Toward Interaction-Oriented Programming

Munindar P. Singh
Department of Computer Science
North Carolina State University

Raleigh, NC 27695-8206, USA

singh@ncsu.edu

Abstract

Although much progress has been made in agent the-
ory and practice, bottlenecks remain in the construc-
tion of complex multiagent systems. We introduce
interaction-oriented programming (IOP) as an ap-
proach to orchestrate the interactions among agents.
As envisioned, IOP is more tractable and practical
than general agent programming, especially in settings
where the internal details of autonomously developed
agents are hidden. By enabling declarative specifi-
cation and enactment of agent interactions, IOP can
channel the intellectual energies of designers into the
most amenable and effective design tasks. Our prelim-
inary approach—implemented in an actor language—
formally specifies certain interactions, and executes
them in a distributed manner.

Interaction-oriented programming (IOP) is envi-
sioned as a class of formalisms and techniques to de-
velop multiagent systems. TOP is concerned with (i)
the semantics of interactions, (ii) languages for express-
ing interactions, and (iii) techniques and tools for re-
alizing multiagent systems.

IOP includes abstractions for (a) a rigorous under-
standing of events in a multiagent system, (b) message
passing to implement control and data flow (Hewitt
1991), (c) patterns of interactions, (d) knowledge-level
communication constraints (Singh 1994), and (e) so-
cial constructs (Gasser 1991). What is new here is the
focus on programmability and common structure or
“design-patterns” without, however, any loss of rigor.
We have developed a formal approach for (a), (b), and
(c). Aspects (d) and (e) are being studied.

Figure 1 shows our conceptual architecture. At the
bottom is the assumed infrastructure. At the top are
the application-specific multiagent systems to be built.
In between are the IOP layers of the interaction spec-
ification and management. They include functionality
to specify the patterns of interaction, translate them
into low-level “events,” and schedule them through
passing appropriate messages among agents. The low-
level events correspond to the agents’ significant (exter-
nal) transitions. Capturing the patterns explicitly en-
ables us to flexibly take advantage of their commonali-
ties, thereby maintaining the key properties of interac-

Agency Domain- and
Application-
Semantics Specific
Paradigms .
Interaction-
Event Processing | Oriented

- Programming
Messaging

Communications Infrastructure

Figure 1: Layering of functionality and focus

tions across different situations by controlling low-level
events appropriately. Thus a programmer can create
a multiagent system by defining (or reusing) agents,
and setting them up to interact in some desired way.
The interactions require knowledge only of the agents’
external events that feature in the interactions.

The full paper (Singh 1996) introduces a formal no-
tation, and uses it to specify and schedule patterns of
interactions. These patterns can include data flow and
control flow interactions, which underlie common pro-
tocols for coordination and negotiation. Future work
includes the elaboration of IOP to accommodate more
sophisticated kinds of interaction, based on communi-
cation constraints and social commitments.

References

Gasser, L. 1991. Social conceptions of knowledge and
action: DAI foundations and open systems semantics.

Artificial Intelligence 47:107-138.

Hewitt, C. 1991. Open information systems semantics
for distributed artificial intelligence. Artificial Intel-
ligence 47:79-106.

Singh, M. P. 1994. Multiagent Systems: A Theoretical
Framework for Intentions, Know-How, and Commu-
nications. Heidelberg, Germany: Springer Verlag.
Singh, M. P. 1996. Toward interaction-oriented
programming. NCSU Computer Science TR-96-15.
www4.ncsu.edu/eos/info/ dblab/ www/mpsingh/
papers/agents+multiagents/ iop.ps.



