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Abstract

Although much progress has been made in agent theory and practice, bottle-
necks remain in the construction of complex multiagent systems. We introduce
interaction-oriented programming (IOP) as an approach to orchestrate the in-
teractions among agents. IOP is more tractable and practical than general
agent programming, especially in settings such as open information environ-
ments, where the internal details of autonomously developed agents are not
available. IOP facilitates multiagent system design by enabling declarative
specification and enactment of agent interactions, thereby channeling the intel-
lectual energies of designers into the most amenable and effective design tasks.
We develop an event algebra to specify interactions among agents. We auto-
matically compile these declarative specifications into executable temporal logic
constraints. These are efficiently processed at run-time to produce the desired
behavior in a distributed manner. We have implemented the above modules in
a (concurrent) actor language.
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1 Introduction

Multiagent systems are finding important applications over the expanding computing
and communications infrastructure [Wittig, 1992; Liu & Sycara, 1994; Oates et al.,
1994]. The chief characteristics of modern information environments are distribution,
heterogeneity, and autonomy. Multiagent systems apply naturally in such settings,
and help convert the above necessities into the virtue of modularity.

We propose interaction-oriented programming as a class of formalisms and tech-
niques to develop multiagent systems. Interaction-oriented programming (IOP) fo-
cuses on what is between, rather than within, agents. Briefly, IOP is concerned with

e the semantics of interactions among distributed agents
e languages for expressing the desired properties of interactions
e techniques for programming systems

e tools for realizing them.

IOP is a family of formalisms and techniques, with a wide range of abstractions.
These include abstractions for (a) a rigorous understanding of events in a multiagent
system, (b) message passing to implement control and data flow [Hewitt, 1991], (c)
patterns of interactions, (d) knowledge-level communication constraints [Singh, 1994],
and (e) social constructs [Gasser, 1991]. Much research has been conducted into
these abstractions. What is new here is the focus on programmability and common
structure or “design-patterns” without, however, any loss of rigor. This is a significant
challenge. For this reason, we are able to report only on the first three aspects
here. In this sense, this paper only scratches the surface of IOP. However, nontrivial
progress has been made on a formal theory based on process algebra and a successful
implementation in an actor language.

IOP shamelessly borrows from previous work in concurrent programming, dis-
tributed computing, heterogeneous databases, and distributed artificial intelligence.
Thus, IOP naturally bridges the gap between the open systems and intelligent agent
heritage of multiagent systems [Hewitt, 1991; Hewitt & Inman, 1991]. The most rel-
evant previous techniques for developing and verifying multiagent systems are either
not formal, or are designed for traditional distributed systems, or do not fully exploit
the modularity inherent in multiagent systems. For example, AgenTalk [Kuwabara
et al., 1995] gives a powerful programming environment, but no formal semantics.
By contrast, [Kick, 1995] has a theory, but no associated implementation. Further,
Kick’s theory is a variation on traditional process algebras and violates autonomy
by requiring full details of the internal structure of agents. The present approach
develops a semantics and realizes it in an activity management infrastructure that
enhances ideas from extended database transaction models.

This paper presents our theory and implementation in the context of cooperative
information searches. Section 2 motivates and presents our conceptual approach.
Section 3 describes our algebra for specifying interactions and uses it to formalize an
example from section 2. Section 4 reviews the pertinent multiagent literature.



2 Conceptual Description of Approach

Although our approach is generic, we consider information search applications for con-
creteness. In such applications, agents cooperate to perform combinations of tasks
such as resource discovery, information retrieval, information filtering, querying het-
erogeneous databases, and information fusion.

Example 1 Consider a ship on the high seas. Suppose an engine spare-part, a
valve, runs low in the ship’s inventory. This simple fact can lead the maintenance
engineer to a complex search for information. (a) Have additional spares already been
ordered?—access an on-board text log. (b) Are any in transit—access an on-shore
legacy database. (c) Are such valves available at the next sea-port to be visited?—
access the bridge to find the next sea-port and call up the databases of the part
suppliers located there. (d) Can other available valves be substituted for this valve?—
bring up the engine manual, the online spec-sheets on the given valve and other likely
valves, and view animations of how to install them. Ideally, for (¢) and (d) we should
conduct the searches concurrently while protecting the user from extraneous detail. 1

Roughly, information search is to open information systems what queries are to
databases. For reasons such as heterogeneity, autonomy, dynamism, and so on, in-
formation searches must be extensible and flexible. Agents can be a useful means
to satisfy these requirements. Unfortunately, searches—agent-based or not—in open
information systems are often performed in an unprincipled and rigid manner. The
interactions among the agents or modules are hardwired.

2.1 Patterns of Interaction

Such procedural encodings are not appropriate for a number of reasons. They are dif-
ficult to specify, modify, reason about, optimize, and build tools for. Therefore, a se-
mantically perspicuous declarative representation of searches and a means to execute
them is required. Our interest here is not in the application-specific representations
(although those are obviously essential), but in the patterns of interaction. We define
search paradigms as formalized classes of searches, or the patterns of interaction that
arise in cooperative search.

Example 2 The searches of Example 1 fall into three paradigms. Searches (a) and
(b) involve simple queries. Search (c) involves a query to the bridge, a directory lookup
to find suppliers in the next port, and a concurrent map over the list of suppliers to
ask about the desired valve. One positive response is enough, but additional responses
improve reliability and help optimize other criteria, e.g., the price. Search (d) involves
merging information from heterogeneous sources. I

What do the patterns buy for us? Although hardwired approaches can work, in
open information environments, a flexible declarative mechanism for logically specity-
ing interactions is required. Such a mechanism enables extracting the key properties



of classes of computations and executing them in a changing environment, potentially
generating a different schedule each time, but preserving the semantics.

Example 3 Continuing with search (¢) of Example 1, if the next port is several hours
away and the directory of valve suppliers is unresponsive, it might be OK to wait and
retry. Here speed is not a consideration but recall, i.e., finding as many suppliers as
one can, is. |

Search paradigms have several advantages by virtue of being formal and declar-
ative. They (1) enable reasoning about correctness of classes of interactions; (2)
facilitate concurrency and efficiency improvements through algebraic and other rea-
soning about the meanings of the requests—to rewrite them or to effectively merge
results (e.g., to perform cleanups like removing duplicates); and (3) enable learning
and adaptation (e.g., as a consequence of iterative refinement of requests).

Clearly, a variety of patterns are needed to handle the interesting cases, partly be-
cause interactions may have varying effectiveness depending on the application and
the underlying computing and communications infrastructure. A generic declara-
tive facility to specify and schedule interactions would obviate designing specialized
systems for each of them. This motivates our approach, which is to (a) develop a
formal language and semantics for specifications of interactions and (b) automatically
schedule computations that respect the desired interactions.

2.2 Architecture and Execution Model

Agency Domain- and
Application-
Semantics Specific
Paradigms .
Interaction-

Event Processing | Oriented
Programming

Messaging

Communications Infrastructure

Figure 1: Layering of functionality and focus

We propose a layered architecture as shown in Figure 1. At the bottom is the in-
frastructure, which we assume. At the top are the application-specific multiagent
systems, which we wish to build. In between are the IOP layers of the interaction
specification and management. They include the patterns of interaction, their trans-
lation into events, and their scheduling through appropriate messages.

Each agent deals with the interaction manager in terms of events that are sig-
nificant for coordination (discussed in Example 4 below). Figure 2 shows how the
manager interacts with agents. The agents tell it what events have happened uni-
laterally and ask permission for those it may control; it gives or denies permissions,
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Figure 2: Execution model, logically

sends notifications, or triggers more events. Any necessary reasoning on intermediate
results for decision-making is carried out through application-specific subcomputa-
tions. Thus the manager handles only the coordinational aspects of the search, which
simplifies its design and implementation considerably.
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Figure 3: Skeleton for a simple querying agent
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Figure 4: Skeleton for an information filtering agent

The manager is not tied to any specific set of interactions, but interprets declar-
ative specifications of them. The specifications are abstract and involve only the



significant events of the contributing agents. The skeleton of an agent describes its
major transitions for the purposes of coordination—it identifies the events in the
agent that are exposed.

Example 4 Figures 3 and 4 show some skeletons that arise in information search.
The significant events for the first skeleton are start, error, and respond—all the
computation takes place in the node labeled “Executing.” The significant events for
the second skeleton are obvious—the key difference is that it can iterate over some of
the events. |

Our approach makes no assumptions about the possible skeletons. In this way, it
is more general than previous approaches [Breitbart et al., 1993; Chrysanthis & Ra-
mamritham, 1994], which are limited to single-shot transactions.
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Figure 5: Execution model as implemented

Importantly, the manager is not a separate entity, but is distributed across the
guards on the significant events of each agent. Figure 5 shows how the guards ex-
change messages; the message content and direction are automatically compiled.

3 Formalization of Patterns of Interactions

The formalization of interactions turns out to be quite simple. This is because it
involves a straightforward reinterpretation of the mathematical theory we previously
developed for relaxed transaction specification and scheduling. The mathematical
results are simply inherited. Our theory and implementation are based on an abstract
event-based trace semantics. Our algebraic notation, its semantics, and its processing
are described in [Singh, 1996b; Singh, 1996¢]; we include only a summary here.

Our notation involves event types, which are explicitly represented in our imple-
mentation. Specific event tokens, however, are attempted or triggered. Event tokens
are instantiated from event types through parametrization—a tuple of all relevant
parameters is included in each token. When dependencies are stated, some of the
parameters can be variables, which are implicitly universally quantified. Section 3.1
describes the formal language; section 3.2 gives the highlights of its semantics, and
section 3.3 applies it on Example 1.



3.1 Formal Language

&, the language of event expressions has the following syntax. ¥ is the set of significant
event symbols. I' includes all event literals or constants and = includes all event
atoms (constants and variables). A dependency or an expression is a member of E.
An interaction is a set of dependencies. Let 6(e) give the number of parameters of
e. Here we assume a set V of variables and a set C constants that can be used as
parameters.

Syntax 1 e € X, and py,...,ps) € C implies e[p; ... pse)], €[p1 ... pse)) €T
Syntax 2 e € X, and py,...,psy) € (VUC) implies e[p1 ... psie)], €lp1 ... psey] € 2
Syntax 3 I''=C¢&

Syntax 4 0, T € £

Syntax 5 FE, F, € £ implies that F, - Fy, By V Ey, By AN Ey € €

The specification e[p; ...p,] € I' means that e occurs instantiated with constant
parameters [p;...pn| (€ means that the complement of e occurs). The constant 0
refers to a specification that is always false; T refers to one that is always true. The
operator V means disjunction. The operator A means conjunction; A thus refers to
the interleaving of its arguments. The operator - refers to sequencing of its arguments.
Variable parameters are treated as implicitly universally quantified. We follow the
convention that - has precedence over V and A, and A has precedence over V.

3.2 Formal Semantics and Symbolic Reasoning

Our formal semantics of £ is based on traces, but unlike traditional process algebras,
also has a notion of admussibility. Admissibility encodes the knowledge of the system
about specific events. We give a set of equations, which enable efficient symbolic rea-
soning to determine when a certain event may be permitted, prevented, or triggered.
These equations are proved sound and complete in [Singh, 1996b]. Certain compile-
time preprocessing is required to prevent deadlocks and race conditions. This too is
carried out symbolically. We lack the space to include details.

3.3 Specification and Scheduling of Interactions

Our language allows a wide variety of dependencies to be stated. Table 1 shows some
common dependencies, which are explained next. It assumes two computations U
and V', whose appropriate events are u and v with parameters v and v, respectively
(each could be a tuple). s denotes the start event.

1. U is required by V. If v[r] occurs, then u[v] must occur before or after v[v].



Informal Relationship | Dependency

U is required by V ulv] vV o[v]

U disables V ulv] Volr] Volv] - ulv]
U feeds V ulv] - v[v] vV oly]

U conditionally feeds V/ S[v] V ulv] - vly] vV olv]
Guaranteeing U enables V' | u[v] A v[v] V 0[]

U initiates V u[v] AT[v] V ulv] - vly]

Table 1: Some typical dependencies

2. U disables V. If u[v] occurs, then v[r] must occur before u[v].

3. U feeds V. v[v] requires u[v] to occur before, but v[r] does not have to occur if
uf[v] does. This suggests an enabling condition or a data flow from U to V.

4. U conditionally feeds V. If U starts, then it feeds V.
5. Guaranteeing U enables V. v[r] can occur only if u[v] has or will occur.

6. U initiates V. v[v] occurs iff u[v] precedes it.

The dependencies are defined with parameters so that the appropriate connections
among activities may be effected without restricting the behavior of the system.
These dependencies suffice for following examples, but more complex, multiparty
dependencies are supported for other cases.

Example 5 We now formalize search (c¢) of Example 2. This can be formalized in a
number of ways yielding different characteristics. Assume five types of subqueries: B
to the bridge, D a directory lookup, () the main queries, M to map over the responses
of D, and F' to fuse the results. We consider two formalizations.

Here = denotes the unique id of the information search through which the various
instantiations of the relevant computations are tied together. {up is a variable bound
to a tuple, which is processed by M. sup is a variable bound to a supplier. v indicates
the availability of the desired valve. Subscripts r, s, a, and f respectively denote the
response, start, answer, and filter events in the given skeletons.

e Assume all subcomputations except M have skeletons as in Figure 3 with D
returning a tuple response containing a list of suppliers and ) being invoked
on each of its members. M has a skeleton as in Figure 4. (D1.1) B[z port]
feeds Ds[z port]; (D1.2) D, [z tup] feeds M[z tup]; (D1.3) M,[z sup| initiates
Qs[x supl; (D1.4) @,z sup v] conditionally feeds Fi[z]. (For expository ease, we
don’t consider the possibility that the disjunction of @, and Q. (error) should
enable Fj.)

The response from the bridge feeds the directory lookup; the response from that
goes into the mapper, which creates a query for each supplier. The responses
are all collected into the fuser of which there is only one instance per search.
This is why the fuser is parametrized only with z, the parameter of the whole
search.



e Assume that B and F' have the skeleton of Figure 3 and D and @ of Fig-
ure 4. There is no separate mapper. (D2.1) B, [z port] feeds D[z port]; (D2.2)
D, [z sup| feeds Q¢[z sup]; (D2.3) Q4] sup v] conditionally feeds Fj[z].

Now the directory lookup produces results one by one, which are used by the
query task to initiate queries for each supplier. The results are fed into the fuser
as before.

Both formalizations specify the structural properties of the search. |

Example 6 We now discuss the scheduling of the searches of Example 5. Although
the two formalizations are similar, they have different scheduling properties.

e When the search is initiated, B is invoked. It returns with a port name, which
is used in D, which could already have been set up, but would be waiting. D
produces a tuple of suppliers. For each of these a separate query is initiated,
which goes to the given supplier’s database. These queries execute concurrently.
However, the fuser waits until all the queries terminate.

e B feeds into D as before. However, D releases its answers piecemeal and they
are fed straight into (). The queries are executed one at a time. The fuser waits
until the last one terminates.

The first search requires the entire tuple of suppliers to be computed before the
next subquery can begin. By contrast, the second serializes the queries to the differ-
ent suppliers. The good points of both approaches can readily be merged. Certain
variations of fusion strategies (e.g., return one solution) can be encoded directly into
dependencies. Other fusion strategies can be captured by adding a task that shields
the fuser from the results that are input to it. I

The above examples show how interesting search paradigms can be declaratively
captured and scheduled in a generic manner. This approach hones in on the struc-
ture of the computations by avoiding low-level details, which are encoded separately.
This highlights the optimizations that can be effected through choosing a paradigm
carefully to suit one’s application needs and infrastructure availability.

3.4 Coordination and Negotiation

We saw how TOP applies to information applications. TOP also applies well to higher-
level coordination protocols, such as the contract net [Davis & Smith, 1983]. Briefly,
the contract net begins when the manager sends out a request for proposals (RFP);
some potential contractors respond with bids; the manager accepts one of the bids
and awards the task. Much of the required reasoning is application-specific, e.g., who
to send the RFP to, whether to bid, and how to evaluate bids.



Example 7 Since all agents can play the role of manager or contractor, we assume
that all of them have the same significant events. Any agent because of internal
reasons can perform the A, f,[a t ¢] event. Here a is the agent id, ¢ is the task id, and
¢ is a potential contractor—there will be a separate event for each ¢. This involves a
dependency (D3.1) A,sy[a t ¢ info] initiates Aypini[c t @ info]. The receiving agents
think about the RFP and autonomously decide to bid or not bid. If not, they exit
the protocol. Otherwise, the following dependency kicks in: (D3.2) Apqle t a bid]
conditionally feeds A.yqi[a t ¢ bid]. The manager now autonomously evaluates bids,
leading to an award on one of them, which triggers the work: (D3.3) Ayyarala t ¢ task]
initiates Ayox[c t a task]. Because of internal reasons, this can lead to further RFP
events and thus the whole procedure can repeat. |

Other formalizations are also possible. The contract net involves fairly simple
interactions. More interesting protocols can be designed in which two parties each
wait for the other to proceed, or assume that the other will not proceed. Our ap-
proach can detect and preprocess such protocols, so that additional “promissory” or
“prohibitory” messages can be generated at run-time to obtain the desired behavior.

4 Discussion

Much present work on information search concentrates on techniques for creating,
maintaining, and using indexes, but in a hardwired manner, e.g., [Bowman et al.,
1994]. Many “agent” approaches, e.g., [White, 1994; Borenstein, 1994], provide script-
ing languages through which agents can be transported, but provide no significant
abstractions to program agents or structure their computations. The distributed Al
approaches are the most promising. [Oates et al., 1994] propose an approach for plan-
ning searches. However, their approach does not have an explicit representation of
search paradigms, and does not apply generically. The search techniques are captured
as different search paradigms in our approach. Some of the other agent techniques
have focused on ontologies [Arens et al., 1993; Huhns et al., 1994] and knowledge
communication [Labrou & Finin, 1994]. Our present contribution is orthogonal to,
and compatible with, them.

High-level abstractions for agents have been intensively studied [Shoham, 1993;
Rao & Georgeff, 1991; Cohen & Levesque, 1990; Singh, 1994]. These approaches
develop formal semantics, but do not give as precise an operational characterization
of the computations involved. The present work has a formal semantics along with an
operational interpretation, but needs to be enhanced with some of the abstractions
from the above works.

Some previous research has related communications to the agents’ internal speci-
fications [McCarthy, 1991; Singh, 1994], but not to the extent necessary to define and
enact reusable patterns of interactions. Formal research on interactions among agents
includes [Singh, 1991; Haddadi, 1995]. Other highly valuable work on coordination
includes [Decker & Lesser, 1995; von Martial, 1992], which however is not formal.



[Rosenschein & Zlotkin, 1994] develop powerful game-theoretic approaches for nego-
tiations among agents. We see the above research as complementary to the present
paper for the following reason. These approaches have developed powerful seman-
tic representations of domains, plans, and interactions, which can capture many of
the intricacies of complex applications. Our activity management infrastructure can
facilitate the above approaches and use them to provide the higher-level meanings.

There has been much work on social abstractions for agents [Castelfranchi, 1993;
Gasser, 1991; Singh, 1996a), but a careful computational analysis of it is still awaited.
We believe that the present infrastructure will facilitate the development of a com-
putational treatment of the social constructs by capturing the mechanics of possible
interactions in a succinct manner.

To incorporate the above sophisticated concepts of communications and social
interactions are our main challenges in future work.

5 Conclusions

Open information environments require solutions that marry Al and traditional tech-
niques. Multiagent systems are a result of this marriage. Our approach adapts
techniques from formal methods in database activity management for the interaction-
oriented programming of multiagent systems. We emphasize, however, that a plain
traditional approach would not be as effective here. Traditional formal approaches
preclude encapsulation of the component computations as agents; they do not accom-
modate the notion of admissibility, which captures the knowledge of the scheduler;
they (in the case of databases) are limited to single-shot transactions and not appli-
cable to arbitrary, nonterminating, complex computations that characterize agents.
Design patterns are drawing much attention in object-oriented programming, but
they are not formalized and focus on program structure rather than interactions
[Pree, 1995]. Closer connections remain to be investigated.

Although TOP is a generic approach, the applications are of course highly im-
portant. For search applications, we are building a case-law of examples and search
paradigms to be categorized using features such as (1) the cost, urgency, precision,
recall, and delay requirements, (2) properties of the available resources, and (3) the
organizational and autonomy characteristics of the agents. This categorization will
yield a “predictive model” of when a given paradigm is most appropriate. Another
important class of applications involves workflows. Workflows perform business func-
tions and maintain consistency among heterogeneous databases. Information searches
often involve relevance and meaningfulness constraints on the results, rather than con-
sistency. However, the structure of computations in both cases is readily captured by
IOP. A generic approach is not only easier to use, it also enables application-specific
experimentation.

Our main future work is the elaboration of IOP to accommodate more sophisti-
cated kinds of interaction, based on communication constraints and social commit-
ments, so we can ultimately remove the word “Toward” from the title!
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