
A DAML-Based Repository for QoS-Aware Semantic Web Service Selection

A. Soydan Bilgin � �

Department of Computer Science
North Carolina State University

Raleigh, NC 27695-7535
asbilgin@unity.ncsu.edu

Munindar P. Singh
Department of Computer Science
North Carolina State University

Raleigh, NC 27695-7535
singh@ncsu.edu

Abstract

The Web is moving toward a collection of interoperat-
ing Web services. Achieving this interoperability requires
dynamic discovery of Web services on the basis of their ca-
pabilities. The capability of a service can be properly deter-
mined by using not only its functional description (or ser-
vice interface), but also its quality attributes as judged by
previous users of the service. We develop a service reposi-
tory that extends UDDI registries. This repository combines
an ontology of attributes with evaluation data.

We base our repository on a new query and manipula-
tion language based on DAML. Our language includes sup-
port for a rich set of operations, which are needed to main-
tain an attribute ontology, publish services, rate services,
and select services based on their functional attributes as
well as evaluations by others. We have implemented our ap-
proach and evaluated its practical completeness via a num-
ber of key query and manipulation templates.

1. Introduction

The Web services architecture supports the discovery
and binding of services based on interfaces of services pub-
lished by the providers. However, service interfaces are nec-
essary but not sufficient for effective service selection. For
example, a DocToPdf Converter Web service may take a
.doc file as input and produce a .pdf file as output. However,
this information about its interface may not be enough to as-
sume a user who wants all hyperlinks or characters written
in Tahoma format in his document to be converted prop-
erly.

The missing component is the expected behavior of a
service, i.e., its quality of service (QoS). QoS can possi-

� Doctoral student.
� This research was partially supported by the National Science Foun-

dation under grant ITR-0081742.

bly be predicted to some extent by knowing the implemen-
tation of a service, but examining implementations would
violate the essential property of the services architecture.
Thus, practically, a more reasonable way to judge QoS is
to let service consumers evaluate the behavior of a service
and to use such evaluations during service selection. The
evaluation would involve a set of attributes, which would
largely depend on the application domain [10]. Examples
of attributes are availability, throughput, latency, security,
broadness of feature set, price, location, and so on. Some
well-known sites such as bindingpoint.com [1] and
salcentral.com [14] already provide an interface to
rank Web services.

Standards such as UDDI [16] and ebXML [11] address
service discovery, but do not represent quality attributes of
Web services. Another relevant effort is Web Ontology Lan-
guage for Web services (OWL-S), which is an ontology
description language for Web services. OWL-S provides a
mechanism to describe the capabilities and properties of a
Web service in a machine interpretable form and represents
the subset of the quality attributes. In this respect, OWL-
S is a valuable effort to represent Web service capabilities.
However, what we need is a query language that Web ser-
vice providers and Web service consumers can use to query
resources in quality attributes ontology and service quality
data, or insert resources into the same ontology and service
repository.

Contribution. The main contribution of this work is the rep-
resentation of services based on their quality attributes, and
their selection based on a query language that respects these
attributes. To this end, we develop a new query language
based on DAML that accommodates several essential query
and manipulation templates. This is implemented as a se-
mantics and quality-sensitive enhancement to UDDI. Our
query language uses the existing ontology language primi-
tives, and can be used to query and manipulate the quality
attributes ontology and the Web service quality data based
on this ontology.

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

Organization. The rest of this paper is organized as follows.
Section 2 provides the technical motivation and additional
background for our approach, including a description of our
ontology and the operation templates that must be supported
by our language. Section 3 introduces our proposed query
and manipulation language. Section 4 describes the imple-
mentation of our repository. Section 5 discusses the relevant
literature. Section 6 summarizes our main contributions.

2. Motivation and Background

Our specific purpose is to express a Semantic Web ser-
vices Query and Manipulation Language (SWSQL) that can
be used to advertise and query quality attributes of Web ser-
vices and evaluate it via a number of query and manipula-
tion patterns. This purpose provides a sample usage of the
proposed DAML query language.

Our work extends a query language for DAML, which
was proposed by deVos [3]: hence we abbreviate it as dvQL.
dvQL has a simple basis but can handle general queries
by incorporating DAML class expressions. We first explain
some of the insufficiencies of dvQL and then propose the
necessary extensions and modifications to be able to query
our sample query attributes ontology and the data stored in a
relational database. We define a mapping between the rela-
tional database table structure and DAML classes, so agents
use this mapping information to query the database as if the
data were converted to DAML instances.

DAML provides representation for semi-structured
knowledge objects with machine-processable data. It pro-
vides modeling primitives commonly found in frame-based
languages while its formal semantics is defined in descrip-
tion logic. It is also the starting point for the Web Ontol-
ogy Language [17]. Because of the greater availability of
DAML-specific tools when we began this project, we used
DAML instead of OWL for describing queries and ontolo-
gies. Our work can be easily migrated to OWL as its popu-
larity increases in terms of tool support.

This section gives brief information about dvQL and lists
a number of query and manipulation templates that we use
to evaluate dvQL. We also present a sample quality at-
tributes ontology we use to test the system built upon our
language, SWSQL.

2.1. Quality Attributes Ontology

We incorporate a simple ontology for service categories
and service quality attributes. In this ontology each service
category corresponds to a daml:Class and each quality at-
tribute corresponds to a daml:ObjectProperty. A hierar-
chical representation of a sample ontology is shown in Fig-
ure 1.

In this representation, ServiceCategories is the ab-
stract service category with a subclass GenericServiceAt-
tributes. Each service has one serviceKey (a unique identi-
fier of the service provider in a public registry like Microsoft
business UDDI Registry), one publishedRegistryUrl (the
URL of the UDDI Registry), and one serviceProvider (the
provider of the service, identified by the partyIdentifier). In
real life, a service can be published in more than one reg-
istry, but for the sake of simplicity we use just one service
key of the service.

Each quality attribute belongs to at least one service cat-
egory. The range of each quality attribute is AttributeVal-
ues. The properties associated with AttributeValues are
value, unit, predicate, numberOfSubmission, lastSub-
missionTime, and submittedBy. According to our ontol-
ogy, values of attributes can be submitted by either service
providers or service consumers. Each service provider or
service consumer party has a name and an identifier prop-
erty.

2.2. Query and Manipulation Language Require-
ments

In order to realize a repository of the kind explained
above, we would like to develop a query and manipulation
language that supports the following main operation tem-
plates:

T� . Find the direct attributes (properties) of a specific
service category.

T� . Find the transitive attributes of a specific service cat-
egory.

T� . Find the direct subclasses of a service category
(class).

T� . Find the transitive subclasses of a service category
(class).

T� . Find the property values (e.g., domain) of an attribute
(property).

T� . Insert a new service category (class).

T� . Insert a new attribute (property).

Each service corresponds to an instance of a service cat-
egory class in our ontology. Our new language should also
allow the following query and manipulation templates for
the Web service repository:

T� . Find the attributes where a specific service has val-
ues.

T� . Find the attributes and their values for a specific ser-
vice.

T�	 . Find the services which have a specific value for a
specific attribute.

2

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

ServiceCategories

-averageResponseTime
-responseTime
-availability
-price
-costPerUse
-documentation
-rating

GenericServiceAttributes

-flexibility

TravelOrganization

-AAARating

HotelReservation

-hottestRate

VehicleRental

-rangeOfCars

CarRental
-rangeOfTrucks
-maximumLuggageCapacity

TruckRental

Figure 1. Representation of service categories and quality attributes ontology

T��. Find the services having a given attribute.

T��. Find the type of a service.

T��. Find the services which are of a specific service cat-
egory.

T��. Find the services which have values for the attributes
whose range/domain is a specific category.

T��. Insert a new service.

T��. Insert or modify values for an attribute of a specific
service.

2.3. Basics of dvQL

As mentioned above, dvQL enables querying DAML in-
stances. A query in dvQL is formulated with an expres-
sion of the form select �property expression� from
�class expression�. The query results are triples. The
from clause, which is an expression describing a DAML
class, can be used for expressing complex DAML con-
cepts. dvQL can be implemented over conventional (i.e.,
non-DAML) data sources, such as relational databases. Fig-
ure 2 shows the basis of the query language as expressed in
DAML.

The result of the query in Figure 2 is the set of all state-
ments with a subject of type Departments and a predicate
of name or manager.

In general, the from clause in the query can accept any
DAML class. dvQL uses daml:Restriction for narrowing

 <Query>
 <select rdf:resource="#manager"/>
 <select rdf:resource="#name"/>
 <from rdf:resource="#Departments">

 </Query>

Figure 2. Find the name and the manager of
all subjects of type Departments

the search space and daml:hasValue to reference a literal
value or a resource. Multiple restrictions can be expressed
by daml:subClassOf expressions. The boolean combina-
tion of all these restrictions yields the projected subject. It
is also possible to enumerate the instances to be queried by
using daml:oneOf property. Different classes can be joined
by using the daml:hasClass primitive as in Figure 3. Fur-
ther, dvQL has constructs to introduce new class expres-
sions and to nest queries.

2.4. Limitations of dvQL

dvQL can handle the following two query templates
well:

1. Select properties from the instances of a class having a
given property.

3

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

 <Query>
 <select rdf:resource="#name"/>

 <from>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#address"/>

 <daml:hasClass>
 <daml:onProperty rdf:resource="#street"/>

 <daml:hasValue> Avent Ferry
 </daml:hasValue>

 </daml:hasClass>
 </daml:Restriction>
 </from>
 </Query>

Figure 3. Find the name of all subjects,
which has address property whose objects
has street = “Avent Ferry”

� Find the attributes where a specific service has
values.

� Find the services having a given attribute.

2. Select properties from the instances of a class having a
property with a specific value(s).

� Find the attributes and their values for a specific
service.

� Find the services which have a specific value for
a specific attribute.

The above query templates are important for our system.
Obtaining attribute values from the services or checking
whether a service has a value for the specified attributes
is crucial. However dvQL does not meet our requirements,
especially for some of the query templates listed above.
Specifically, the following extensions are needed:

1. Queries should be at the semantic level, not only at the
structure level. At the structure level, the (meta)data
only consists of a set of triples. However, we require a
query language that is sensitive to the semantics of the
DAML and RDF Schema primitives. SWSQL needs to
elaborate subsumption and equivalence relationships
between classes and properties, e.g., SWSQL has to
be aware of the transitivity of the subclass relation.

2. We need to answer the following queries, which use
our ontology:

� Find the subclass of VehicleRental service.

� Find the properties whose range is AttributeVal-
ues.

Because dvQL cannot query named DAML classes,
it cannot evaluate the above queries. This situation
is ideal for service instances, because named classes
are a DAML language detail and will be transparent
to the user while joining different classes by using

daml:hasClass primitive. If we had stored the name
of the classes in a relational database, it would have
been infeasible to determine while inserting new in-
stances whether the name for a DAML class instance
has been used before. However, we should be able to
query the ontology via the name of the class or prop-
erty. For example, in Figure 4, we have a daml:Class
with name VehicleRental and a DAML instance of
type VehicleRental with name vehicleRental1.

 <ont:VehicleRental rdf:ID="vehicleRental1">

 <daml:Class rdf:ID="VehicleRental">
 <rdfs:label>VehicleRental</rdfs:label>

 <rdfs:subClassOf rdf:resource="#GenericAttributes"
</daml:Class>

Figure 4. The vehicleRental class and an in-
stance of the vehicleRental class

We may not build a query by using vehicleRental1
if we store service instances in a non-DAML data
source. We should be able to build queries by using
VehicleRental.

3. A mechanism to insert (meta)data expressed by
DAML. This is one of the reasons we decided to
use and extend dvQL. Because of its dependency on
DAML primitives, it is very straightforward to insert
metadata.

3. Semantic Web Services Query and Manip-
ulation Language

Our system incorporates the Semantic Web services
Query and Manipulation Language (SWSQL), which the
service providers and consumers use to query, insert, or
modify both the quality attributes ontology and the ser-
vice description data based on this ontology. The ontology
is stored as triples in memory and the service description
data is stored in a relational database. We use a relational
database because of the SQL-like functionality of SWSQL.
A major advantage of using a relational database is that it
provides a scalable off-the-shelf solution. For the rest of the
chapter, the metadata part of our system corresponds to our
ontology and the data part corresponds to our database.

3.1. Identification of Services

Service providers can advertise millions of services. If
we abstract the system as a huge table built according to

4

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

our ontology (metadata part), each service rating will cor-
respond to a tuple containing attribute values in a relational
model. In this respect, each service (class instance) should
be uniquely identified and can be obtained from a real pub-
lic registry (i.e., UDDI). We add an identifier term to our
language. This term resembles the where term of SQL ex-
cept that it can only be used for unique identifier proper-
ties.

3.2. Evaluating Class Instances

In dvQL, �from RDF:resource = ”class”� is evaluated
as with a subject of type class. This kind of structure al-
ways evaluates instances of a class (data part). However,
dvQL has no constructs to evaluate the actual class itself
(metadata part), which we need. This motivates the follow-
ing terms:

� RestrictedTo: This is subclass of daml:Restriction
and can have three properties: select, objectType, and
subjectType. RestrictedTo is used for the type decla-
rations of instances.

� objectType: This is a property with range of
daml:Class. It is used to restrict the search space to
triples that have object type = class.

� subjectType: This is a property with range of
daml:Class. It is used to restrict the search space to
triples that have subject type = class.

RestrictedTo inherits all the properties
of daml:Restriction (i.e., daml:onProperty). The query in
Figure 5 finds the serviceKey of all car rental services that
have rangeOfCars property with value equal to “Average.”
If we do not need to query according to the type of the class,
then RestrictedTo should not be used.

3.3. Querying Properties

A limitation of dvQL is its inability to query metadata.
To rectify this problem, we first added RestrictedTo to get
rid of the ambiguity between class and class instance pro-
jection in the from part. However, we still would not be able
to answer two simple query templates listed below:

1. Find the range (domain) of a specified property.

2. Find resources whose range is a specified class.

The from term in dvQL can only include daml:Class. We
first changed the range of this term to daml:Thing, so we
are able to put properties in the from part of the query. For
example, to find the domain of the properties whose ranges
are AttributeValues in our sample ontology, we have the
following query:

 <Query>
 <select rdf:resource="http://vegas.csc.ncsu.edu:8080/wsap/
 ServiceTypes.daml#serviceKey"/>
 <from>
 <RestrictedTo>
 <subjectType
 rdf:resource="http://vegas.csc.ncsu.edu:8080/wsap/
 ServiceTypes.daml#CarRental" />
 <daml:onProperty
 rdf:resource="http://vegas.csc.ncsu.edu:8080/wsap/
 ServiceTypes.daml#rangeOfCars"/>
 <daml:hasClass>
 <daml:Restriction>

 <daml:onProperty
 rdf:resource="http://vegas.csc.ncsu.edu:8080/

 wsap/ServiceTypes.daml#value"/>
 <daml:hasValue

 rdf:resource="http://vegas.csc.ncsu.edu:8080/
 wsap/QualityRating.daml#Average"/>

 </daml:Restriction>
 </daml:hasClass>

 </RestrictedTo>
 </from>

</Query>

Figure 5. Find the property of services with
the given type and the value for the given
property

 <Query>
 <select rdf:resource=" http://www.w3.org/2000/01/

 rdf-schema#domain "/>
 <from>

 <daml:ObjectProperty>
 <daml:range

 rdf:resource="http://vegas.csc.ncsu.edu:8080
 /wsap/ServiceTypes.daml#AttributeValues" />

 </daml:ObjectProperty>
</from>

 </Query>

Figure 6. Find the domain of properties
whose range is the given class

We use daml:ObjectProperty for the query in Figure 6,
to narrow the search space of the subject resources to object
properties.

3.4. Returning Name of Classes and Properties

dvQL is based on triples and returns all statements that
include properties in the select part over the resources spec-
ified in the from part of the query. Instead of returning the
result as triples, we return only values of the properties
specified in the select part of the query as key-value pairs.
This approach, which resembles resource-centric query lan-
guages, reduces the useless information that would be re-

5

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

turned if we query services (data portion of the system)
where we do not need the name of the subject or the ob-
ject. As shown in Figure 4, we are not interested in the name
of the resource vehicleRental1.

Querying the service data is just one side of the coin. On
the other side of the coin, we need to query service meta-
data. While querying the service metadata, we need the ob-
tain the name of classes and properties. For example, we
add subjectRdfID as a property to return the name of all
subject resources of triples as in Figure 7. Similar to sub-
jectRdfID, we also define objectRdfID and predicateRd-
fID properties as part of our language syntax.

3.5. Transitive Properties

One of the most important features of our system are sub-
sumption and equivalence relationships between concepts
(classes or properties). DAML has no built-in primitives to
query such relations. If we want to find the domain of a
property by using daml:domain or RDF-Schema:domain
properties in the select statement, we can only find classes
that are declared to be the domain of a specific property. We
cannot find the transitive domain of a property by using the
current primitives. For example, if the domain of the avail-
ability property is GenericAttributes (as specified in our
ontology) and VehicleRental is the subclass of GenericAt-
tributes, we cannot figure out that VehicleRental is also
the domain of the availability property by using the current
language primitives. For this reason we added some prim-
itives that can be used to query transitivity of properties.
Each of these primitives is defined as a daml:Property. All
of the properties below can either be used in the select or
the from parts of a query:

� transitiveDomain: The domain is daml:Property and
their range is daml:Class.

� transitiveRange: The domain is daml:Property and
their range is daml:Class.

� transitiveSubPropertyOf: The domain is
daml:Property and the range is daml:Property.

� transitiveSubClassOf: The
domain is RDF-Schema:Resource and the range
is daml:Class. The domain of this property is de-
clared as RDF-Schema:Resource; because the se-
lect statement can only accept daml:Property. On the
other hand, like daml:subClassOf, transitiveSub-
ClassOf can also be used as a property whose domain
is daml:Class. Both daml:Class and daml:Property
are subclasses of RDF-Schema:Resource.

For example, the query in Figure 7 finds the name of
classes, that are subclasses of VehicleRental:

 <Query>
 <select rdf:resource="http://vegas.csc.ncsu.edu:8080/

wsap/dql.daml#SUBJECT_RDF_ID"/>
 <from>

 <daml:Class>
 <transitiveSubClassOf
 rdf:resource="http://vegas.csc.ncsu.edu:8080/

wsap/ ServiceTypes.daml#VehicleRental"/>
 </daml:Class></from>

</Query>

Figure 7. Find the names of resources that
are subclasses the given class

3.6. Inserting New Data

We also need to insert meta(data). We added the insert
property whose domain is Query and range is daml:Thing.
The insert property resembles to the functionality of SQL
insert function. If the meta(data) with the specified iden-
tity already exists, then it does not insert it; otherwise it in-
serts the new meta(data). Insertion is done at the class or
the property levels. In the metadata, consistency checking
is done through the name of the class or the property. In
the database in which service data is stored, consistency
is checked through the primary keys of tables, which can
be mapped to the identifiers of the subjects, e.g., the ser-
viceKey and the publishedRegistryUrl attributes of a ser-
vice. We either insert a tuple to the database or we in-
sert a new class and new property to our ontology. Up-
dates are not allowed. We cannot merely change the spe-
cific column value, or the properties of the daml:Class and
daml:Property resources. This restriction is due to the hard
consistency requirement between the ontology and the data.
For the insertion request, class or property definitions are
given using the declare property. The query in Figure 8 in-
serts maximumBaggageCapacity into our sample ontol-
ogy.

3.7. Intersection, Union and Except

dvQL uses daml:subClassOf in the from part of the
query to achieve multiple restrictions. In effect, dvQL uses
an implicit intersection. By contrast, SWSQL uses explicit
operators such as unionOf and disjointWith to support
other algebraic operations on result sets.

4. Implementation

We implemented the service repository as an RPC-based
Web service. Just as UDDI is used to discover and publish
Web services catalog information, SWSQL can be used to
query quality attributes of a Web service as well as ontol-

6

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

 <Request>
 <declare>
 <daml:ObjectProperty

rdf:ID="maximumBaggageCapacity">
 <rdfs:label>maximumBaggageCapacity</rdfs:label>
 <rdfs:domain

rdf:resource="http://vegas.csc.ncsu.edu:8080/
wsap/ServiceTypes.daml#CarRental"/>

 <rdfs:range
rdf:resource="http://vegas.csc.ncsu.edu:8080/

wsap/ServiceTypes.daml#AttributeValues"/>
 </daml:ObjectProperty>
 </declare>
 <evaluate>
 <Query>
 <insert rdf:resource="#maximumBaggageCapacity"/>
 </Query>
 </evaluate>
 </Request>

Figure 8. Insert maximumBaggageCapacity
property to the ontology

ogy of these quality attributes. Our repository also provides
limited publishing functionality.

We store and process our ontology in memory. On
the other hand, we store Web service data in a relational
database as a non-DAML data source. There are two main
reasons to use a relational database for storing our data
portion of the system. First, relational databases scale well
for large amounts of data. Second, mapping from DAML
classes to database tables is trivial. The users of our reposi-
tory can use the mapping information to query the database
as if the data were converted to DAML instances.

The input to our service is the URL for the query file and
the output is the URL for the answer file generated by the
service. The input query file is expressed in DAML, so we
first validate it by using the DAML Validator, which is avail-
able on daml.org. This validator uses Jena’s ARP Parser
to parse input files. After validation, we read the input query
file by using DAMLJessKB, which converts a DAML file
into a set of equivalent subject-predicate-object triples. We
have used DAMLJessKB instead of the Jena DamlModel to
read the query file because of its more structured represen-
tation of anonymous classes, which are heavily used in our
queries. We also used DAMLJessKB to figure out subsump-
tion and equivalence relations.

After parsing the input query file, if we have to query
the metadata, we use the Ontology Processor. The Ontol-
ogy Processor is initialized by reading our quality attributes
ontology into main memory by using DAMLJessKB pack-
age, so that we obtain the triple-based representation of our
ontology. These triples are then asserted into Jess [5] knowl-
edge base and the query is applied on this knowledge base.
The usage of the Jess and the DAMLJessKB reduced our

development time and facilitated reasoning about subsump-
tion and equivalence relations between concepts. We also
used the Jena DAML API to insert new classes and proper-
ties into the ontology.

If we have to query the data, which corresponds to a
MySQL database, then we use the SWSQLtoSQL Mapper
that converts a SWSQL query into an SQL query. SWSQL-
toSQLMapper relies on the relational schema of the under-
lying database to generate SQL statements. This module
also uses the methods of the Ontology Processor to make
inferences.

5. Related Work

RQL (RDF Query Language) is a language for retriev-
ing information represented in RDF and RDF Schema from
the Web [7]. It adopts the functionality of XML query lan-
guages to RDF and RDF Schema description bases. RQL
doesn’t provide inference support for DAML description
bases and update support to modify the contents of existing
ontology and the data. Our query language mainly differs
from RQL by its syntax, which depends on DAML primi-
tives.

RDQL (RDF Data Query Language) uses SQL-like con-
structs for the query description [6]. RDQL regards the RDF
model as a set of triples. It can only query at the struc-
ture level. Sirin et al. present a database agent that trans-
lates RDQL queries into SQL queries by defining a map-
ping function from DAML classes to database table struc-
ture [15]. The functionality of the database agent resem-
bles our SWSQLtoSQLMapper module, but we provide the
mapping from a query described by DAML primitives to
SQL and we consider the results of inference being done via
the constructs such as sameClassAs, samePropertyAs,
subClassOf, and subPropertyOf while mapping.

RDF Query Specification [9] is the first proposed SQL
style approach, viewing RDF description bases as a rela-
tional database. It resembles RDQL in terms of querying
capabilities except that RDF Query Specification doesn’t
cover RDF Schema description bases. The specification
allows the usage of RDF primitives while constructing
queries analogous to how SWSQL uses DAML primitives.

DARPA Dql [4] provides a description model, which al-
lows hypothesizing an object by using a query premise. It
allows �if. . . else. . .� kind of queries. DARPA Dql is a
kind of query description language for rule engines like
Jess. DARPA Dql is a language for querying and reason-
ing metadata instead of data. Every subject and object is
referenced by its name.

SWSQL resembles to RDQL in terms of SQL-like ap-
proach, but we have a different query description syntax,
which uses DAML primitives and doesn’t assume an under-
lying DAML-based repository. Like RQL, we also provide

7

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

basic inference support and subquerying where the output
of the subquery can be the input for the outer query.

In terms of service discovery based on Web service qual-
ity, several extended UDDI architectures are proposed [2]
[12] [13]. However, these proposals overlook an important
essential requirement for QoS-aware service discovery and
selection architecture, which is an enhanced query mecha-
nism for service quality data that also respects the seman-
tics of the quality attributes [8] [13]. We also respect the se-
mantics of the quality attributes during the representation
of the query, not during the representation of the Web ser-
vice data so that we can query the service quality data inde-
pendently of the way this data is stored.

6. Main Contributions and Directions

This paper developed an approach for selecting services
based on their semantics as well as their quality as judged
by users. It proposed a service repository and a new query
and manipulation language as a basis for this repository.
This query language incorporates several query templates
that are geared for querying ontologies of services as well
as repository of ratings of services by users. Existing query
languages are not geared toward service quality scenarios
and do not adequately cover the desired query templates.

SWSQL uses DAML primitives for describing queries,
but goes beyond previous DAML query languages to facil-
itate querying quality attributes ontology and the Web ser-
vice descriptions expressed by the concepts from this on-
tology. Our repository uses a hybrid architecture consisting
of a relational database for services and main memory for
an ontology. We also provided a simple methodology for
representing Web services with their quality attributes and
identified the required query and manipulation templates to
accommodate use cases for service selection and insertion.
SWSQL can be the starting point for a query description
standard that can be used among distributed agents on mul-
tiple data sources.

Porting this approach to OWL would be straightforward
but practically valuable. An important enhancement would
be to adapt our service repository to accommodate OWL-
S. OWL-S is an OWL ontology for services that includes
abstractions for service selection and composition. It pro-
vides an approach for modeling attributes with which ser-
vices may be evaluated.

References

[1] bindingpoint.com, 2001. www.bindingpoint.com.

[2] Z. Chen, L.-T. Chia, B. Silverajan, and B.-S. Lee. UX:
An architecture providing QoS-aware and federated
support for UDDI. In Proceedings of the 1st Inter-

national Conference on Web Services, pages 171–176,
2003.

[3] A. deVos. An RDF query language based on DAML,
2002. http://www.langdale.com.au/RDF/DAML-
Query.html.

[4] R. Fikes, P. Hayes, and I. Horrocks. DAML query lan-
guage (DQL). Abstract specification, DARPA, 2003.

[5] E. J. Friedman-Hill. Jess in Action: Rule-Based Sys-
tems in Java. Manning, Greenwich, CT, 2003.

[6] HPL. RDQL: RDF data query language, 2002.
http://www.hpl.hp.com/semweb/rdql.htm.

[7] G. Karvounarakis, S. Alexaki, V. Christophides,
D. Plexousakis, and M. Scholl. RQL: A declara-
tive query language for RDF. In Proceedings of the
Eleventh International World Wide Web Conference,
pages 592–603, Honolulu, Hawaii, 2002. ACM Press.

[8] K. Lee, J. Jeon, W. Lee, S.-H. Jeong, and S.-W. Park.
Qos for Web services: Requirements and possible ap-
proaches. Working draft, World Wide Web Consor-
tium, 2003.

[9] A. Malhotra and N. Sundaresan. RDF query specifi-
cation. Technical report, IBM, 1998.

[10] E. M. Maximilien and M. P. Singh. Conceptual model
of Web service reputation. ACM SIGMOD Record,
31(4):36–41, Dec. 2002.

[11] OASIS. ebXML, 2001. http://www.ebxml.org/.

[12] S. Pokraev, J. Koolwaaij, and M. Wibbelse. Extending
UDDI with context-aware features based on semantic
service descriptions. In Proceedings of the 1st Inter-
national Conference on Web Services, pages 184–190,
2003.

[13] S. Ran. A framework for discovering Web services
with desired quality of services attributes. In Proceed-
ings of the 1st International Conference on Web Ser-
vices, pages 208–213, 2003.

[14] salcentral.com, 2001. www.salcentral.com.

[15] E. Sirin, J. Hendler, and B. Parsia. Semi-automatic
composition of Web services using Semantic descrip-
tions. In Web Services: Modeling, Architecture and
Infrastructure Workshop in Conjunction with ICEIS,
2003.

[16] UDDI. Universal Description Discovery and Integra-
tion, 2002. http://www.uddi.org.

[17] F. van Harmelen, J. Hendler, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, and L. A. Stein.
OWL Web ontology language reference. Working
draft, World Wide Web Consortium, 2003.

8

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

	footer1:

