
An Algebra for Commitment Protocols∗

Ashok U. Mallya and Munindar P. Singh
Department of Computer Science
North Carolina State University
Raleigh, NC 27695-7535 USA

({aumallya,singh }@ncsu.edu )

Abstract. Protocols enable unambiguous, smooth interactions among agents. Commitments
among agents are a powerful means of developing protocols. Commitments enable flexible
execution of protocols and help agents reason about protocols and plan their actions accord-
ingly, while at the same time providing a basis for compliance checking. Multiagent systems
based on commitments can conveniently and effectively model business interactions because
the autonomy and heterogeneity of agents mirrors real-world businesses. Such modeling, how-
ever, requires multiagent systems to host a rich variety of protocols that can capture the needs
of different applications. We show how a commitment-based semantics provides a basis for
refining and aggregating protocols. We propose an approach for designing commitment proto-
cols wherein traditional software engineering notions such as refinement and aggregation are
extended to apply to protocols. We present an algebra of protocols that can be used to compose
protocols by refining and merging existing ones, and does this at a level of abstraction high
enough to be useful for real-world applications.
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1. Introduction

Multiagent systems composed of autonomous and heterogeneous agents pro-
vide a convenient and accurate model for describing and enacting many real-
life processes and interactions. While autonomy and heterogeneity are what
make the multiagent paradigm attractive, heterogeneity gives rise to incom-
patibility and autonomy to unpredictability. Agents need to understand each
other and behave in predictable ways for their interactions to be fruitful. To
achieve consensus and facilitate interaction between agents, standards are re-
quired, as in most distributed systems. Web Services are an example of how
standards enable heterogeneous systems to interact with each other. Recent
efforts for Web Servicechoreography—which deals with the way services
interact—andorchestration—which deals with the way services are com-
posed using other services—address service interactions (Peltz, 2003) similar
in spirit to agent interaction protocols. Agent interaction, however, requires
higher-level abstractions to deal with the rich variety of interactions found in
multiagent systems.
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INTERACTION PROTOCOLS

A protocol is a description of the steps involved in an interaction. Protocols
make interactions coherent and easy to implement. The use of protocols has
successfully solved the problem of standardization in areas such as computer
networks. Likewise, the heterogenous and distributed structure of multiagent
systems necessitates clear protocols to govern any interaction. Network proto-
cols explain the steps to be taken in great detail, sometimes even enumerating
all possible events that can occur. For example, the Session Initiation Protocol
(SIP), which is used to set up phone calls over the Internet, describes every
message that needs to be sent for setting up and tearing down calls and also
every possible resultant reply for the message (Rosenberg et al., 2002). By
contrast, multiagent systems require protocols to be specified at a high level
of abstraction, to accommodate the complexity of agent systems, and to not
overwhelm protocol designers with unnecessary details.

While protocols are needed to force an agent to behave in a predictable
manner, they should also allow flexibility of execution. A protocol that al-
lows only one sequence of steps does not let its participants leverage their
autonomy. A restrictive protocol, however, is not always bad. If a proto-
col allows only a single computation, checking whether the participants are
compliant with the protocol is trivial. Any step that does not agree with the
protocol signals a violation. As protocols become more flexible, however,
compliance verification becomes harder, since many choices are offered to
the participants at any step of the protocol. Consequently, protocol design is
an exercise in finding the right balance between flexibility of execution and
ease of compliance checking.

MOTIVATION

The tradeoffs between execution and verification to be borne in mind make
protocol design a nontrivial undertaking. It requires human expertise and
knowledge of the application domain. To reduce unnecessary effort and to
prevent reinventing the wheel, designers should be able to create new pro-
tocols by refining or combining existing protocols whose properties are well
understood. A sound theory of refining and composing protocols would assist
designers in ascertaining the properties of protocols. An algebra of protocols
that includes operators for merging and refinement is needed as the basis for
protocol composition.

Our central claim is that protocols can be characterized in terms of their
content, not just their sequence of steps. We develop a protocol algebra which
is at once a high-level abstraction of protocols and a useful tool for composing
protocols and reasoning about them, as we demonstrate with an example.
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CONTRIBUTION

Our main contribution is in developing an algebra for composing protocols.
Just as conceptual modeling in general involves abstractions such as refine-
ment and aggregation, so must the conceptual modeling of protocols. We
develop an algebra that provides the underpinnings of such abstractions for
protocols. The algebra is a high-level abstraction that relates to real-world
protocols, and hence is easy for protocol designers to understand. We also
demonstrate how the use of commitments allows reasoning about protocols
that leads to richer interaction patterns from existing ones. Further, we outline
how a hierarchy of protocols can be generated based on commitments. This
hierarchy aids reasoning about which protocol is the most general for a given
business process.

ORGANIZATION

The rest of this paper is organized as follows. Section 2 introduces the techni-
cal background, and some illustrative examples that are used throughout the
paper. Section 3 develops our theory of semantics of protocol subsumptions,
introduces the protocol algebra and demonstrates its utility in composing
protocols. Section 4 summarizes the paper, identifies related work in the field,
and charts out future directions.

2. Technical Framework

We represent protocols as transition systems similar in spirit to finite state ma-
chines. These protocols generate computations orruns, which are sequences
of states that a valid protocol execution can go through. We devise a hier-
archical classification based on the runs generated by protocols. Runs are
composed ofstatesthat the protocol computation (execution) goes through
based on theactionsthat the participants in the given protocol perform. This
classification forms the basis of our work. Next, we introduce commitments,
discuss some scenarios from our running example, and then define the basic
technical concepts needed for our semantics.

2.1. COMMITMENTS IN PROTOCOLS

Commitments among agents are an abstraction of contracts that exist in the
real world (Castelfranchi, 1993; Singh, 1991). Commitments lend coherence
to interactions because they help agents plan based on the actions of oth-
ers, and they are, in principle, enforceable. Commitment-based protocols are
more flexible than traditional formalisms like finite state machines and Petri
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nets (Verdicchio and Colombetti, 2002; Yolum and Singh, 2002). By specify-
ing the states that need to be reached in terms of commitments, they can allow
multiple paths to achieve a state, and consequently create a flexible protocol
specification.

A commitmentC(x, y, p) denotes that the agentx is responsible to the
agenty for bringing about the conditionp. Herex is thedebtor, y thecred-
itor, andp the conditionof the commitment, expressed in a suitable formal
language. Commitments can also beconditional, denoted byCC(x, y, p, q),
meaning thatx is committed toy to bring aboutp if q holds.

Commitment Operations
Commitments are created, satisfied, and transformed in certain ways. Con-
ventionally, six operations are defined on commitments. These are theCRE-
ATE(x,C), theCANCEL(x,C), theRELEASE(y,C), theASSIGN(y,z,C), theDEL-
EGATE(x,z,C), and theDISCHARGE(x,C). TheASSIGN(y, z,C) operation re-
placesy with z asC’s creditor and theDELEGATE(x,z,C) operation makesz
the new debtor of the commitmentC. A detailed exposition of these opera-
tions is given in (Singh, 1999) and is omitted here, for brevity.

TheDISCHARGE(·, ·, ·) operation satisfies a commitment. A commitment
is said to beactiveif it has been created, but not yet discharged.

2.2. RUNNING EXAMPLE

As a real-world example, we consider a variant of the NetBill protocol (Sirbu,
1997) used by a customer’s agent to purchase a book from an online book-
store’s agent. We identify four distinct, but related, scenarios that can arise
during this purchase interaction. Each of these scenarios requires a different
amount of effort from the participants in terms of protocol execution, plan-
ning, and coordination. Both agents would benefit from being able to compare
scenarios to choose the one that best serves their interests.

1. The customer asks the bookstore for a price quote on a book, and upon
receiving a quote from the bookstore, accepts the bookstore’s offer. The
bookstore sends the book, and the customer pays for it. Figure 1.a shows
this interaction. This interaction sequence belongs to thepurchaseproto-
col.

2. The bookstore is willing to refund the price of returned books. This sce-
nario is similar to the previous scenario till the book is delivered to the
customer, but is longer, since the customer then returns the book for a
refund. Figure 1.b. shows this interaction.

3. The customer delegates the payment to a third party, e.g., a bank. Such a
situation is not very different from using a credit card to pay for goods,
and is shown in Figure 1.c.
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4. The customer wants insured shipping, and the bookstore’s existing ship-
per does not insure goods. The bookstore negotiates with and contracts
out the shipping to a shipper. Here, the shipper delivers the books to the
customer, after which the shipper is paid by the bookstore. To complicate
matters, the customer pays the bookstore via its bank like in the previous
scenario. This scenario is shown in Figure 2.

In Figures 1.a, 1.b, 1.c, 2, 4.a, and 4.b, ellipses represent states, namedsi.
Solid arrows are labeled by the messages that are passed between the par-
ticipating agents. These messages correspond to actions that the agents take.
Note that each of these figures represent a possible scenario, i.e., arun of
the protocol. Also, states of the runs are drawn in different columns (also
called swimlanes in UML parlance) to show the interacting agents clearly
even though states are maintained by all interacting agents.

Table I explains the meanings of the states that the first scenario runs
through. Table II shows the meanings of the messages passed, wherec rep-
resents the customer,b, the bookstore,g, the book that the customer is inter-
ested in buying, andk, the customer’s bank. Thedelegatemessage relates to
corresponding commitment operation.

Table I. Meaning of states in the purchase protocol

State Meaning

s1 Customer has asked the bookstore the price of the goods. No commitments made.

s2 Bookstore has quoted a price for the said goods. The bookstore is now willing to
send the goods if the customer promises to pay for them

s3 Customer has agreed to the bookstores price. The customer is willing to pay the price
if the books are delivered.

s4 Bookstore has delivered the book.

s5 Customer has paid for the book.

2.3. PROPOSITIONS

Propositions capture facts about what conditions hold, what commitments
have been made, and whether these commitments have been fulfilled. The
propositions used in a protocol are assumed to be understood by agents in-
volved in the protocol. In thepurchaseexample, we use the propositions
given in Table III. In addition to these, active commitments are also repre-
sented as propositions, as we shall explain when discussing states.
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a. Purchase protocol scenario 1: normal pur-
chase

b. Purchase protocol scenario 2: goods re-
turned for a refund

c. Purchase protocol scenario 3: customer pays via bank

Figure 1. Three scenarios of the purchase example

2.4. ACTIONS

Agents perform actions to bring about changes in the world. In our frame-
work, actions are modeled as messages sent by an agent to other agents.
Just like an action, a message sent by an agent can affect the state of a
protocol in which the agent participates. Messages may be implemented in
different ways. For example, filling a form with credit card information and
submitting it over the web is a message that represents a transfer of funds.
The set of actions is denoted byA. The meanings of the actions used in our
purchaseexample are given in Table II. In addition to the actions shown,A
also contains actions corresponding to the commitment operations applied
to each commitment. For example,A contains an actiondelegate(c, k, C)
corresponding to the operationdelegate(c, k, C), whereC is a commitment
made byc.
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Figure 2. Purchase protocol scenario 4: shipping via a separate shipper and payment via bank

2.5. STATES

A protocol has manystatesthat it goes through, during the course of its execu-
tion. A state is a snapshot of the world and is labeled by the set of propositions
that are true in it. The propositions in the universe of discourse are termed the
frame. A frame serves as a common ontology for the propositions used by
a protocol. Frames provide the universe of discourse of a protocol. A state
is an assignment of truth values to propositions. For example, states1 of the
purchaseexample is labeled by the set{reqQuote(c, b, g)} and states0 by
{true}. We denote the label of a states by [s]. Table IV shows the labels that
are assigned to states in thepurchaseprotocol. The set of states is denoted by
S. We include in this set a unique start statesφ, which is labeled by the set
{true}. In thepurchaseexample,s0 = sφ.

2.6. RUNS

A run is one possible execution sequence of a protocol. A protocol can allow
many computations, orruns. A run is a sequence of states〈s0 . . . si . . .〉. We
use∈ to indicate the occurrence of a state on in a run. For example,si ∈
〈s0 . . . si . . .〉. In this paper, we consider only finite runs. The empty run is
allowed.
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Table II. Meanings of actions (modeled as messages) in the purchase protocol

Message Meaning

reqQuote(c, b, g) c asksb what the price ofg is

sendQuote(b, c, g, p) b quotes pricep to thec, for g

sendAccept(c, b, g, p) c accepts the pricep quoted byb for g. c is now committed to pay
if the book is sent to it

sendGoods(b, c, g) b sendsg to c

sendMoney(c, b, p) c sends the moneyp to b

delegate(c, k, C) c delegates the commitmentC to k

returnGoods(c, b, g) c returnsg to b

sendRefund(b, c, p) b refunds the moneyp to c

authPay(c, b, p) c authorizes its bank to pay the amountp to b; essentiallyc
delegatesC(c, b, p) to k

Table III. Meanings of propositions used in the purchase protocol

Proposition Meaning

reqQuote(c, b, g) c has requested a quote forg from b

quote(b, c, g, p) b quotes to c price p for g, i.e., b will deliver if
c commits to pay upon delivery. This is represented by
CC(b, c, goods(b, c, g), acceptQuote(c, b, g, p))

acceptQuote(c, b, g, p) c has accepted the pricep that b quoted for g, i.e, c com-
mits to pay if the goods are delivered. This is represented by
CC(c, b, pay(c, b, p), goods(b, c, g))

goods(b, c, g) g has been delivered toc by b

pay(c, b, p) The amountp has been paid tob by c

return(c, b, g) g has been returned tob by c

refund(b, c, p) The amountp has been refunded toc by b

The operator≺τ orders states temporally with respect to a runτ , so that
si ≺τ sj implies thatsi occurs beforesj in the runτ . The concatenation of a
statesn to a runτ = 〈s0s1 . . . sk〉, written asτ ◦sn, is given by appending the
state to the run, i.e., by〈s0s1 . . . sksn〉. The sequence of states in asubrunof
a runτ = 〈s0 . . . sn〉 is a possibly noncontiguous subsequence ofs0 . . . sn.
We denote the first state of a runτ by [τ ]0, thenth state by[τ ]n, and the last
state by[τ ]>.
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Table IV. State labels in the purchase protocol

State Associated Label

s0 {true}
s1 {reqQuote(c, b, g)}
s2 {quote(b, c, g, p)}
s3 {C(b, c, goods(b, c, g)), CC(c, b, pay(c, b, p), goods(b, c, g))}
s4 {goods(b, c, g), C(c, b, pay(c, b, p))}
s5 {goods(b, c, g), pay(c, b, p)}
s21 {goods(b, c, g), C(k, b, pay(k, b, p))}
s17 {goods(b, c, g), pay(c, b, p)}
s18 {goods(b, c, g), return(c, b, g), C(b, c, refund(b, c, p))}
s19 {goods(b, c, g), return(c, b, g), refund(b, c, p)}

2.7. PROTOCOLS

Computationally, a protocol corresponds to a set of computations that it al-
lows. These can be captured as a set of runs where any of the runs that
subsumethe given runs may be realized. That is, each run in a protocol defines
a sequence of steps that must be performed in the same order relative to each
other. The subsumption of runs is defined below. A protocol is represented as
a transition system as defined by a tuple〈A, S, S0,∆,F,R〉 whereA is a set
of actions,S is a set of states,S0 is the set of initial states (S0 ⊆ S), ∆ is a
set of transitions (∆ ⊆ S × A × S), F is a set of final states, (F ⊆ S), andR
is a set of roles (or participants).

∆ contains transitions of the form〈si, a, sj〉, wheresi, sj ∈ S anda ∈ A.
Heresi is the source of the transition andsj its destination. Such a transi-
tion advances a computation from statesi to statesj when an actiona is
performed, i.e., when the message corresponding toa is sent (and received,
assuming synchronous message passing, for convenience). In other words,
a run can be generated from a protocol by the successive concatenation of
transitions beginning from the initial state of the transition system. The con-
catenation of a transition to a run appends the destination of transition to
the run if the source of the transition matches the last state of the run. Con-
sequently, a run〈s0s1s2 . . . sn〉 can be generated by a protocol whose initial
state iss0, and whose transition set contains the elements〈s0, , s1〉, 〈s1, , s2〉
and so on till〈sn−1, , sn〉, wheres0 ∈ S0 andsn ∈ F. The set of all such
runs is denoted by[P ].

Protocols are specified by propositions and actions that cause states to
change. The semantics of actions are given in terms of commitments such as
those shown in Table II. Given the actions and their semantics, the formal-
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ization of a protocol is straightforward. The transition function of a protocol
can be specified explicitly as state-action-state triples or as a set of rules that
are complied into such triples for runtime efficiency. Two example transi-
tion mechanisms for commitment-based protocols are commitment machines
(Yolum and Singh, 2002) and nonmonotonic commitment machines (Chopra
and Singh, 2003). For example, Tables III, II, and IV, along with a set of rules
for determining the new state given the old state and the action taken would
define the purchase protocol.

3. Reasoning about Protocols

This section describes our theory of comparing and refining protocols. Sec-
tion 3.1 defines how states are deemed similar to one another, Section 3.2
defines what it means for a run to subsume another or be similar to an-
other, Section 3.3 defines subsumption and similarity of protocols, and Sec-
tion 3.4 uses comparisons of commitment-operation based propositions to
relate different protocols.

3.1. SIMILARITY OF STATES

States form the fundamental components of runs, and are identified (and la-
beled) by sets of propositions. Any comparison of states, therefore, must be
based on comparing propositions. This section introduces three state-similarity
functionsι, σ, andαA,P , all based on commitment propositions, and shows
how these help relate different runs.

A state-similarity functionf is a mapping from a state to a set of states,
i.e., f : S 7→ 2S. From such a function, we can induce a binary relation
≈f⊆ S× S, which is defined as≈f= {(s, f(s)) : s ∈ S}. That is,

si ≈f sj ⇐⇒ sj ∈ f(si) (1)

For a well formed state-similarity functionf ,≈f must be reflexive, symmet-
ric, and transitive, i.e., an equivalence relation.

We constrain all runs to preventstuttering, i.e., to not have consecutive
states that are similar, i.e., for every runτ = 〈s0 . . . sn〉, si is not similar
underf to si+1, for all 0 ≤ i < n.

Identity State-Similarity. ι is the identity state-similarity function. That is,
si ≈ι sj if and only if si andsj are labeled by same set of propositions.
ι(si) = {sj |[si] = [sj ]}.≈ι is an equivalence relation.

Creditor State-Similarity. As another state-similarity function, considerσ.
Underσ, a statesi is similar to a statesj if in the two states all the par-
ticipants of the protocol have the same commitments being made towards
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them, regardless of which agent makes it. Since the creditor of a commitment
is immaterial underσ and adelegate(·, ·, ·) action changes the creditor of a
commitment,σ can be defined asσ(si) = {sj |sj can be reached by finite
number ofdelegate(·, ·, ·) actions fromsi}

As an example, consider statess4 ands21 from the of the example scenar-
ios.These states are similar underσ because, as described in Table IV, these
states have propositions representing commitments that differ only in their
creditors.≈σ is an equivalence relation.

Role-and-Commitment State-Similarity.A statesi is similar to a statesj

underαA,P , whereA is a set of roles andP is a set of propositions, if the com-
mitments made by any role inA to any other role inA, and the propositions
in P that hold atsi, also hold atsj . If, for example,A represents all the roles
in a protocol andP represents all the proposition used by that protocol, then
αA,P can be used as a similarity function to detect cases where the protocol
has been merged with other protocols. This is explained in greater detail in
Section 3.4.2.

3.2. SUBSUMPTION AND SIMILARITY OF RUNS

Comparisons among protocols are based on a notion ofsubsumptionof runs.
[[f ]〉 denotes subsumption operator over runs. The operator[[f ]〉 is an order-
preserving mapping from one run to another, and depends on the function
f .

Definition 1. A run τj subsumesa runτi under functionf if and only if,
for every statesi that occurs inτi, there occurs a statesj in τj that is similar
underf , andsj has the same temporal order relative to other states inτj assi

does with states inτi.

τj [[f ]〉τi ⇐⇒ (∀si, s
′
i ∈ τi : (∃sj , s

′
j ∈ τj (2)

andsi ≈f sj ands′i ≈f s′j
and(si ≺τi s′i ⇒ sj ≺τj s′j)))

That is, longer runs subsume shorter ones, provided they have similar states
occurring in the same order. Before we describe properties of run subsump-
tion, we definerun-similarity.

Definition 2. A run τi is similar to a runτj under a well-formed state-
similarity function f if and only if the two runs are of equal length and
every kth state ofτi is similar underf to the kth state inτj . In notation,
[τi]k ≈f [τj ]k, 0 ≤ k < |τi| and|τi| = |τj |.
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Lemma 1.If a runτj subsumes a runτi underf , then, for all subrunsβi of
τi, there exists a subrunβj of τj such thatβi ≈f βj . That is,τj [[f ]〉τi ⇒ (∀βi

subrun ofτi, ∃βj subrun ofτj : βi ≈f βj).

Proof.This lemma holds trivially for subruns of lengths 0 or 1. We prove
this lemma by induction on the length of subruns. As the base case, we note
that by the definition of run subsumption, there must be a pair of states in both
runs for which the above property holds, i.e.,(∀βi subrun ofτi : |βi| = 2 ⇒
(∃βj subrun ofτj andβi ≈f βj)). Assume this property holds for subruns of
a particular lengthk > 2. Next, consider|β′i| = k + 1, where[β′i]

k = s′i. The
first k states ofβ′i form a subrun of lengthk. Therefore, there exists a subrun
βj of τj such thatβi ≈f βj andβj is the earliest such subrun inτj . Consider
thek pairwise temporal precedence relationships (inτi) between the firstk
states ofβ′i ands′i. By the definition of run subsumption, we know that since
τj [[f ]〉τi, ∃s′j ∈ τj such that[βj ]> ≺τj s′j ands′j ≈f s′i. Let s′j be the earliest
such state inτj , so thatβ′j = βj ◦ s′j . Thus, the inductive hypothesis holds for
subruns of lengthk + 1. By induction, the lemma holds.

Theorem 1.Under any well-formed state similarity function, run subsump-
tion is reflexive, transitive, and antisymmetric up to state similarity.

Proof. The reflexivity of run subsumption follows from the reflexivity of
state-similarity functions. The transitivity of run subsumption follow from
its definition. The antisymmetry of run subsumption means that if two runs
subsume each other under some well-formed state similarity functionf , then
those runs are similar underf . For proof, consider Lemma 1. By Lemma 1
we know that ifτj [[f ]〉τi, then for each subrun ofτi, there is a similar subrun
of τj . Let the entire runτi be treated as a subrun of itself. Then, there is a
similar subrun inτj , i.e., |τj | ≥ |τi|. In a similar manner, fromτi[[f ]〉τj , we
infer that |τi| ≥ |τj |. Hence,|τi| = |τj |. Since the runs are of equal length
and all the subruns of one have similar subruns in the other,τi ≈f τj if τi and
τj subsume each other underf .

Let us consider an example to better explain the above concepts. Letτ1,
τ2, andτ3 be the runs shown in Figures 1.a, 1.b, and 1.c respectively. We then
haveτ2[[ι]〉τ1. Also,τ3[[ι]〉τ1. However,τ1 subsumes neitherτ2 norτ3, because
τ3 has a states21, whose label does not match any state label inτ1, andτ2

has statess18 ands19, whose labels do not match any state label inτ1. Run
τ3 does not subsumeτ2 because ofs21, andτ2 does not subsumeτ3 because
of s18 ands19.

Next, we consider run subsumption under the creditor state-similarity func-
tion σ. Here,τ2[[σ]〉τ1. Also, sinces21 ∈ σ(s4), τ1[[σ]〉τ2. Runτ3 subsumes
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bothτ1 andτ2 for the same reason, but neitherτ1 nor τ2 subsumesτ3, since
neither of them have states that areσ-similar tos18 ands19.

Figure 3.a shows the subsumption relation between the runsτ1, τ2, andτ3

under the identity functionι and Figure 3.b, underσ.

a. ι subsumption b.σ subsumption

Figure 3. Subsumption of purchase protocol runs underι andσ

3.3. SUBSUMPTION AND SIMILARITY OF PROTOCOLS

Closure of Protocol Runs In line with our intuitions that generic protocols
allow many variations, we constrain all protocols to have a set of runs that is
closed under run subsumption. That is, if any run occurs in the set of runs of
a protocol, all the runs that subsume it (under a well-formed state-similarity
function) are also found in that set. Given a well formed state-similarity func-
tion f , a protocolP contains all runs that subsume any run in[P ]. We define
this new set of runs as the set of runs allowed by the protocol, and denote this
set by[[P ]] = {τ |∀τ ′ ∈ [P ] : τ [[f ]〉τ ′}.

Operationally, the runs allowed by a protocol completely characterize that
protocol by naturally illustrating the key tradeoff in protocol design, that of
flexibility versus compliance:A protocol that allows many runs is better than
one that allows a few runs, since the many-run protocol affords more choice
and flexibility in protocol execution to the participants. However, checking
for compliance is computationally more demanding when protocols have nu-
merous runs. The definition of the subsumption of protocols reflects these
intuitions.

Definition 3. A protocolPj subsumesa protocolPi under a state-similarity
functionf if and only if, every run in[[Pi]] subsumes, underf , a run in[[Pj ]].

Pj [[f ]〉Pi ⇐⇒ ∀τi ∈ [[Pi]] ∃τj ∈ [[Pj ]] : τi[[f ]〉τj (3)

If Pj is a protocol that has short runs (and consequently all runs that sub-
sume them) andPi is a protocol that has long runs only, thenPj subsumes
Pi. Since long runs subsume shorter ones, protocols with long runs only are
subsumed by protocols with short runs as well.

Before we describe the properties of protocol subsumption, we define
protocol similarity as follows:
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Definition 4. Two protocols are similar under a state similarity functionf
if and only if for every run in one protocol, there exists at least one run in the
other protocol that is similar underf and vice versa.

Pj ≈f Pi ⇔ ∀τi ∈ [[Pi]], ∃τj ∈ [[Pj ]] : τi ≈f τj (4)

and∀τj ∈ [[Pj ]], ∃τi ∈ [[Pi]] : τj ≈f τi

Theorem 2.For any state-similarity functionf , the protocol subsumption
relation[[f ]〉 is a partial order, i.e., reflexive, transitive, and antisymmetric (up
to state similarity).

Proof.Reflexivity and transitivity of protocol subsumption follow from its
definition. Because of the property of closure of the set of runs of a protocol
under run subsumption and the definition of protocol subsumption, we know
that if Pi[[f ]〉Pj , then∀τj ∈ [[Pj ]] : ∃τi ∈ [[Pi]] : τj ≈f τi. Conversely, if
Pj [[f ]〉Pi, then∀τi ∈ [[Pi]] : ∃τj ∈ [[Pj ]] : τi ≈f τj . Together, these are
equivalent toPj ≈f Pi.

3.4. THE PROTOCOLALGEBRA

We now introduce our protocol algebra as consisting of two operators (merge
andchoice), their identity elements (1 andO, respectively), and an ordering
relationship (protocol subsumption, as defined above).

Merge. The merge operator, denoted by⊗f , splices two protocols (under
a state-similarity functionf ) to produce a new protocol. A merge of two
protocols involves interleaving their runs.

Definition 5. The merge of two protocolsP andQ under a well-formed
state-similarity functionf creates a protocolR, each of whose runs subsume
some run from[[P ]] and some run from[[Q]].

[[P ⊗f Q]] = {r|∃rp ∈ [[P ]], ∃rq ∈ [[Q]] : r[[f ]〉rp andr[[f ]〉rq} (5)

Choice. The choice operator, denoted by⊕f , combines two protocolsP
andQ (under a state similarity functionf ) to create a protocolR, whose set
of runs[[R]] contains exactly those runs that exist in the sets[[P ]] and[[Q]].

Definition 6. The choice of two protocolsP andQ under a well-formed
state-similarity functionf creates a protocolR, each run of which subsumes
either a run from[[P ]] or a run from[[Q]]
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[[P ⊕f Q]] = {r|∃rp ∈ [[P ]], ∃rq ∈ [[Q]] : r[[f ]〉rp or r[[f ]〉rq} (6)

Choosing a run from[[P ⊕f Q]] is equivalent to choosing a run from either
[[P ]] or a run from[[Q]].

Constants. The properties of the merge operator lead us to define two pro-
tocols,O and1. TheO protocol is an “impossible” protocol, which does not
have any runs.[[O]] = {}. The1 protocol is a “trivial” protocol which con-
tains the zero-length run in its run-set, and consequently contains all possible
runs.[[1]] = {τ : τ [[f ]〉τφ}, whereτφ = 〈〉, andf is any well-formed state-
similarity function. TheO and the1 protocols form the bottom and the top
element, respectively, of a protocol hierarchy based on the merge function.
All protocols are subsumed by the1 protocol and all protocols subsume the
O protocol.

3.4.1. Formal Results
We briefly present some formal results, which simplify reasoning about pro-
tocols using our algebra. First, we present a formulation for the operators in
terms of protocol subsumption. Since definitions 5 and 6 state the properties
of the operators only in terms of the runs of the protocols, this new formu-
lation simplifies the understanding of the behavior of the merge and choice
operators, and likens them to set intersection and union, respectively.

Theorem 3.Given the run-subsumption relation[f ]〉 under a well-formed
state-similarity functionf , the merge⊗f of two protocolsP andQ under
f is the greatest lower bound ofP andQ under the protocol subsumption
relation[f ]〉.

Proof.Let R = P ⊗f Q. This implies that

[[R]] = {r|∃p ∈ [[P ]],∃q ∈ [[Q]] : r[f ]〉p andr[f ]〉q} (7)

Consider some protocolR′ such thatP [f ]〉R′ andQ[f ]〉R′. By definition of
protocol subsumption,

∀r′p ∈ [[R′]], ∃p ∈ [[P ]] : r′p[f ]〉p (8)

∀r′q ∈ [[R′]], ∃q ∈ [[Q]] : r′q[f ]〉q (9)

From equation 7 we know that all runs that subsume a run each from[[P ]] and
[[Q]] are in [[R]]. From equations 8 and 9, we know that every run in[[R′]] is
just such a run. Hence,∀r′ ∈ [[R′]], r′ ∈ [[R]]. From the closure property of
protocol run-sets, we further infer that∀r′ ∈ [[R′]], ∃r ∈ [[R]] : r[f ]〉r′, which
means thatR[f ]〉R′. Since anyR′ is subsumed byP ⊗f Q underf ,⊗f gives
the greatest lower bound ofP andQ under protocol subsumption underf .

jaamas-protocols-aum-v07.tex; 9/06/2005; 1:32; p.15



16

Essentially, the merge is analogous to the intersection of the sets of runs of the
protocols being merged, where run similarity is used to determine equality of
elements of the sets.

Theorem 4.Given the run-subsumption relation[f ]〉under a well-formed
state-similarity functionf , the choice⊕f of two protocolsP andQ underf
is the least upper bound ofP andQ under the protocol subsumption relation
[f ]〉.

Proof.Let R = P ⊕f Q. This implies that

[[R]] = {r|∃p ∈ [[P ]] : r[f ]〉p or ∃q ∈ [[Q]] : r[f ]〉q} (10)

Consider some protocolR′ such thatR′[f ]〉P andR′[f ]〉Q. By definition of
protocol subsumption,

∀p ∈ [[P ]], ∃r′p ∈ [[R′]] : p[f ]〉r′p (11)

∀q ∈ [[Q]],∃r′q ∈ [[R′]] : q[f ]〉r′q (12)

Let r ∈ [[R]]. From equation 10, without loss of generality, we can assume
that ∃p ∈ [[P ]] : r[f ]〉p. From this, equation 11, and the transitivity of run
subsumption, we infer that∀r ∈ [[R]],∃r′p ∈ [[R′]] : r[f ]〉r′p, which is the
definition of protocol subsumption underf . HenceR′[f ]〉R. Since anyR′
subsumesP ⊕f Q underf ,⊕f gives the least upper bound ofP andQ under
protocol subsumption underf .

Choice is analogous to the union of the sets of the runs, using run similar-
ity to compare elements of the sets.

Next, we state some simple properties of the protocol-algebraic operators
that are immediate consequences of the properties of the operators described
in the theorems above.

Since each run in[[P ⊗f Q]] subsumes a run each from[[P ]] and from[[Q]],
the following properties apply to the merge operator

1. The merge of a protocol with another refines the given protocol.
P [[f ]〉(P ⊗f Q)
Q[[f ]〉(P ⊗f Q)

2. The merge of a protocol with itself yields the same protocol (idempo-
tence).
P [[f ]〉(P ⊗f P )
(P ⊗f P )[[f ]〉P
(P ⊗f P ) = P
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3. The merge operator is commutative and associative.
P ⊗f Q = Q⊗f P
P ⊗f (Q⊗f R) = (P ⊗f Q)⊗f R

4. Merge distributes over choice.
P ⊗f (Q⊕f M) = (P ⊗f Q)⊕f (P ⊗f M)

5. The merge of any protocol with1 gives that protocol and the merge of
any protocol withO givesO. In this way, the1 protocol is the identity
element and theO is the nil element for merge.
P ⊗f 1 = P
P ⊗f O = O

Choice also supports idempotence, commutativity, and associativity. The choice
of a protocol with1 yields1 and the choice of a protocol withO yields that
protocol itself.

1. Idempotence.
(P ⊕f P ) = P

2. Commutativity.
(P ⊕f Q) = (Q⊕f P )

3. Associativity.
P ⊕f (Q⊕f R) = (P ⊕f Q)⊕f R

4. Choice distributes over merge.
P ⊕f (Q⊗f R) = (P ⊕f Q)⊗f (P ⊕f R)

5. Choice with1 andO
P ⊕f 1 = 1
P ⊕f O = P

3.4.2. Applying the Algebra
Now we discuss how the algebra can be applied to create new protocols. The
choice operator⊕f allows us to choose between runs belonging to different
protocols. This operator can be used, for example, when multiple ways of
payment exist, such as payment by credit card, or payment by personal check.
The result of the choice operator is a protocol whose set of runs is larger and
thus offers more choices than the individual protocols to which the choice
was applied.

The merge operator is more interesting. As an example of its application,
consider the run shown in Figure 1.c. This run belongs to the merge of the
simple purchase shown in Figure 1.a. and payment, shown in Figure 4.a. The
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a. Payment-via-bank protocol b. Shipping protocol

Figure 4. A payment and a shipping protocol

merge is performed under the creditor state-similarity functionσ. As a more
complicated, consider a run of the refined purchase example as shown in Fig-
ure 2. This run belongs to the refined purchase protocol, which is the result of
a merge of the simple purchase, the shipping, and the payment protocols. The
state-similarity function used here isαA,P . UnderαA,P , A is a set of agents,
P , a set of propositions, and two states are similar if all commitments between
agents agents inA and all propositions inP that exist in one state also exist
in the other. UnderαA,P , whereA denotes the set containing the participants
of Shipping, i.e.,{b, x, c}, andP denotes the set of all propositions that are
used inShipping, we see that theShippingrun shown in Figure 4.b. is sub-
sumed by the refinedPurchaserun shown in Figure 2. Specifically, the states
s3, s11, s12, s13, s14, s5, ands16 of refinedPurchaseareαA,P -similar to the
statess10, s11, s12, s13, s14, s15, ands16 of Shippingrespectively. Similarly,
the statess4 and s21 of the refinedPurchaseare similar to statess20 and
s21 of PaymentunderαA,P , whereA denotes{c, k} andP denotes the set
of all propositions used inPayment. Consequently, the refinedPurchaserun
subsumesPayment. Note that Figure 2 shows only one run of the refined
purchase protocol. Given the semantics of the merge operator, the refined
purchase protocol allows more runs, since all valid interleavings of runs of
the merged protocols are allowed. One such run could be where the shipping
protocol is started before the first step of the purchase protocol. In practice,
data dependencies and temporal state ordering are specified to filter the set of
runs generated by interleaving.

4. Discussion

Our research program seeks to develop rich abstractions methodologies that
will ease the development of large-scale open systems. This paper is part of
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our ongoing research in that direction. Singhet al.present an overview of the
motivations of this program and of the applications envisioned for it (Singh
et al., 2004).

The framework presented in this paper can serve as the foundation for de-
veloping design-time tools, and possibly for automated, runtime composition.
Complete automation of protocol composition requires a complete specifi-
cation of the behavior of a protocol. This is rarely the case when dealing
with complex agent interaction protocols that can find applications in busi-
ness processes modeling or Web Service composition. Most realistic settings
require considerable context-sensitive information, which may be encoded
as policies local to the agent. Such contexts may be based on motivations
such as trust and economics, which can change unpredictably. The autonomy
of agents in a multi agent system allows agents to behave differently under
different contexts. It is this dynamic behavior that makes the agent paradigm
attractive for application to open systems, and cannot be statically specified
for all but the simplest of agents. Our framework helps develop tools that aid
protocol designers in tailoring an existing protocol to meet their requirements
by automatically verifying properties of the designed protocol.

Our understanding of protocols as specifications of the minimum states
that a computation should contain is analogous to the minimal process execu-
tion semantics as defined in the MIT Process Handbook (Malone et al., 2003).
There is an underlying assumption that concise specifications are better than
elaborate ones, since flexibility of a protocol is desirable in business applica-
tions where opportunities can be profitably exploited. In some cases, however,
a maximal execution semantics might be applicable, e.g., in a protocol for
which compliance checking is costly or difficult or where unexpected actions
are undesirable.

4.1. L ITERATURE

Our work relates to and draws both from well established and emerging
fields. Business processes have received much attention lately because of the
economic benefits of cross-enterprise business. Coordination and interaction
protocols have been studied by the agent research community so that agent
conversations and interaction can be computationally realized. We list here
selected literature from both areas.

4.1.1. Workflows and Processes.
Business processes have been traditionally automated as workflows. Recently,
the web service model has been applied to process automation.

Workflows have been studied extensively as Petri-net based models of
business processes (van der Aalst et al., 2000; van der Aalst and van Hee,
2002). The Workflow Management Coalition (WfMC) is a standards body
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that has created a reference model for workflows (Fischer, 2004). This model
has two basic parts, a modeling and an enactment part. The model prescribes
a workflow engine as the system that executes the workflow. These models
specify a rigid sequence of steps. Workflows require human intervention to
handle most exceptions. Because of their inflexibility, workflows have had
only limited success.

The MIT Process Handbook (Malone et al., 2003) is a project that aims
to create a hierarchy of commonly used business processes. Based on this
hierarchy, Grosof and Poon (2003) develop a system to represent and execute
business rules.

Of late, web services have been touted as the solution to the business in-
teroperability problem. The need for process composition and interoperability
has led to the development of standards for orchestration and choreography
of web services (Peltz, 2003). Orchestration refers to intra-service planning
and choreography to an overall view of inter-service coordination. Here, we
shall mention only two important standards, WSCI and BPEL4WS. The Web
Services Choreography Interface (WSCI) is an XML-based language that
describes a service interface by the flow of messages sent and received by
the service. The standard, however, looks at protocols one level lower than
our view, since each WSCI specification corresponds to a role in our scheme.
The Business Process Execution Language for Web Services (BPEL4WS) is
currently the most widely used web services standard for describing business
processes (Andrews et al., 2003). However, BPEL4WS is no more than a
procedural script encoded in XML.

Fu et al. (2004) develop methods to verify if a given web service will
adhere to a given conversation protocol. Their work develops formal results
about verification of protocol compliance for protocols based on finite state
machines. Hamadi and Benatallah (2003) develop a protocol algebra for petri
nets and show its applicability to workflows and web services. However, this
approach suffers from the same pitfalls as workflows modeled using Petri
nets.

4.1.2. Interaction Protocols.
Yolum and Singh (2002) give one of the first accounts of the use of com-
mitments in modeling agent interaction protocols and the flexibility that it
affords the participating agents. Fornara and Colombetti (2003) describe how
commitments relate to FIPA-ACL messages and demonstrate with an exam-
ple. Both approaches highlight the benefits of a commitment-based approach
to interaction protocol design.

Johnson et al. (2003) develop a scheme for identifying when two commitment-
based protocols are equivalent. Their scheme, however, is simplistic, classi-
fying protocols based solely on their syntactic structure. Our work provides
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stronger results about the relationships between protocols from an application
point of view and relates better to the Web Services approach.

Bussmann et al. (2003) present a design methodology to aid in the selec-
tion of a protocol from a library of existing protocols to apply to agent-based
control applications. They identify criteria like the number of agents, the
number of roles, and the number and kind of commitments and use these to
select a protocol from an existing pool of interaction protocols. This approach
is quantitative, and lacks a formal semantics to base the methodology on.

Pitt and Mamdani (2000) describe a semantics for agent interaction pro-
tocols using the Belief-Desire-Intention (BDI) theory. Using this semantics,
they outline the design of a system of agent plans that are instantiated by
agents to carry on conversations with other BDI agents. In our work, an agents
beliefs, desires, and intentions are private to that agent. We work with social
commitments which are observable by all agents and whose breach is easier
to verify.

In more recent work, Vitteau and Huget (2004) describe an approach for
designing agent interaction protocols using modularmicro-protocols. This
scheme is similar to our protocol design proposal in spirit. However, Vitteau
and Huget do not provide a formal basis for putting protocols together.

4.2. CONCLUSIONS ANDDIRECTIONS

The above is a semantic approach to commitment protocols that yields a
simple algebra for protocols. This algebra provides a basis for conceptual
reasoning about protocols in terms of refinement and aggregation, which is
essential if we are to engineer protocols that way other software systems are
engineered. To our knowledge, this work is unique in formulating the prob-
lem of problem design at a conceptual level. Partly, it derives it uniqueness
from a careful consideration of the commitments that underlie protocols in
multiagent settings.

This work opens up some interesting challenges. One, it would help con-
sider how the algebra will work with more subtle kinds of state similarity
functions. Two, the abstractions supported by our algebra must be woven into
a methodology for designing protocols. Three, such methodologies should be
supported by tools that give appropriate reasoning assistance to designers.
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