Verifying Compliance with Commitment Protocols
Enabling Open Web-Based Multiagent Systems

Mahadevan Venkatraman and Munindar P. Singh
Department of Computer Science, North Carolina State University, Raleigh, NC 27695, USA

Abstract. Interaction protocols are specific, often standard, constraints on the behaviors of
autonomous agents in a multiagent system. Protocols are essential to the functioning of open
systems, such as those that arise in most interesting web applications. A variety of common
protocols in negotiation and electronic commerce are best treated as commitment protocols,
which are defined, or at least analyzed, in terms of the creation, satisfaction, or manipulation
of the commitments among the participating agents.

When protocols are employed in open environments, such as the Internet, they must be
executed by agents that behave more or less autonomously and whose internal designs are
not known. In such settings, therefore, there is a risk that the participating agents may fail to
comply with the given protocol. Without a rigorous means to verify compliance, the very idea
of protocols for interoperation is subverted. We develop an approach for testing whether the
behavior of an agent complies with a commitment protocol. Our approach requires the speci-
fication of commitment protocols in temporal logic, and involves a novel way of synthesizing
and applying ideas from distributed computing and logics of program.

Key words: Commitments; Protocols; Causality; Temporal logic; Formal methods

1. Introduction

Interaction among agents is the distinguishing property of multiagent sys-
tems. However, ensuring that only the desirable interactions occur is one of
the most challenging aspects of multiagent system analysis and design. This
is especially so when the given multiagent system is meant to be used as an
open system, for example, in web-based applications.

Because of its ubiquity and ease of use, the web is rapidly becoming the
platform of choice for a number of important applications, such as trading,
supply-chain management, and in general electronic commerce. However, the
web can enforce few constraints on the agents’ behavior. Current approaches
to security on the web emphasize how the different parties to a transaction
may be authenticated or how their data may be encrypted to prevent unau-
thorized access. Even with authentication and controlled access, the parties
would have support beyond conventional protocol techniques (such as finite
state machine models) neither to specify the desired interactions nor to detect
any violation. However, authentication and access control are conceptually
orthogonal to ensuring that the parties behave and interact correctly. Even
when the parties are authenticated, they may act undesirably through error or

2 Venkatraman & Singh

malice. Conversely, the parties involved may resist going through authentica-
tion, but may be willing to be governed by the applicable constraints.

The web provides an excellent infrastructure through which agents can
communicate with one another. But the above problems are exacerbated when
agents are employed in the web. In contrast with traditional programs and in-
terfaces, neither their behaviors and interactions nor their construction is fixed
or under the control of a single authority. In general, in an open system, the
member agents are contributed by several sources and serve different inter-
ests. Thus, these agents must be treated as

— autonomous—with few constraints on behavior, reflecting the indepen-
dence of their users, and

— heterogeneous—with few constraints on construction, reflecting the in-
dependence of their designers.

Effectively, the multiagent system is specified as a kind of standard that its
member agents must respect. In other words, the multiagent system can be
thought of as specifying a protocol that governs how its member agents must
act. For our purposes, the standard may be de jure as created by a standards
body, or de facto as may emerge from practice or even because of the arbitrary
decisions of a major vendor or user organization. All that matters for us is that
a standard imposes some restrictions on the agents. Consider the fish-market
protocol as an example of such a standard protocol [14].

Example 1. In the fish-market protocol, we are given agents of two roles: a
single auctioneer and one or more potential bidders. The fish-market protocol
is designed to sell fish. The seller or auctioneer announces the availability of
a bucket of fish at a certain price. The bidders gathered around the auctioneer
can scream back Yes if they are interested and No if they are not; they may
also stay quiet, which is interpreted as a lack of interest or No. If exactly one
bidder says Yes, the auctioneer will sell him the fish; if no one says Yes, the
auctioneer lowers the price; if more than one bidder says Yes, the auctioneer
raises the price. In either case, if the price changes, the auctioneer announces
the revised price and the process iterates. I

Because of its relationship to protocols in electronic commerce and because it
is more general than the popular English and Dutch auctions, the fish-market
protocol has become an important one in the recent multiagent systems liter-
ature. Accordingly, we use it as our main example in this paper.

Because of the autonomy and heterogeneity requirements of open sys-
tems, compliance testing can be based neither on the internal designs of the
agents nor on concepts such as beliefs, desires, and intentions that map to in-
ternal representations [16]. The only way in which compliance can be tested

aamas.tex; 20/02/1999; 16:40; no v.; p.2

Compliance with Commitment Protocols 3

is based on the behavior of the participating agents. The testing may be per-
formed by a central authority or by any of the participating agents. However,
the requirements for behavior in multiagent systems can be quite subtle. Thus,
along with languages for specifying such requirements, we need correspond-
ing techniques to test compliance.

1.1. COMMITMENTS IN AN OPEN ARCHITECTURE

There are three levels of architectural concern in a multiagent system. One
deals with individual agents; another deals with the systemic aspects of how
different services and brokers are arranged. Both of these have received much
attention in the literature. In the middle is the multiagent execution architec-
ture, which has not been as intensively studied within the community. An ex-
ecution architecture must ultimately be based on distributed computing ideas
albeit with an open flavor, e.g., [1, 5, 11]. A well-defined execution function-
ality can be given a principled design, and thus facilitate the construction of
robust and reusable systems. Some recent work within multiagent systems,
e.g., Ciancarini et al. [8, 9] and Singh [18], has begun to address this level.

Much of the work on this broad theme, however, focuses primarily on co-
ordination, which we think of as the lowest level of interaction. Coordination
deals with how autonomous agents may align their activities in terms of what
they do and when they do it. However, there is more to interaction in gen-
eral, and compliance in particular. Specifically, interaction must include some
consideration of the commitments that the agents enter into with each other.
The commitments of the agents are not only base-level commitments dealing
with what actions they must or must not perform, but also metacommitments
dealing with how they will adjust their base-level commitments [20]. Com-
mitments provide a layer of coherence to the agents’ interactions with each
other. They are especially important in environments where we need to model
any kind of contractual relationships among the agents.

Such environments are crucial wherever open multiagent systems must be
composed on the fly, e.g., in electronic commerce of various kinds on the
Internet. The addition of commitments as an explicit first-class object results
in considerable flexibility of how the protocols can be realized in changing
situations. We term such augmented protocols commitment protocols.

Example 2. We informally describe the protocol of Example 1 in terms of
commitments. When a bidder says Yes, he commits to buying the bucket of
fish at the advertised price. When the auctioneer advertises a price, he com-
mits that he will sell fish at that price if he gets a unique Yes. Neither com-
mitment is irrevocable. For example, if the fish are spoiled, the auctioneer
releases the bidder from paying for them. Specifying all possibilities in terms
of irrevocable commitments would complicate each commitment, but would
still fail to capture the practical meanings of such a protocol. For instance,

aamas.tex; 20/02/1999; 16:40; no v.; p.3

4 Venkatraman & Singh

the auctioneer may not honor his offering price if a sudden change in weather
indicates that fishing will be harder for the next few days. I

1.2. COMPLIANCE IN OPEN SYSTEMS

The existence of standardized protocols is necessary but not sufficient for the
correct functioning of open multiagent systems. We must also ensure that the
agents behave according to the protocols. This is the challenge of compliance.
However, unlike in traditional closed systems, verifying compliance in open
systems is practically and even conceptually nontrivial.

Preserving the autonomy and heterogeneity of agents is crucial in an open
environment. Otherwise, many applications would become infeasible. Con-
sequently, protocols must be specified as flexibly as possible without making
untoward requirements on the participating agents. Similarly, an approach for
testing compliance must not require that the agents are homogeneous or im-
pose stringent demands on how they are constructed.

Consequently, in open systems, compliance can be meaningfully ex-
pressed only in terms of observable behavior. This leads to two subtle consid-
erations. One, although we talk in terms of behavior, we must still consider
the high-level abstractions that differentiate agents from other active objects.
The focus on behavior renders approaches based on mental concepts ineffec-
tive [16]. However, well-framed social constructs can be used. Two, we must
clearly delineate the role of the observer who assesses compliance.

1.3. CONTRIBUTIONS

The approach developed here treats multiagent systems as distributed sys-
tems. There is an underlying messaging layer, which delivers messages asyn-
chronously and, for now, reliably. However, the approach assumes for sim-
plicity that the agents are not malicious and do not forge the timestamps on
the messages that they send or receive.

The compliance testing is performed by any observer of the system—
typically, a participating agent. Our approach is to evaluate temporal logic
specifications with respect to locally constructed models for the given ob-
server. The model construction proposed here employs a combination of the
notion of potential causality and operations on social commitments (both de-
scribed below). Our contributions are in

— incorporating potential causality in the construction of local models

— identifying patterns of messages corresponding to different operations on
commitments

— showing how to verify compliance based on local information.

aamas.tex; 20/02/1999; 16:40; no v.; p.4

Compliance with Commitment Protocols 5

Our approach also has important ramifications on agent communication in
general, which we discuss in Section 4.

Organization. The rest of this paper is organized as follows. Section 2
presents our technical framework, which combines commitments, potential
causality, and temporal logic. Section 3 presents our approach for testing
(non-)compliance of agents with respect to a commitment protocol. Section 4
concludes with a discussion of our major themes, the literature, and the im-
portant issues that remain outstanding.

2. Technical Framework

Commitment protocols as defined here are a multiagent concept. They are
far more flexible and general than commitment protocols in distributed com-
puting and databases, such as two-phase commit [12, pp. 562-573]. This is
because our underlying notion of commitment is flexible, whereas traditional
commitments are rigid and irrevocable. However, because multiagent systems
are distributed systems and commitment protocols are protocols, it is natu-
ral that techniques developed in classical computer science will apply here.
Accordingly, our technical framework integrates approaches from distributed
computing, logics of program, and distributed artificial intelligence.

2.1. POTENTIAL CAUSALITY

The key idea behind potential causality is that the ordering of events in a
distributed system can be determined only with respect to an observer [13]. If
event e precedes event f with respect to an observer, then e may potentially
cause f. The observed precedence suggests the possibility of an information
flow from e to f, but without additional knowledge of the internals of the
agents, we cannot be sure that true causation was involved. It is customary
to define the local time of an agent as the number of steps it has executed. A
vector clock is a vector, each of whose elements corresponds to the local time
of each communicating agent. A vector v is considered later than a vector u
if v is later on some, and not sooner on any, element.

Definition 1. A clock over n agents is an n-ary vector v = (vy...vp) of
natural numbers. The starting clock is 0 & (0...0).1

Notice that the vector representation is just a convenience. We could just as
well use pairs of the form (agent-id, local-time), which would allow
us to model systems of varying membership more easily.

Definition 2. Given n-ary vectors u and v, u < v if and only if (Vi: 1 <37 <
n:u; <wvj)and (Fi:1<i<n:u; <)l

aamas.tex; 20/02/1999; 16:40; no v.; p.5

6 Venkatraman & Singh

Each agent starts at 0. It increments its entry in that vector whenever it per-
forms a local event [15]. It attaches the entire vector as a timestamp to any
message it sends out. When an agent receives a message, it updates its vector
clock to be the element-wise maximum of its previous vector and the vector
timestamp of the message it received. Intuitively, the message brings news of
how far the system has progressed; for some agents, the recipient may have
better news already. However, any message it sends after this receive event
will have a later timestamp than the message just received.

Auctioneer A Bidder B1 Bidder B2
0,0,0 0,0,0 0,0,0
0000 mi "50":1,0,0] 10001 10.0.0]

m2_ "50":[2,0,0] 1,01
"No™:[1,2,0 2.01]
"No":[2,0,2]
32015]
das=—"" |
mS y0n[5,2,2]
N ”40":[6,2,2]
[5.3,2] [6,2,3]
"Yes":[5,4,2
m7
[7.4,2]
ﬁSh\
é/moﬁe_y,/

Figure 1. Vector clocks in the fish-market protocol.

Example 3. Figure 1 illustrates the evolution of vector timestamps for one
possible run of the fish-market protocol. In the run described here, the auc-
tioneer (A) announces a price of 50 for a certain bucket of fish. Bidders B1
and B2 both decline. A lowers the price to 40 and announces it. This time
B1 says Yes, leading A to transfer the fish to B1 and B1 to send money to A.
For uniformity, the last two steps are also modeled as communications. The
messages are labeled m; to facilitate reference from the text. I

2.2. TEMPORAL LOGIC

The progression of events, which is inherent in the execution of any protocol,
suggests the need for representing and reasoning about time. Temporal logics

aamas.tex; 20/02/1999; 16:40; no v.; p.6

Compliance with Commitment Protocols 7

provide a well-understood means of doing so, and have been applied in vari-
ous subareas of computer science. Because of their naturalness in expressing
properties of systems that may evolve in more than one possible way and for
the efficiency of reasoning that they support, the branching-time logics have
been especially popular in this regard [10]. Of these, the best known is Com-
putation Tree Logic (CTL), which we adapt here in our formal language L.
Conventionally, a model of CTL is expressed as a tree. Each node in the tree
is associated with a state of the system being considered; the branches of the
tree or paths thus indicate the possible courses of events or ways in which the
system’s state may evolve. CTL provides a natural means by which to specify
acceptable behaviors of the system.

The following Backus-Naur Form (BNF) grammar with a distinguished
start symbol L gives the syntax of L. £ is based on a set ® of atomic propo-
sitions. Below, slant typeface indicates nonterminals; —> and | are meta-
symbols of BNF specification; < and > delimit comments; the remaining
symbols are terminals. As is customary in formal semantics, we are only con-
cerned with abstract syntax.

L1. L — Prop <atomic propositions: members of ® >
L2. L — — L <negation>>

L3. L — L A L <conjunction>>

L4. L — A P <universal quantification over paths>>
L5. L — E P <existential quantification over paths>>
L6. P— L U L <until: operator over a single path>>

The meanings of formulas generated from L are given relative to a model and
a state in the model. The meanings of formulas generated from P are given
relative to a path and a state on the path. The boolean operators are standard.
Useful abbreviations include false = (p A —p), for any p € ®, true = —false,
pVqg=-pA-qgandp — g = —p V ¢q. The temporal operators A and E
are quantifiers over paths. Informally, pUq means that on a given path from
the given state, ¢ will eventually hold and p will hold until ¢ holds. Fg means
“eventually ¢” and abbreviates trueUq. Gg means “always ¢” and abbreviates
—F—gq. Therefore, EpUq means that on some future path from the given state,
g will eventually hold and p will hold until ¢ holds.

Definition 3. M = (S, <,I) is a formal model for £. S is a set of states;
<C S x § is a partial order indicating branching time, and I : S — P(®) is
an interpretation, which tells us which atomic propositions are true in a given
state. For t € S, P, is the set of paths emanating from ¢. I

aamas.tex; 20/02/1999; 16:40; no v.; p.7

8 Venkatraman & Singh

M |=¢ p expresses “M satisfies p at t” and M |=p; p expresses “M satisfies
p at t along path P.”

Ml1. M = ¢ iff ¢ € I(t), where) € &

M2. M= pAqiff M Eypand M =, ¢

M3. M =y —piff M [y p

M4. M |=; Apiff (VP : P € Py = M p; p)
M5. M = Epiff (3P : P € Pyand M |=p; p)

M6. M =p; pUqiff (3t' : t <t'and M =py gand (Vt" : t < 1" <t/ =
M E=pyr p))

The above is an abstract semantics. In Section 3.3, we specify the concrete
form of @, S, <, and I, so the semantics can be exercised in our computations.

3. Approach

In their generic forms, both causality and temporal logic are well-known.
However, applying them in combination and in the particular manner sug-
gested here is novel to this paper.

Temporal logic model checking is usually applied for design-time reason-
ing [10, pp. 1042-1046]. We are given a specification and an implementation,
i.e., program, that is supposed to meet it. A model is generated from the pro-
gram. A model checking algorithm determines whether the specification is
true in the generated model. However, in an open, heterogeneous environ-
ment, a design may not be available at all. For example, the vendors who
supply the agents may consider their designs to be trade secrets.

By contrast, ours is a run-time approach, and can meaningfully apply
model checking even in open settings. This is because it uses a model gener-
ated from the joint executions of the agents involved. Model checking in this
setting simply determines whether the present execution satisfies the specifi-
cation. If an execution respects the given protocol, that does not entail that all
executions will, because an agent act inappropriately in other circumstances.
However, if an execution is inappropriate, that does entail that the system
does not satisfy the protocol. Consequently, although we are verifying spe-
cific executions of the multiagent system, we can only falsify (but not verify)
the correctness of the construction of the agents in the system.

Model checking of the form introduced above may be applied by any ob-
server in the multiagent system. A useful case is when the observer is one
of the participating agents. Another useful case is when the observer is some

aamas.tex; 20/02/1999; 16:40; no v.; p.8

Compliance with Commitment Protocols 9

agent dedicated to the task of managing or auditing the interactions of some
of the agents in the multiagent system.

Potential causality is most often applied in distributed systems to ensure
that the messages being sent in a system satisfy causal ordering [3]. Causal-
ity motivates vector clocks and vector timestamps on messages, which help
ensure correct ordering by having the messaging subsystem reorder and re-
transmit messages as needed. This application of causality can be important,
but is controversial [4, 6], because its overhead may not always be justifiable.

In our approach, the delivery of messages may be noncausal. However,
causality serves the important purpose of yielding accurate models of the ob-
servations of each agent. These are needed, because in a distributed system,
the global model is not appropriate. Creating a monolithic model of the ex-
ecution of the entire system requires imposing a central authority through
which all messages are routed. Adding such an authority would take away
many of the advantages that make distributed systems attractive in the first
place. Consequently, our method of constructing and reasoning with models
should

— not require a centralized message router

— work from a single vantage of observation, but be able to handle situa-
tions where some agents pool their evidence.

Such a method turns out to naturally employ the notion of potential causality.
3.1. MODELS FROM OBSERVATIONS

The observations made by each agent are essentially a record of the messages
it has sent or received. Since each message is given a vector timestamp, the
observations can be partially ordered. In general, this order is not total, be-
cause messages received from different agents may be mutually unordered.

Example 4. Figure 2 shows the models constructed locally from the obser-
vations of the auctioneer and a bidder in the run of Example 3. I

Although a straightforward application of causality, the above example shows
how local models may be constructed. Some subtleties are discussed next.

As remarked above, commitments give the core meaning of a protocol.
Our approach builds on a flexible and powerful variety of social commit-
ments, which are the commitments of one agent to another [20]. These com-
mitments are defined relative to a context, which is typically the multiagent
system itself. The debror refers to the agent that makes a commitment, and
the creditor to the agent who receives the commitment. Thus we have the
following logical form.

aamas.tex; 20/02/1999; 16:40; no v.; p.9

10

Venkatraman & Singh

Auctioneer A Bidder B1
SOstart = start
[1,0,0] | s(m1) s(ml)
s(m3) [1.0.01
2 2
[1,2,0] [2.0.0] ¢ s(m2) [1,1,01% r(m1)
s(m4) [1,2,0] | s(m3)
[3,2,0] Pr(m3) (2.02] s(m5) 4
52,2
(42,217 r(m4) (>:2.2] [5,3,2] Y r(m5)
[5.2.2]¢ s(m5) [5.4,2] Os(m7)
s(m7)
[5.4.2] s(m6) Oend
r(m7)
Oend

Figure 2. Observations for auctioneer and a bidder in the fish-market protocol.

Definition 4. A commitment is an expression C(z,y,G,p), where z is the
debtor, y the creditor, G the context, and p the condition committed to. I

The expression c is considered true in states where the corresponding com-
mitment exists.

Definition 5. A commitment ¢ = C(z,y, G, p) is base-level if p does not refer
to any other commitments; c¢ is a metacommitment if p refers to a base-level
commitment (we do not consider higher-order commitments here). |

Intuitively, a protocol definition is a set of metacommitments for the different
roles (along with a mapping of the message tokens to operations on commit-
ments). In combination with what the agents communicate, these lead to base-
level commitments being created or manipulated, which is primarily how a
commitment may be referred to within a protocol. The violation of a base-
level commitment can give us proof or the “smoking gun” that an agent is
noncompliant.

The following operations on commitments define how they may be cre-
ated or manipulated. When we view commitments as an abstract data type,
the operations are methods of that data type.

Each operation is realized through a simple message pattern, which states
what messages must be communicated among which of the participants and
in what order. For the operations on commitments we consider, the patterns

aamas.tex; 20/02/1999; 16:40; no v.; p.10

Compliance with Commitment Protocols 11

are simple. As described below, most patterns require only a single message,
but some require three messages. Obeying the specified patterns ensures that
the local models have the information necessary for testing compliance. That
the given operation can be performed at all depends on whether the proto-
col, through its metacommitments, allows that operation. However, when an
operation is allowed, it affects the agents’ commitments. For simplicity, we
assume that the operations on commitments are given a deterministic inter-
pretation. Here z is an agent and ¢ = C(z,y, G, p) is a commitment.

o1

02.

03.

04.

0s.

Create(z, ¢) instantiates a commitment c. Create is typically performed
as a consequence of the commitment’s debtor promising something con-
tractually or by the creditor exercising a metacommitment previously
made by the debtor. Create usually requires a message from the debtor
to the creditor.

Discharge(z, ¢) satisfies the commitment c. It is performed by the debtor
concurrently with the actions that lead to the given condition being sat-
isfied, e.g., the delivery of promised goods or funds. For simplicity, we
treat the discharge actions as performed only when the proposition p is
true. Thus the discharge actions are detached, meaning that p can be
treated as true in the given moment. We model the discharge as a single
message from the debtor to the creditor.

Cancel(z, c) revokes the commitment c. It can be performed by the
debtor as a single message. At the end of this action, —c usually holds.
However, depending on the existing metacommitments, the cancel of one
commitment may lead to the create of other commitments.

Release(G, ¢) or release(y, c) essentially eliminates the commitment c.
This is distinguished from both discharge and cancel, because release
does not mean success or failure, although it lets the debtor off the hook.
At the end of this action, —c usually holds. The release action may be
performed by the context or the creditor of the given commitment, also
as a single message. Because release is not performed by the debtor,
different metacommitments apply than for cancel.

Delegate(z, z, c) shifts the role of debtor to another agent within the
same context, and can be performed by the (old) debtor (or the context).
Let ¢ = C(z,y, G, p). At the end of the delegate action, ¢’ A —c holds.

To prevent the risk of miscommunication, we require the creditor to also
be involved in the message pattern. Figure 3(1) shows the associated pat-
tern. The first message sets up the commitment ¢ from x to y and is not
part of the pattern. When z delegates the commitment c to z, x tells both
y and z that the commitment is delegated. z is now committed to y. Later

aamas.tex; 20/02/1999; 16:40; no v.; p.11

12 Venkatraman & Singh

X y 2z X y Z

create(x,c) create(x,c)
\

assign(y,z,c)

assign(y,z,c) \
%ﬂle(,2,C) - |

delegate(i,z,c)
\ \
\

discharge(x,c

discharge(x,c)
\

Figure 3. Message pattern for delegate (1) and assign (r).

z may discharge the commitment. The two delegate messages constitute
the pattern.

06. Assign(y, z,c) transfers a commitment to another creditor within the
same context, and can be performed by the present creditor or the con-
text. Let ¢ = C(z, 2z, G, p). At the end of the assign action, ¢’ A —c holds.

Here we require that the new creditor and the debtor are also involved as
shown in Figure 3(r). The figure shows only the general pattern. Here x
is committed to y. When y assigns the commitment to z, ¥ tells both x
and z (so z knows it is the new creditor). Eventually, x should discharge
the commitment to z. A potentially tricky situation is if = discharges the
commitment ¢ even as y is assigning c to z (i.e., the messages cross).
In this case, we require y to discharge the commitment to z—essentially
by forwarding the contents of the message from x. Thus the worst case
requires three messages.

We write the operations as propositions indicating successful execution.
Based on the applicable metacommitments, each operation may entail ad-
ditional operations that take place implicitly.

Definition 6. A commitment c is resolved through a release, discharge, can-
cel, delegate, or assign performed on c. ¢ ceases to exist when resolved. How-
ever, a new commitment is created for delegate or assign. 1

(New commitments created because of some existing metacommitment are
not included in the definition of resolution. Theorem 1 states that the creditor
knows the disposition of any commitments due to it. This result helps estab-
lish that the creditor can always determine compliance of others relative to
what was committed to it.

aamas.tex; 20/02/1999; 16:40; no v.; p.12

Compliance with Commitment Protocols 13

Theorem I. 1f message m; creates commitment ¢ and message m; resolves
c, then the creditor of ¢ sees both m; and m;.

Proof. By inspection of the message patterns constructed for the various op-
erations on commitments. ll

Definition 7. A commitment c is ultimately resolved through a release, dis-
charge, or cancel performed on c, or through the ultimate resolution of any
commitments created by the delegate or assign of c. |

Theorem 2 essentially states that the creation and ultimate resolution of a
commitment occur along the same causal path. This is important, because
it legitimizes a significant optimization below. Indeed, we defined the above
message patterns so we would obtain Theorem 2.

Theorem 2. If message m; creates commitment ¢ and message m; ultimately
resolves c, then m; < m;.

Proof. By inspection of the message patterns constructed for the various op-
erations on commitments. ll

3.2. SPECIFYING PROTOCOLS

We first consider the coordination and then the commitment aspects of com-
pliance. A skeleton is a coarse description of how an agent may behave [18].
A skeleton is associated with each role in the given multiagent system to
specify how an agent playing that role may behave in order to coordinate
with others. Coordination includes the simpler aspects of interaction, e.g.,
turn-taking. Coordination is required so that the agents’ commitments make
sense. For instance, a bidder should not make a bid prior to the advertise-
ment; otherwise, the commitment content of the bid would not even be fully
defined.

The skeletons may be constructed by introspection or through the use of
a suitable methodology [19]. No matter how they are created, the skeletons
are the first line of compliance testing, because an agent that does not comply
with the skeleton for its role is automatically in violation. So as to concentrate
on commitments in this paper, we postulate that a “proxy”” object is interposed
between an agent and the rest of the system and ensures that the agent follows
the dictates of the skeleton of its role.

We now define the syntax of the specification language through the fol-
lowing grammar whose start symbol is Protocol. The braces { and } indicate
that the enclosed item is repeated 0 or more times.

L7. Protocol — {Meta} {Message}

aamas.tex; 20/02/1999; 16:40; no v.; p.13

14 Venkatraman & Singh

L8. Message — Token: Commitment <messages correspond to
commitments>>

L9. Meta — C(Debtor, Creditor, Context, MetaProp)

L10. MetaProp — AG[Bool — AFAct] | AG[Act — Bool]

L11. Bool — <Boolean combinations of>> Act | Commitment | Dom
L12. Act — Operation(Agent, Commitment)

L13. Operation —+ <the six operations of Section 3.1>>

L14. Commitment — Meta | C(Debtor, Creditor, Context, AF Dom)
L15. Dom — <« domain-specific concepts>>

The above language embeds a subset of L. Our approach is to detach the outer
actions and commitments, so we can process the inner £ part as a temporal
logic. By using commitments and actions on them, instead of simple domain
propositions, we can capture a variety of subtle situations, e.g., to distinguish
between release and cancel both of which result in the given commitment
being removed.

Example 5 applies the above language on the fish-market protocol.

Example 5. The messages in Figure 1 can be given a content based on the
following definitions. Here F'M is the fish-market context.

— fish: a domain proposition meaning the fish is delivered

— money,: a domain proposition meaning that the appropriate money is
paid (subscripted to allow different prices)

— Bid;(Bj): an abbreviation for C(Bj, A, FM,AG[fish —
AFcreate(B;, C(Bj, A, FM,AFmoney;))])—meaning the bidder
promises to pay money; if given the fish

— Ad;(Bj): an abbreviation for C(A,Bj, FM,AG[Bid;(B;) —
AFcreate(A,C(A, B;, FM, AFfish))])—meaning the auctioneer offers
to deliver the fish if he gets a bid for money;

— demand;: an abbreviation for (35,k : j # k A Bidi(Bj) A
AF Bid;(By))—meaning that at least two bidders have bid for the fish
at price %

— bad: a domain proposition meaning the fish is spoiled

Armed with the above, we can now state the commitments associated with
the different messages in the fish market protocol.

aamas.tex; 20/02/1999; 16:40; no v.; p.1l4

Compliance with Commitment Protocols 15
— Payment of 4 from Bj: discharge(B;, C(Bj, A, FM ,AFmoney;))
— Delivering fish to B;: discharge(A, C(A, Bj, FM , AFfish))
— Yes from B; (for price i): create(B;, Bid;(B;))
— No from Bj (for price %): true
— Adbvertise to B; (for price 7): create(A, Ad;(Bj))

Further, the protocol includes metacommitments that are not associated with
any single message. In the present protocol, these metacommitments are of
the context itself to release a committing party under certain circumstances.
For practical purposes, we could treat these as metacommitments of the cred-
itor.

— High demand: C(FM, A, FM,AG[demand; —
AFrelease(FM,C(A, Bj, FM, AFfish))])

— Bad fish: C(FM, Bj, FM ,AG[bad —
AFrelease(FM,C(Bj, A, FM , AFmoney;))))

In addition, in a monotonic framework, we would also need to state the com-
pletion requirements to ensure that only the above actions are performed.

The auctioneer does not commit to a price if no bid is received. If more
than one bid is received, the auctioneer is released from the commitment. No-
tice that the auctioneer can exit the market or adjust the price in any direction
if a unique Yes is not received for the current price money,. It would nei-
ther be rational for the auctioneer to raise the price if there are no takers at
the present price, nor to lower the price if takers are available. However, the
protocol per se does not legislate against either behavior. I

The No messages have no significance on commitments. They serve only to
assist in the coordination so the context can determine if enough bids are
received. The lower-level aspects of coordination are not being studied in this
paper. Now we can see how the reasoning takes place in a successful run of
the protocol.

Example 6. The auctioneer sends out an advertisement, which com-
mits the auctioneer to supplying the fish if he receives a suit-
able bid. This commitment will be discharged if AG[Bid;(B;) —
AFcreate(A, C(A, B;, FM, AFfish))] holds. When Bid;(B;) is sent by B,
the bidder is committed to the bid, which is discharged if AG[fish —
AFcreate(B;, C(Bj, A, FM,AFmoney;))] holds. To discharge the adver-
tisement, the auctioneer must eventually create a commitment to eventually
supply the fish. If he does not create this commitment, he is in violation. If he

aamas.tex; 20/02/1999; 16:40; no v.; p.15

16 Venkatraman & Singh

creates it, but does not supply the fish, he is still in violation. If he supplies
the fish, the bidder is then committed to eventually forming a commitment to
supply the money. If the bidder does so, the protocol is executed successfully.

3.3. REASONING WITH THE CONCRETE MODEL

Now we explain the main reasoning steps in our approach and show that they
are sound. The main reasoning with models applies the CTL model-checking
algorithm on a model and a formula denoting the conjunction of the specifi-
cations. The algorithm evaluates whether the formula holds in the initial state
of the model. Thus a concrete version of the model M (see Section 2.2) is es-
sential. For the purposes of the semantics, we must define a global model with
respect to which commitment protocols may be specified. Intuitively, a pro-
tocol specification tells us which behaviors of the entire system are correct.
Thus, it corresponds naturally to a global model in which those behaviors can
be defined.

Our specific concrete model identifies states with messages. Recall that
the timestamp of a message is the clock vector attached to it. The states are
ordered according to the timestamps of the messages. The proposition true
in a state is the one corresponding to the operation that is performed by the
message.

Definition 8. Q = {m : m is a message} U {0} I
Definition 9. For s,t € Q, s < t iff timestamp(s) < timestamp(t) 1
Definition 10. For s € Q, I(s) = {the operations executed by message s} I

The structure Mg = (Q, <, I) is a quasimodel. (Here and below, we assume
that < and I are appropriately projected to the available states.) Mg is struc-
turally a model, because it matches the requirements of Definition 3. How-
ever, Mg is not a model of the computations that may take place, because the
branches in Mg are concurrent events and do not individually correspond to a
single path. A quasimodel can be mapped to a model, Mg = (S, <, I) with an
initial state 0, by including all possible interleavings of the transitions. That
is, S would include a distinct state for every message in each possible order-
ing of the messages in Q that is consistent with the temporal order < of M.
The relation < can be suitably defined for Mg. However, there is potentially
an exponential blowup in that the size of S may be exponentially greater than
the size of Q.

Theorem 3 shows that naively treating a quasimodel as if it were a model is
correct. Thus, the above blowup can be eliminated entirely. Our construction

aamas.tex; 20/02/1999; 16:40; no v.; p.16

Compliance with Commitment Protocols 17

ensures that all the events relevant to another event are totally ordered with
respect to each other. Notice that, as showing in Figure 3, the construction
may appear to require one more message than necessary for the assign and
delegate operations. This linear amount of extra work (for the entire set of
messages), however, pays off in reducing the complexity of our reasoning
algorithm. In the following, p refers to the proposition (of the form AGlg —
AFr]) of a metacommitment, which becomes true when the metacommitment
is discharged.

Definition 11. For a proposition p, p” is the proposition obtained by substi-
tuting EF for AF in p. 1

Theorem 3. Mg =5 p” iff Mg =5 p.
Proof. From Theorem 2 and the restricted structure of M, Q- [|

The above results show that compliance can be tested and without blowing
up the model unnecessarily. However, we would like to test for compliance
based on local information—so that any agent can decide for itself whether
it has been wronged by another. For this reason, we would like to be able to
project the global model onto local models for each agent, while ensuring that
the local models carry enough information that they are indeed usable in iso-
lation from other local models. Accordingly, we can define the construction
of local models corresponding to an agent’s observations. This is simply by
defining a subset of S for a given agent a.

Definition 12. S, = {m : m is a message from or to a}. M, = (S,, <,I).1

Theorem 4 shows that if we restrict attention to commitments that the given
agent can observe, then the projected quasimodel yields all and only the cor-
rect conclusions relative to the global quasimodel. Thus, if the interested party
is vigilant, it can check if anyone else violated the protocol.

Theorem 4. M, =5 p" if and only if Mg =g p”, provided that a sees all
the commitments mentioned in p.
Proof. From Theorem 2 and the construction of M,. i

Example 7. 1If one of the bidders backs down from a successful bid, the auc-
tioneer immediately can establish that he is cheating, because the auctioneer
is the creditor for the bidder’s commitment. However, a bidder cannot or-
dinarily decide whether the auctioneer is noncompliant, because the bidder
does not see all relevant commitments based on which the auctioneer may be
released from a commitment to the bidder. I

Theorem 5 lifts the above results to sets of agents. Thus, a set of agents may
pool their evidence in order to establish whether a third party is noncompliant.

aamas.tex; 20/02/1999; 16:40; no v.; p.17

18 Venkatraman & Singh

Thus, in a setting with two bidders, a model that includes all their evidence
can be used to determine whether the auctioneer is noncompliant. Ordinarily,
the bidders would have to explicitly pool their information to do so. However,
in a broadcast-based or outcry protocol (like a traditional fish market in which
everyone is screaming), the larger model can be built by anyone who hears
all the messages. Let A be a set of agents.

Definition 13. Sa = Ugea Sa- Ma = (Sa, <,I).1

Theorem 5. Let the commitments observed by agents in A include all the
commitments in p. Then My |=; p” iff Mg =5 p”.
Proof. From Theorem 2 and the construction of M 4. I

Information about commitments that have been resolved, i.e., are not
pending, is not needed in the algorithm, and can be safely deleted from each
observer’s model. This is accomplished by searching backward in time when-
ever something is added to the model. Pruning extraneous messages from
each observer’s model reduces the size of the model and facilitates reasoning
about it. This simplification is sound, because the CTL specifications do not
include nested commitments.

Mapping from an event-based to a state-based representation, we should
consider every event as potentially corresponding to a state change. This ap-
proach would lead to a large model, which accommodates not only the occur-
rence of public events such as message transmissions, but also local events.
Such an approach would thus capture the evolution of the agent’s knowledge
about the progress of the system, which would help in accommodating unreli-
able messaging. Our approach, as described above, loses some of the agents’
knowledge by not separating events and states, but has all the details we need
to assess compliance assuming reliable messaging.

4. Discussion

Given the autonomy and heterogeneity of agents, the most natural way to treat
interactions is as communications. A communication protocol involves the
exchange of messages with a streamlined set of tokens. Traditionally, these
tokens are not given any meaning except through reference to the beliefs or
intentions of the communicating agents. By contrast, our approach assigns
public, i.e., observable, meanings in terms of social commitments. Viewed in
this light, every communication protocol is a commitment protocol.
Formulating and testing compliance of autonomous and heterogeneous
agents is a key prerequisite for the effective application of multiagent systems
in open environments. As asserted by Chiariglione, minimal specifications
based on external behavior will maximize interoperability [7]. The research

aamas.tex; 20/02/1999; 16:40; no v.; p.18

Compliance with Commitment Protocols 19

community has not paid sufficient attention to this important requirement. A
glaring shortcoming of most existing semantics for agent communication lan-
guages is their fundamental inability to allow testing for the compliance of an
agent [16, 22]. The present approach shows how that might be carried out.

While the purpose of the protocols is to specify legal behavior, they should
not specify rational behavior. Rational behavior may result as an indirect con-
sequence of obeying the protocols. However, not adding rationality require-
ments leads to more succinct specifications and also allows agents to partici-
pate even if their rationality cannot be established by their designers.

The compliance checking procedure can be used by any agent who partic-
ipates in, or observes, a commitment protocol. There are two obvious uses.
One, the agent can track which of the commitments made by others are pend-
ing or have been violated. Two, it might track which of its own commitments
are pending or whose satisfaction has not been acknowledged by others. The
agent can thus use the compliance checking procedure as an input to its nor-
mal processes of deliberation to guide its interactions with other agents.

We have so far discussed how to detect violations. Once an agent detects
a violation, as far as the above method is concerned, it may proceed in any
way. However, some likely candidates are the following. The wronged agent
may

— inform the agents who appeared to have violated their commitments and
ask them to respect the applicable metacommitments

— inform the context, who might penalize the guilty parties, if any; the con-
text may require additional information, e.g., certified logs of the mes-
sages sent by the different agents, to establish that some agents are in
violation.

— inform other agents in an attempt to spoil the reputation of the guilty
parties.

4.1. LITERATURE

Some of the important strands of research of relevance to commitment pro-
tocols have been carried out before. However, the synthesis, enhancement,
and application of these techniques on multiagent commitment protocols is a
novel contribution of this paper. Interaction (rightly) continues to draw much
attention from researchers. Still, most current approaches do not consider an
explicit execution architecture (however, there are some notable exceptions,
e.g., [8, 9, 18]). Other approaches lack a formal underpinning; still others
focus primarily on monolithic finite-state machine representations for proto-
cols. Such representations can capture only the lowest levels of a multiagent

aamas.tex; 20/02/1999; 16:40; no v.; p.19

20 Venkatraman & Singh

interaction, and their monolithicity does not accord well with distributed exe-
cution and compliance testing. Model checking has recently drawn much at-
tention in the multiagent community, e.g., [2, 17]. However, these approaches
consider knowledge and related concepts and are thus not directly applicable
for behavior-based compliance.

4.2. FUTURE DIRECTIONS

The present approach highlights the synergies between distributed computing
and multiagent systems. Since both fields have advanced in different direc-
tions, a number of important technical problems can be addressed by their
proper synthesis. One aspect relates to situations where the agents may suf-
fer a Byzantine failure or act maliciously. Such agents may fake messages or
deny receiving them. How can they be detected by the other agents? Another
aspect is to capture additional structural properties of the interactions so that
noncompliant agents can be more readily detected. Alternatively, we might
offer an assistance to designers by synthesizing skeletons of agents who par-
ticipate properly in commitment protocols. Lastly, it is well-known that there
can be far more potential causes than real causes [15]. Can we analyze con-
versations or place additional, but reasonable, restrictions on the agents that
would help focus their interactions on the true relationships between their
respective computations? We defer these topics to future research.

Acknowledgements

This work is supported by the National Science Foundation under grants IIS-
9529179 and 11S-9624425, and IBM corporation. We are indebted to Feng
Wan and Sudhir Rustogi for useful discussions and to the anonymous review-
ers for helpful comments.

References

1. Gul A. Agha and Nadeem Jamali. Concurrent programming for distributed artificial
intelligence. In [21], chapter 12, pages 505-534. 1998.

2. Massimo Benerecetti, Fausto Giunchiglia, and Luciano Serafini. Model checking multi-
agent systems. Journal of Logic and Computation, 8(3):401-423, June 1998.

3. Kenneth P. Birman. The process group approach to reliable distributed computing. Com-
munications of the ACM, 36(12):36-53, December 1993.

4. Kenneth P. Birman. A response to Cheriton and Skeen’s criticism of causal and totally
ordered communication. Operating Systems Review, 28(1):11-21, 1994.

5. Nicholas Carriero and David Gelernter. Coordination languages and their significance.
Communications of the ACM, 35(2):97-107, February 1992.

6. David R. Cheriton and Dale Skeen. Understanding the limitations of causally and totally
ordered communication. In Proceedings of the 14th ACM Symposium on Operating
System Principles (SOSP), pages 44-57. ACM Press, December 1993.

aamas.tex; 20/02/1999; 16:40; no v.; p.20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Compliance with Commitment Protocols 21

Leonardo Chiariglione. Foundation for intelligent physical agents (FIPA) scope, 1998.
www.fipa.org/library/scope.html.

Paolo Ciancarini, Andreas Knoche, Robert Tolksdorf, and Fabio Vitali. PageSpace: An
architecture to coordinate distributed applications on the web. Computer Networks and
ISDN System, 28(7-11):941-952, 1996. Proceedings of the 5th International World Wide
Web Conference.

Paolo Ciancarini, Robert Tolksdorf, Fabio Vitali, Davide Rossi, and Andreas Knoche.
Coordinating multiagent applications on the WWW: A reference architecture. [EEE
Transactions on Software Engineering, 24(5):362-375, May 1998.

E. Allen Emerson. Temporal and modal logic. In Jan van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, pages 995-1072. North-Holland, Amsterdam,
1990.

Nissim Francez and Ira R. Forman. Interacting Processes: A Multiparty Approach to
Coordinated Distributed Programming. ACM Press and Addison-Wesley, New York,
1996.

Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques. Mor-
gan Kaufmann, San Mateo, 1993.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Com-
munications of the ACM, 21(7):558-565, July 1978.

Juan A. Rodriguez-Aguilar, Francisco J. Martin, Pablo Noriega, Pere Garcia, and Carles
Sierra. Towards a test-bed for trading agents in electronic auction markets. Al Commu-
nications, 11(1):5-19, 1998.

Reinhard Schwarz and Friedemann Mattern. Detecting causal relationships in distributed
computations: In search of the holy grail. Distributed Computing, 7(3):149-174, 1994.
Munindar P. Singh. Agent communication languages: Rethinking the principles. IEEE
Computer, 31(12):40-47, December 1998.

Munindar P. Singh. Applying the mu-calculus in planning and reasoning about action.
Journal of Logic and Computation, 8(3):425-445, June 1998.

Munindar P. Singh. A customizable coordination service for autonomous agents. In
Intelligent Agents IV: Proceedings of the 4th International Workshop on Agent Theories,
Architectures, and Languages (ATAL-97), pages 93—106. Springer-Verlag, 1998.
Munindar P. Singh. Developing formal specifications to coordinate heterogeneous au-
tonomous agents. In Proceedings of the 3rd International Conference on Multiagent
Systems (ICMAS), pages 261-268. IEEE Computer Society Press, July 1998.

Munindar P. Singh. An ontology for commitments in multiagent systems: Toward a
unification of normative concepts. Artificial Intelligence and Law, 1999. In press.
Gerhard WeiB, editor. Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence. MIT Press, Cambridge, MA, 1998.

Michael J. Wooldridge. Verifiable semantics for agent communication languages. In
Proceedings of the 3rd International Conference on Multiagent Systems (ICMAS), pages
349-356. IEEE Computer Society Press, July 1998.

Addpress for correspondence:
Department of Computer Science
Box 7534

North Carolina State University
Raleigh, NC 27695-7534, USA

mvenkat@eos.ncsu.edu, singh@ncsu.edu

aamas.tex; 20/02/1999; 16:40; no v.; p.21

