods treat the pre-
diction process as continual and interactive. It involves a learner that cor-
rects itself after each iteration. Thus there is greater personalization of the
recommendations.

� Scoring services. Explicit voting requires users to provide scores for products
along some scale|typically, a small numeric scale such as 1 to 5. Implicit
voting involves estimating the user's preferences without the user having to
explicitly express his score, by observing patterns such as purchase history,
browsing pattern, and the amount of time spent reading an article. Our
approach is neutral as to how the scores are obtained, but it assumes that
there is an evaluation after the service has been used. Obtaining scores
would depend on the user interface and on application-speci�c details. A
service interaction may give an opportunity to obtain an explicit score. We
do not consider the user interface aspects of evaluation further in this paper.

2.3 Community-Based Online Service Selection

We now formulate community-based online service selection in generic terms.
We model providers and consumers as agents. We refer to the evaluations of
service providers by agents as scores and the evaluations of agents by other
agents as ratings. In the following, we refer to an agent as a user when the
emphasis on an external evaluation such as by a human and as a rater when
the emphasis is on the act of rating.

9

Contact
Registry

Score
Provider

Evaluate
Raters

requirement
list of SP’s Provider

Select
Scores

Predict
Provider
Use

winner

(updated)

Agent Models

correction

Experience

Step 2: Score

Step 3: Rate

Step 1: Select

Fig. 2. Community-based online service selection and evaluation

Consumers query other consumers to estimate the quality of service o�ered
by di�erent providers. A query is a list of providers (e.g., as obtained from
a UDDI registry) that the consumer needs to select among. A reply is the
same list of providers as in the query, but with a score associated with each
provider. The score of a provider indicates its evaluation by scoring agent; a
null score means the replying agent does not know about the given provider.

Based on the rating of the raters, an agent, representing a consumer, makes a
local decision as to which provider to select. Let Rik represent the normalized
weight attached by agent Ni to another agent Nk and let Skj be the score
given by agent Nk to servicer provider j. Then the score given to provider j
by agent Ni can be represented by the following equation, in which N is the
total number of agents:

Sij =
NX
k=1

(Rik � Skj) (1)

Intuitively, each agent may perform a number of tasks. Each task requires the
agent to �nd a provider in a particular category. We refer to the agent that is
trying to �nd a provider as the active agent and the provider that is selected
as the winning provider. Figure 2 summarizes our approach, which consists of
the following main steps.

� Select. Selecting the service provider involves getting a list of service
providers rated by other raters and choosing the winner based on a weighted
average calculation.

� Score. Scoring the selected service during which the provider is engaged and
�nally rated by the active agent.

� Rate. Rating the raters and adjusting the weights that the active agent
associates with them.

The active agent goes through these three steps in every iteration. At the end

10

of each iteration, the active agent evaluates a provider based on its experience
and, based on this evaluation, corrects the ratings that it associates with other
agents in the community. Instead of associating just one rating with an agent,
each agent maintains a list of ratings|one for each service category|for every
other agent.

3 Concept-Based Collaborative Evaluation

We propose a concept-based approach that augments community-based online
service selection as described above.

3.1 Evaluation Cycle

a b c d

N1 0.3 0.5 { {

N2 0.2 0.4 0.1 0.5

N3 { 0.3 0.2 {

Table 1

Agents and the services they have rated

Representation The raters and their scores are stored in a two-dimensional
matrix, with the columns representing the di�erent providers, and the rows
representing the raters. As an example, let N1, N2, and N3 be three agents
who have rated four service providers, a, b, c, and d. Not all providers are
rated by all agents. This situation is shown in Table 1. Each agent uses its
private matrix to perform local computations, such as rating others.

Choosing the Winner As in memory-based collaborative �ltering, to �nd
the winning provider, we consider the deviation from average score measures.
In Equation 2, adapted from [Breese et al., 1998], Saj represents the score
given by Na to provider j. Sa represents the average score given by Na to all
providers and Rai represents Na's rating of provider i. Also, in this equation,
Na 6= i and Rai lies in the real interval (0,1).

Saj = Sa +

P
i

��
Sij � Si

�
� Rai

�
P

iRai

(2)

Finally, the provider that obtains the highest score (Saj) is chosen.

11

Evaluating the Service Provider After using the provider, the user can
give the true score to the provider by identifying the individual features that
are important to him, giving a score to individual features, and �nally �nding
the overall score by calculating the weighted sum of these scores. The partic-
ular method that is followed by an individual to come up with a score is not
revealed. That is, each agent can preserve its privacy about the features it de-
sires. Moreover, the various agents can employ heterogeneous scoring schemes.

3.2 Applying Concept Lattices

An interesting aspect of our approach arises in the representation and algo-
rithm used by an agent to rate the agents from whom it received evaluations of
the providers that it selected. Our representation is based on concept lattices,
as de�ned below [Ganter and Wille, 1999].

De�nition 1 A context is a triple hG;M; Ii where G and M are sets and
I � hG �Mi is a binary relation between G and M . Here G, M , and I are
respectively called the objects, attributes, and incidence of the context.

De�nition 2 For A � G and B � M , if we de�ne: A0 =
fm 2 M j (8g 2 A : gIm)g and B0 = fg 2 G j (8m 2 B : gIm)g. Then hA;Bi
is a concept of hG;M; Ii if and only if A � G, B � M , A0 = B, and B0 = A.
Here A is called the extent and B the intent of the concept. The concept hA;Bi
is nontrivial if A and B are both nonempty. Concepts are naturally ordered
according to set inclusion of their extents.

We model the agents and the service providers as constituting a context. The
agents are the objects and the providers are the attributes of this context.
The context represents a has rated relationship between the agents and the
providers. For example, Table 1 represents a context. Figure 3 shows the con-
cepts (C1 to C5) in this context. Notice that not all possibilities of intents
and extents are concepts in this context. For example, ffN2g,fb, cgg is not a
concept in the above context.

When ordered according to their extents, the concepts in a context form a
lattice, because the meet (greatest lower bound) and join (least upper bound)
of any two concepts is de�ned. Such a lattice is called a concept lattice [Ganter
and Wille, 1999]. Indeed, Figure 3 shows the concept lattice corresponding to
Table 1. Here, the edges indicate that the higher concept subsumes the lower
concept.

There are three main motivations behind using concepts:

(1) Agents seeing similar facets of the world should be evaluated together.

12

C1

C2

C3

C4

C5

ffN1N2N3g,fbgg

ffN2N3g,fb,cgg

f g

ffN2g,fa,b,c,dgg

ffN1N2g,fa,bgg

Fig. 3. Concept lattice constructed from Table 1

For example, there is no point in comparing two agents, A and B, where
A has evaluated providers fa; bg and B has evaluated providers fc; dg.

(2) All agents are potentially learning about providers. If they have seen only
a small number of providers, they should not be penalized or rewarded
unduly.

(3) What we are evaluating is the agents' learning capability, so we treat their
answer space (providers evaluated) as the sample space their learners are
exposed to.

We can apply the principles of concept lattices to analyze the relationships
between agents given the scores they gave to the providers. The concept lattice
representation has the following properties:

(1) The lattice structure helps visualize the score table, which is just a sparse
two dimensional matrix, in a way that is convenient for comparison. This
is because, every concept is a complete submatrix of the sparse matrix.
The lattice structure gives us a way to choose among such complete sub-
matrices (concepts). The higher the concept in a concept lattice, the
greater the number of raters, hence more the number of elements being
compared together. Lower the concept, higher the number of rated ele-
ments (providers), hence stronger the cause for comparison between the
compared elements (raters).

(2) These concept lattices, like the score tables from which they are gen-
erated, are decentralized, i.e., one user does not share his lattice with
another user. Thus the decision of keeping a memory of the concept lat-
tice generated during every iteration, i.e., every time a score table is
generated as a result of querying neighbors for service providers, is left
to the individual user or agent. In our simulations, we destroy the lattice
after every iteration.

(3) The complexity of the above computation over concept lattices is
O (jB (N;P; S) j � jN j2 � jP j), where N is the number of agents, P is
the number of providers, S is the number of scorings, and B (N;P; S)

13

is the set of all concepts so generated. The algorithm is borrowed from
Ganter and Wille [1999].

Evaluating the Raters We associate a con�dence value with every rat-
ing. We decompose the rating that an agent gives to another agent into two
values|the supposed rating, rai, and the con�dence in the rating, qai. We
compute the e�ective rating Rai as follows:

Rai = (rai + 1)qai � 1 (3)

Equation 3, based on a formula given in [Chen and Singh, 2001], has some
desirable properties. Speci�cally, R increases with r and q when the other
variable is �xed; it yields R = 0 when either r or q is 0; it yields R = 1
only when both r and q are 1; and �nally R = r when q equals 1. Also, the
rating, R, grows quicker with q than with r. This is a desirable feature since
the emphasis of rating should be on the con�dence in rating rather than on
the actual value of the rating itself.

Traversing the Concept Lattice In a concept lattice, a parent concept
is a superset of a child concept. That is, higher concepts contain more agents
than lower concepts. Thus the number of agents considered for evaluation is
maximized by choosing concepts that are closer to the root. But, in order to
compare agents (thus evaluate them), we must have a standard of comparison.
This prevents us from choosing arbitrary concepts for evaluation. The concept
containing the active agent and the winning provider is an obvious starting
point, since we can directly compare the scores given by other agents with
scores given by the active agent. We can then proceed to other concepts (to
evaluate other agents) and make indirect evaluations by choosing concepts
in an order that will guarantee that at least one standard of comparison is
present in the concept (e.g., a previously evaluated agent). Algorithm 1 takes
these factors into consideration.

Algorithm 1 Evaluate-Agent()

1: Search concept lattice to �nd a the maximal concept, say C, containing
the winning provider.

2: Evaluate all the raters in C.
3: Let D be a maximal nontrivial concept subsuming C. Evaluate all raters

in D.
4: Traverse the lattice from the top down, visiting nontrivial concepts until

all raters in the context have been evaluated.

Since all the agents would have been reevaluated when Algorithm 1 completes,
it is unnecessary to consider any other concept that has not been handled. For

14

this reason, such concepts are ignored.

Example 1 This example shows how Algorithm 1 executes on the concept
lattice of Figure 3. Suppose that the winning provider was found only in
concept [N2] (e.g., if provider d was the winning provider). Below, we show
how the above algorithm is run on the lattice:

(1) Concept C4 is found via a breadth �rst search to �nd a concept that
contains the winning provider.

(2) Agent N2 is evaluated during the course of handling concept C4.
(3) Concept C5 is the maximal nontrivial concept subsuming concept C4, so

it is handled next. This results in agent N1 being included in the set of
agents that have been evaluated.

(4) Since all the agents have not yet been evaluated (Agent N3 is still left
out), the lattice is traversed top down. This would result in concept C2

being handled and agent N3 being evaluated.

Now all agents have been evaluated and hence the algorithm terminates.

3.3 Rating Raters via Concepts

When agents collaborate to select service providers a potential risk is that
they may have widely di�ering preferences regarding service providers. Thus
a high score by one agent may not correspond to a high score by another.
Therefore, a key aspect of our approach is that agents can rate each other
to e�ectively learn about how much credence to give to each other's scoring
of a provider. Informally, this rating corresponds to the correlation between
the scores given to providers by the various agents. However, there are some
complications, which we must accommodate. One, an agent scores a provider
only if it was chosen as a winning provider: thus the data is initially quite
sparse. Two, the agents may not always have scored the same providers, so
we need to propagate their ratings through concepts.

The important step during evaluating raters is the way in which concepts are
handled. The end result is that the rating (r) and con�dence (q) of the agents
that are present in the concept are altered to better represent the real world.

P1 P2 P3 rt�1 qt�1 rt qt

N1 x1 y1 z1 r1 q1 ? ?

N2 x2 y2 z2 r2 q2 ? ?

Table 2

Handling concepts

15

Table 2 shows the scenario for a concept with two raters (N1, N2) and three
rated services (P1, P2, and P3). Further, in order to facilitate the calcula-
tion of rt and qt, we could divide this into three subscenarios as described
in the following subsections. Recall that the active agent refers to the agent
under consideration (who is seeking a service provider). And, winning service
provider refers to the service provider that is �nally selected from among a
previously discovered list of providers.

3.3.1 Scenario 1: Early Stages

During the �rst few iterations, the active agent would not have rated enough
service providers to have a row-wise comparison with other users. The scenario
is depicted below:

P1 P2 P3 rt�1 qt�1 rt qt

N1 x1 y1 z1 r1 q1 ? ?

N2 x2 y2 z2 r2 q2 ? ?

active-user x3 { { { { { {

In this scenario, we have a concept that contains a service provider (1) that
has been evaluated by the active user.

Updating the Ratings The new rating (rt) depends on the following:

(1) The current rating (rt�1).
(2) The absolute di�erence between the scores given to the service provider

that has been evaluated by the rater and the active user.

d = jskj � sajj (4)

We use the following equation to rate agents in this scenario:

rt = rt�1 + �

�t

1 + d

!
(5)

In Equation 5, � is 1 if d is less than a threshold, or else, it is �1. The damping
factor �t is de�ned below.

Normalizing The di�erence d in Equation 5 is normalized to be in the
real interval (0; 1). In order to prevent agent ratings from growing very large,

16

we normalize the rating such that
P
rt�1 =

P
rt. This could serve as a minor

incentive for the agents to reply to queries, since the only way they can increase
their rating is by competing with others (they cannot just wait for others'
ratings to go down).

Damping We introduce the damping factor, �t, in Equation 5 in order to
damp the increase and decrease of the rating. This damping factor should
reduce the incremental value (1= (1 + d) in Equation 5) at the extremities, i.e.,
the reduction of an already low rating, and the increase of an already high
rating should be low. We use Equation 6, in which � is a positive constant
and r0t�1 is the minimum of rt�1 and (1:0� rt�1).

�t = �r0t�1 (6)

3.3.2 Scenario 2: Later Stages

This scenario is same as in Section 3.3.1 except that the active agent has now
rated enough service providers to be able to make a row-wise comparison with
other agents. The considerations for this scenario is same as for the previous
one, except that the vector similarity between the active user and the other
user replaces the additive factor in Equation 5.

Below, we represents the set of agents in the community, and J represents the
set of providers. Breese et al. compare several algorithms to calculate the cor-
relation between vectors [1998]. Pearson's r-correlation with some extensions
performs well. Accordingly, user i's rating of another user k is given by:

rik =

P
j (sij � si) (skj � sk)qP

j (sij � si)
2P

j (skj � sk)
2

(7)

Here fj 2 Jg is the set of all service providers, sij refers to the score that user
i has given to the provider j, and si refers to the average score given by user
i. Note that rik is positive or negative depending on the degree of correlation.
The ratings are normalized as in Scenario 1.

3.3.3 Scenario 3: Propagating Evaluations Through Concept Chains

An agent Z that is considered for evaluation satis�es at least one of the fol-
lowing conditions:

(1) Z is in a concept that contains the winning provider in its intent.

17

(2) Z is in a concept that has agents that have been evaluated by virtue of
satisfying condition 1.

(3) Z is in a concept that has agents that have been evaluated by virtue of
satisfying conditions 1 or 2 above. (Note that this is the generic case of
condition 2.)

(4) Z is in a lonely concept that cannot be reached through any of the above
ways. Such concepts are not handled (i.e., the agents belonging to such
concepts are not evaluated).

0

1 2 3

[N2,N3][N1,N2] [N3,N4]

[N1,N2,N3,N4]

1 N2 N32 3

Fig. 4. Propagating ratings: lattice fragment (l) and propagation chain (r)

In order to facilitate indirect evaluation of raters (to �nd friends of friends), we
need a mechanism for propagating ratings and con�dence through concepts.
Consider the concept lattice fragment in Figure 4(l). In this lattice, if concept 1
contained the active agent, N1 (making a direct evaluation of the agents in this
concept possible), then the ratings (and con�dence) would have to propagate
to concept 2 through N2, and to concept 3 through N3, via concept 2. The
propagation graph is shown in Figure 4(r).

P1 P2 P3 rt�1 qt�1 rt qt

N1 x1 y1 z1 r1 q1 ? ?

N2 x2 y2 z2 r2 q2 ? ?

N3 x3 y3 z2 r3 q3 r03 q03

If Z satis�es condition 3 and not conditions 1 and 2, we have a scenario in
which the concept being handled has at least one rater that has already been
evaluated, perhaps in a previously handled concept. We have to somehow �nd
a way of propagating this new rating and con�dence to the other agents in this
concept. One such scenario, with the propagating agent being N3, is shown in
the table above.

Updating the Ratings Ideally the rating, r, given to an agent is a vector
with the attributes for rating representing the dimensions of this vector. Thus
a new rating, rt, in an indirect evaluation, depends on the following:

18

(1) The current rating (rt�1).
(2) The vector distance of the rater's rating and the linking rater's rating

(d2).
(3) The vector distance between the active agent and linking agent (d1).
(4) The distance between the previous and current rating of the linking rater

(l).

A graphical representation of the situation is shown in Figure 5.

d1

d2d1 + d2

t t+1

TimeAttribute−1

active−agent preference

linking−agent
preference

evaluated−agent’s
preference

− linking−agent rating
− evaluated−agent rating

R
a

ti
n

g

A
tt

ri
b

u
te

−
2

l

?

Fig. 5. Method for propagating ratings through concepts

Since we use a scalar value to represent ratings, the distance between ratings
is also a scalar. So, we use Equation 8 as an approximation to the ideal case, in
order to calculate the new rating rt�1. Here, �t is the damping factor calculated
as in Equation 6.

rt = rt�1 + �t

d1 + d2

d1

!
l (8)

3.3.4 Updating the Con�dence

We use a generic formula to update the con�dence in rating (q in Equation 3)
in all the scenarios discussed in Section 3.3. In general, the con�dence in rating
must go up after every evaluation of the agent, irrespective of whether or not
the rating of the agent itself was increased. The case when con�dence goes
down (e.g., when an agent behaves erratically) could be a possibility in a
real-life scenario. We defer exploring this topic to future work.

The requirement for the value of con�dence is summarized below:

(1) The value of con�dence is kept in the real interval (0,1).
(2) Con�dence is initialized to a low value and is incremented every time

there is an opportunity to evaluate the agent.

19

(3) The amount by which the con�dence is increased during every iteration
depends on the degree of indirection while evaluating the agent's rating,
i.e., the increment decreases with the propagation length of the ratings.
For example, in Figure 4, the amount by which the con�dence in the
rating of N4 is increased should be less than the amount by which the
con�dence in the rating of N3 is increased, which in turn should be less
than the amount by which the con�dence in the rating of N2 is increased.

With this motivation, the following equation is used. Here, � is a positive
scaling constant and Æ is a damping factor. The damping factor is set to the
reciprocal of the sum of the con�dences associated with every category of the
agent being evaluated, i.e., Æ = 1=

P
c qtc.

qt = ��

qt�1 +

Æ

(l + 1)

!
(9)

4 Experimental Validation

During our experiments, we iterate through a list of tasks, each of which speci-
�es an active agent and a service category. The tasks are randomly chosen, but
legal. Multiple active agents make predictions for providers in multiple cate-
gories. For each task, the agent attempts to select a service provider matching
the given category. If it does, it selects a winning provider along with a pre-
dicted score for it|the predicted rank for the winning provider is 1 (that's
why it wins). Next, the score given by the user to this service provider is re-
vealed and used to assign the actual score for this provider and to update the
ratings given by the active agent to other agents.

Each agent maintains an observation matrix, which captures the scores that it
knows of that were given by consumers to various providers. As the experiment
proceeds, this matrix would grow in both dimensions. At any given time, the
observation matrix is subsumed by the truth matrix, which represents all the
ratings available through the dataset being used. Our experiments ensure that
the information about users and the scores they give to various providers is
not shared except to the extent allowed by the above algorithm.

4.1 Datasets for Service Selection

No extensive real datasets of scorings of open services are available. There-
fore, we consider two means of constructing datasets to evaluate service selec-
tion approaches. First, we develop an arti�cial dataset, which includes users

20

Service
types

User pref

User Info
Provider

Info
Provider

disposition

Attributes

*

* *

*

*

1

*

*

* *

1 1

users have preferences

preferences are based on attributes

Scores

User Info

Service
Types

Provider
Info

*

1

*

1

*

*

User scores providers

provider gets scores

multiple providers could be of multiple types

Fig. 6. Conceptual schemas for our arti�cial dataset (l) and MovieLens (r)

along with their associated feature preferences (what they need), and service
providers along with their associated feature values (what they provide). Fig-
ure 6(l) provides a conceptual schema for this dataset. This is a simpli�ed
version of the conceptual model proposed in [Maximilien and Singh, 2002].
Based on these preferences and feature values, the scores given by users to
service providers can be programmatically calculated. This is no more than a
convenience for the simulation|in real-life, the users would know their scores.
In practice, the attributes would be supplied and services would be appropri-
ately marked up through a semantic Web service approach. This is heartening,
because as semantic Web services become prevalent, they will be able to facili-
tate selection based on how agents rate other agents, not just through �ltering
by a repository for the given description.

The arti�cial dataset shows how to exploit the semantics of service markups.
However, because the arti�cial dataset avoids the vagaries of scoring service
providers, we also consider another dataset which involves scores supplied by
real users. This dataset is an adaptation of the well-known MovieLens dataset
[MovieLens, 2002]. MovieLens contains 100,000 scores assigned to 1,682 movies
by 943 users. The scores are in the range 0 to 5. Figure 6(r) describes Movie-
Lens' simple conceptual schema, which including users, movies, and scores.
It is naturally a product database where the movies are the products. How-
ever, we interpret movie genres as service categories and individual movies are
implementations of their genre. The scores provided by the users to various
movies are used in our reasoning. Besides the genre, attributes of movies are
not used. This demonstrates that the proposed approach can work even when
there is little or no semantic markup.

Thus, an experiment might ask agent N1 to select a service (movie) of the
category (genre) action. N1 may �nally come up with Rambo along with a
predicted score|to be selected, Rambo would have the highest score predicted
by N1. Now, using the dataset, we would determine the true score and ranking
of Rambo as well as the score of the actual best movie for N1. This would

21

enable us to measure N1's accuracy.

Further, to ensure that the plots we obtained were not arbitrary, we partitioned
MovieLens into three independent datasets. The reported results were stable
across these three datasets.

4.2 Previous Algorithms Adapted for Service Selection

Our approach is compared with two previous approaches adapted for service
selection. These approaches can predict a winning provider and evaluate the
raters, thus providing alternative means of carrying out the functionality de-
picted by the �rst and the last blocks of Figure 2.

Correlation In this approach, an agent's rating of another agent is based on
the Pearson correlation between the score of the two users (Equation 7). While
making a prediction, a weighted average of the scores given by the agents
(weighted by their correlation with the active agent) is computed for each
competing service provider. The provider with the highest score is declared as
the winner.

Here, all the scores given by the two users until now are considered. By con-
trast, in our approach, correlation is used only to �nd the similarity in scores
given by two users in the current iteration.

Generalized Learn Relationship (GLearn) GLearn is a generalized ver-
sion of the weighted majority algorithm (described in Section 2.1), where in-
stead of just a binary vote, users vote for all values within a permitted tolerance
of their true value [Nakamura and Abe, 1998]. Speci�cally, let A denote the
range of values in the truth matrix M . Also, for any a 2 A, let V (a) denote
the set of prediction values that are permissible when the correct value is a.
Then, a prediction is made as follows:

M̂ij =

8>>><
>>>:
argmax

a2A

X
k:Okj2V (a)

wik if (fk : Okj 6= �g 6= �)

C0(a constant) otherwise

(10)

22

After obtaining the true value (the second step in the three-step approach
described in Section 3.1), the weights are updated as follows:

wik =

8><
>:
(2�)wik if Okj 2 V (Mij)

wik if Okj =2 V (Mij)
(11)

4.3 Results

We present some technical results comparing the above two approaches Cor-
relation and GLearn with Concept (our approach).

4.3.1 Learning Curve

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20

A
bs

ol
ut

e
E

rr
or

Time

Concept
Correlation

GLearn

Fig. 7. Comparison of learning curves, i.e., the time taken to reach steady state

We consider the time taken to reach the steady state, after which prediction ac-
curacy remains almost constant. Initially, the agents associate a default rating
(which depends on the speci�c approach) with each other. Since inconsistent
scorings can confound the results on the quality of the algorithm, we use the
arti�cial dataset for this experiment. Figure 7 shows that Concept converges
slightly faster to the steady state than the other two approaches. And, for the
same dataset, the absolute error made in Concept is lower than the error in
the other two approaches.

4.3.2 Steady State Accuracy

We compare the accuracy of the three approaches in their steady state by
recording the errors made during predictions (Figure 8). Here all active agents

23

0

10

20

30

40

50

60

70

-4 -2 0 2 4

N
um

be
r

O
f E

rr
or

s

Error Value

Correlation

0

10

20

30

40

50

60

70

-4 -2 0 2 4

N
um

be
r

O
f E

rr
or

s

Error Value

G-Learn

0

10

20

30

40

50

60

70

-4 -2 0 2 4

N
um

be
r

O
f E

rr
or

s

Error Value

Concept

Fig. 8. Steady state accuracy test for MovieLens

are initialized with 30% of the truth matrix. From Figure 8 we see that Cor-
relation and Concept yield similar error distributions and have slightly more
perfect predictions (shown as an error of zero) than GLearn. More importantly,
Correlation and Concept yield few predictions with a large error margin (> 2),
whereas GLearn makes several such predictions.

4.3.3 Average absolute error comparison

We log the predicted score for the winning provider and compute the absolute
error in prediction based on its actual score. We measure the average absolute
error values of the predictors, after initializing them with a set of tasks. If N
denotes the number of tasks to be completed, we initialize the predictors with a
certain percent of these tasks, say X, and then measure average absolute error
values for the remaining (100�X) percent of the tasks. The performance of the
three predictors in this measurement is shown in Figure 9. N was chosen to be
500 in our experiments. The errors trend downwards with Concept performing
slightly better than the others at most points.

4.3.4 Ordinal Error

The steady state accuracy test records the error of prediction irrespective of
the quality of prediction. That is, we measure the error in the rank of the

24

0.6

0.8

1

1.2

1.4

1.6

0 25 50 75

Av
er

ag
e

ab
so

lu
te

 p
re

di
ct

io
n

er
ro

r

Initialization (percentage)

Without Initialization

Concept Correlation GLearn

Fig. 9. Variation of absolute error with initialization for MovieLens

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20

N
um

be
r

of
 p

re
di

ct
io

ns

Ordinal Error

Correlation

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20

N
um

be
r

of
 p

re
di

ct
io

ns

Ordinal Error

G-Learn

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20

N
um

be
r

of
 p

re
di

ct
io

ns

Ordinal Error

Concept

Fig. 10. Ordinal error test for MovieLens

winning provider, which is predicted to have a rank of 1. Therefore, we de�ne
the ordinal error as the true rank of the winning provider among the providers
considered in the current iteration. The true rank is obtained from the truth
matrix.

The experimental setup is the same as for steady state accuracy. Figure 10

25

shows plots of the ordinal errors made in the three approaches. GLearn yields
fewer total errors than Concept, which in turn is better than Correlation.
However, the mean ordinal errors for Concept, GLearn, and Correlation are
3.4, 3.6, and 3.7, respectively. That is, Concept and GLearn perform well in
this test.

4.3.5 Spearman's Correlation

We extend the previous experiment and calculate the overall accuracy of order-
ing of the service providers by the various predictors. We calculate Spearman's
correlation (Equation 12) between the predicted order of the providers and the
actual order computed from the truth matrix. Spearman's correlation of two
lists (C and D in Equation 12) is a value between �1 (opposite order) and 1
(same order).

c = 1�
6
P
(Ci �Di)

2

n (n2 � 1)
(12)

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0 25 50 75

Av
g

Sp
ea

rm
an

’s
Co

rre
la

tio
n

Initialization (percentage)

Concept Correlation GLearn

Fig. 11. Calculation of average Spearman's correlation for MovieLens after varying

initializations

We carried out experiments to calculate average value of Spearman's correla-
tion of predictions for each predictor after initializing them with tasks. The
results are summarized in Figure 11. Again N , the total number of tasks,
was chosen to be 500. The trend is upwards with Concept producing a higher
Spearman correlation with increasing initialization.

26

5 Discussion

We now summarize our contributions and discuss some important directions
for further research.

5.1 Conclusions

As Web services become established, semantic approaches for modeling and
deploying them are emerging. In particular, the problem of service selection
is beginning to attract attention from researchers. We develop an approach
that enables agents to collaborate to help each other select the best services.
The approach can work with rich service quality attributes where they are
available but can also work where the agents merely interact with one other
and empirically determine how much to rate each other's evaluations of service
providers.

Services di�er from products signi�cantly in terms of how they are discovered,
selected, delivered, and evaluated. In particular, services call for a distributed
approach that preserves the autonomy of the various parties. Our approach
takes these special properties of services into account to yield a credible means
for service consumers to share information to help each other make re�ned
selections. Community-based approaches face the challenge of bootstrapping
new users. Our approach accommodates new users by beginning to make pre-
dictions with little data and then revising the scores and ratings through
experience.

Our approach for selecting service providers borrows interesting elements
from conventional approaches. Like collaborative �ltering, it uses correlations
though not centrally; like reputation systems, it records ratings though not
centrally; like P2P systems, it includes neighbors that an agent contacts; like
referral systems, it employs ratings that an agent revises through experience
along the lines of the weighted majority algorithm. In addition, it introduces
a novel way for comparing raters borrowing concepts from lattice theory.

5.2 Directions

Ideally, a service consumer may select a provider based on a combination of
features and the quality of service provided. In principle, a score could be
computed based on the weights attached to the various features. But a con-
sumer may know neither the features nor the weights associated with them. By
contrast, in a community-based approach, consumers can share their scorings

27

of providers. However, each consumer must be able to rate those who have
scored the providers. Our approach can be extended to accommodate deeper
representations of the conceptual models of attributes used for ratings and
reputations as well as means to dynamically discover attributes using which
ratings of services can be compared and desirable services found [Maximilien
and Singh, 2002].

In our approach, the con�dence attached to a rating goes up after every eval-
uation of the agent, irrespective of whether or not the rating itself is going up.
But in real life the con�dence could decrease due to ambiguity of evaluation
or erratic behavior. However, we have not explored this direction since we do
not consider the case of varying interests of raters. A probabilistic approach
for trust, e.g., [Barber and Kim, 2001; Yu and Singh, 2002], could be applied
in this case.

Another class of e�orts is motivated from structuring and composing services.
The Business Process Execution Language (BPEL) describes compositions of
services as workows [BPEL, 2002]. McIlraith et al. apply planning techniques
to compose services [2001]. It would be interesting to relate the selection of
services to the workows or plans in which they are intended to be embedded.

References

Barber, K. S., Kim, J., 2001. Belief revision process based on trust: Agents
evaluating reputation of information sources. In: Falcone, R., Singh, M. P.,
Tan, Y.-H. (Eds.), Trust in Cyber-societies. Vol. 2246 of LNAI. Springer-
Verlag, pp. 73{82.

Berners-Lee, T., Hendler, J., Lassila, O., 2001. The semantic Web. Scienti�c
American 284 (5), 34{43.

BPEL, Jul. 2002. Business process execution language for web services, version
1.0. Www-106.ibm.com/developerworks/webservices/library/ws-bpel.

Breese, J. S., Heckerman, D., Kadie, C., 1998. Empirical analysis of predictive
algorithms for collaborative �ltering. In: Proceedings of the 14th Annual
Conference on Uncertainty in Arti�cial Intelligence. pp. 43{52.

Chen, M., Singh, J. P., 2001. Computing and using reputations for Internet
ratings. In: Proceedings of the 3rd ACM Conference on Electronic Com-
merce. ACM Press, pp. 154{162.

DAML-S, Jul. 2002. DAML-S: Web service description for the semantic Web.
In: Proceedings of the 1st International Semantic Web Conference (ISWC).
Authored by the DAML Services Coalition, which consists of (alphabeti-
cally) Anupriya Ankolenkar, Mark Burstein, Jerry R. Hobbs, Ora Lassila,
David L. Martin, Drew McDermott, Sheila A. McIlraith, Srini Narayanan,
Massimo Paolucci, Terry R. Payne and Katia Sycara.

Dumais, S. T., Furnas, G. W., Landauer, T. K., Deerwester, S., Harshman,

28

R., 1988. Using latent semantic analysis to improve access to textual infor-
mation. In: Proceedings of the ACM SIGCHI Conference on Human Factors
in Computing Systems. ACM Press, pp. 281{285.

Epinions, 2002. Home page. Http://www.epinions.com.
Ganter, B., Wille, R., 1999. Formal Concept Analysis. Springer, Berlin.
Hendler, J., McGuinness, D. L., 2001. DARPA agent markup language. IEEE
Intelligent Systems 15 (6), 72{73.

Kan, G., 2001. Gnutella. In: Oram [2001]. Ch. 8, pp. 94{122.
Littlestone, N., Warmuth, M. K., 1994. The weighted majority algorithm.
Information and Computation 108 (2), 212{261.

Maximilien, E. M., Singh, M. P., Dec. 2002. Conceptual model of Web service
reputation. ACM SIGMOD Record 31 (4).

McIlraith, S. A., Son, T. C., Zeng, H., Mar. 2001. Semantic Web services.
IEEE Intelligent Systems 16 (2), 46{53.

MovieLens, 2002. Home page. Http://movielens.umn.edu.
Nakamura, A., Abe, N., 1998. Collaborative �ltering using weighted majority
prediction algorithms. In: Proceedings of the 15th International Conference
on Machine Learning. Morgan Kaufman, pp. 395{403.

Oram, A. (Ed.), 2001. Peer-to-Peer: Harnessing the Bene�ts of a Disruptive
Technology. O'Reilly & Associates, Sebastopol, CA.

Sarwar, B. M., Karypis, G., Konstan, J. A., Riedl, J., 2000. Analysis of recom-
mendation algorithms for e-commerce. In: ACM Conference on Electronic
Commerce. pp. 158{167.

Singh, M. P., Jun. 2002. The pragmatic Web. IEEE Internet Computing 6 (3),
4{5, instance of the column Being Interactive.

Singh, M. P., Yu, B., Venkatraman, M., Apr. 2001. Community-based service
location. Communications of the ACM 44 (4), 49{54.

Trastour, D., Bartolini, C., Gonzalez-Castillo, J., Jul. 2001. A semantic Web
approach to service description for matchmaking of services. In: Proceedings
of the International Semantic Web Working Symposium (SWWS).

UDDI, 2002. Universal Description Discovery and Integration.
Http://www.uddi.org.

WSDL, 2002. Web Services Description Language.
Http://www.w3.org/TR/wsdl.

Yu, B., Singh, M. P., Nov. 2002. Distributed reputation management for elec-
tronic commerce. Computational Intelligence 18 (4), 535{549.

Zacharia, G., Moukas, A., Maes, P., 1999. Collaborative reputation mecha-
nisms in electronic marketplaces. In: Proceedings of the 32nd Hawaii Inter-
national Conference on System Sciences Minitrack on Electronic Commerce
Technology.

29

