
Toward Autonomic Web Services Trust and Selection

E. Michael Maximilien
∗

IBM and NCSU
5506 Six Forks Road
Raleigh, NC 27609

maxim@us.ibm.com

Munindar P. Singh
North Carolina State University

Department of Computer Science
Raleigh, NC 27695

singh@ncsu.edu

ABSTRACT
Emerging Web services standards enable the development
of large-scale applications in open environments. In particu-
lar, they enable services to be dynamically bound. However,
current techniques fail to address the critical problem of se-
lecting the right service instances. Service selection should
be determined based on user preferences and business poli-
cies, and consider the trustworthiness of service instances.

We propose a multiagent approach that naturally provides
a solution to the selection problem. This approach is based
on an architecture and programming model in which agents
represent applications and services. The agents support
considerations of semantics and quality of service (QoS).
They interact and share information, in essence creating an
ecosystem of collaborative service providers and consumers.
Consequently, our approach enables applications to be dy-
namically configured at runtime in a manner that continu-
ally adapts to the preferences of the participants. Our agents
are designed using decision theory and use ontologies. We
evaluate our approach through simulation experiments.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—multiagent systems; D.1.0 [Software Engineer-
ing]: Programming Techniques—general ; D.2.8 [Software
Engineering]: Metrics—process metrics, performance mea-
sures

General Terms
Algorithms, Reliability, Experimentation

Keywords
Service selection, Service binding, Quality of Service (QoS),
Software Agents, Autonomic Computing, Trust

∗IBM Software Architect and NCSU Ph.D. candidate.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSOC’04, November 15–19, 2004, New York, New York, USA.
Copyright 2004 ACM 1-58113-871-7/04/0011 ...$5.00.

1. INTRODUCTION
The Web services architecture, standards, and technolo-

gies support describing, finding, and binding to services.
The overarching vision is that services would be dynami-
cally created and administered, and would be incorporated
into software systems in execution without the need for fre-
quent human intervention. Although the current Web ser-
vices standards and technologies are necessary to realize this
vision, they are far from sufficient.

In simple terms, between finding and binding lies another
crucial step, which the current approaches ignore. This is
the step of selection wherein a specific service instance is
chosen by a prospective consumer. Conceptually, service
selection is difficult because it faces the main challenge of
an open environment: you cannot easily predict the quality
of service (QoS) that a given service instance will deliver.
The challenge arises partly because you may not be able to
trust the other party, and partly because you lack knowledge
of the environment within which it is executing.

To explain our approach, we distinguish three phases of
interactions between consumers and services.

Service discovery. When a consumer finds a desired ser-
vice interface. This search is typically based on com-
mon service repositories such as Universal Description
Discovery and Integration (UDDI).

Service selection. When a consumer selects a service in-
stance (implementing a discovered interface). Selec-
tion is based on nonfunctional attributes such as QoS
and trust. A service instance may be replaced by
another at runtime if it doesn’t meet the customer’s
needs, becomes untrustworthy, or a better instance is
found.

Service binding. When a consumer begins using a selected
instance. Binding typically occurs at time of first need.

Our contribution is a comprehensive agent-based trust
framework for service selection in open environments. We
introduce a policy language to capture service consumer’s
and provider’s profiles, algorithms to select services based
on those policies, and representations to dynamically cap-
ture data about service performance with respect to various
(customizable) QoS dimensions. As a result, service-based
applications are dynamically configured at runtime to choose
the “best” services with respect to each participant’s pref-
erences. We demonstrate the effectiveness of this approach
in selecting good services via simulation experiments.

1.1 Organization
The remainder of this paper is organized as follows. Sec-

tion 2 motivates the dynamic service selection and binding
problems. Section 3 gives a general overview of our frame-
work, including the QoS ontology, QoS policy, and match-
ing algorithm. Section 4 presents empirical results showing
the emergence of trust and other autonomic characteristics.
Section 5 compares related literature on QoS in software
engineering and Web services to our approach. Section 6
discusses key directions for future work.

2. MOTIVATIONS
We address service selection and subsequent dynamic bind-

ing via an open multiagent system that facilitates these for
service consumers.

2.1 Scenarios: Use Cases
Consider the following two use cases to motivate our so-

lution.

1. B2C search service. A user is searching the Web for
goods or services. The application employs Web search
engines services to execute the user’s query and chooses
one of them based on the preferences of the user along
with the search words. The search tool uses a service
agent for each search service and at runtime based on
the input the agent picks the “best” search service to
execute the query.

2. B2B loan service. A car dealership provides financ-
ing to its potential buyers. Because the dealership
wants to offer various financial options, it does not
have any fixed relationship with any banks. Instead,
it selects loan services based on the reputations of
the services aggregated from previous user episodes.
Briefly, the dealership financing software uses a ser-
vice agent, which it instantiates for each user episode.
Using the business policies and user preferences, the
agent selects the most appropriate services and presents
the top financial alternatives to the user.

A comprehensive scenario can be found in [15].

2.2 QoS Motivated
Representationally, the key idea behind our work is to

adorn service descriptions with QoS annotations. These
augmented descriptions, however, would not be produced
by the service providers but would, in essence, be developed
by the service consumers. Instead of the service consumers
working individually, which would limit their effectiveness
in judging the service instances with which they have di-
rectly interacted, it is helpful for them to share knowledge
about the service instances. However, QoS knowledge can-
not be easily shared because it is based on the judgments of
the various participants, which can be subjective. A simple,
practical way to reduce the effect of the potential arbitrari-
ness of individual consumers, is to aggregate the consumers
judgments into general opinions. The twin design goals of
sharing and aggregation can be satisfied through the mech-
anism of an agency.

Agency. A rendezvous node in the system where agents are
able to share information about services.

To facilitate representing QoS knowledge, we formulate
an ontology for QoS that includes a categorization of the
various attributes that may apply to a given service.

2.3 Trust and Trustworthiness
As discussed in Section 1, the selection step of the con-

sumer involves making a rational selection decision between
many providers and service instances. If a service provider
is already determined to be trustworthy, then the selection
step becomes one of selecting the services from providers of
the highest level of trust. Naturally, determining the level
of trust to assign to a provider is nontrivial, especially in
open environments. We are specifically talking about en-
vironments where service consumers and providers are au-
tonomous, that is, free to behave as they wish; and where
there are no central trusted authorities that can act as a
brokers of trust.

Our proposed framework provides a solution to this trust
problem by having agents collect and share information on
their interactions with the services that they selected on be-
half of service consumers. The shared information provides
a basis for establishing trust.

Service quality reputation. The aggregation of collected
service quality data for a given quality.

Since the quality of service will change over time, it is also
necessary that the quality reputation calculation take these
changes into account. Following Zacharia and Maes [26] we
dampen the quality reputation so that recent data matters
more in determining reputation. We resolve the damping
factors for a quality from the shared QoS ontology.

Combining this calculated quality reputation with the con-
sumer’s QoS policy and a provider’s QoS advertisement, our
service agent is able to intelligently assign a trust level to
the current set of available services.

2.4 Autonomic Systems
An important characteristic for trust in open environ-

ments is that it should be self-adjusting. That is, service
providers who behave badly are purged from the system by
virtue of not being selected. Poor service providers accumu-
late a low reputation. Conversely, when a bad service starts
to behave correctly, we would like the agents to increas-
ingly consider the service. This dynamic and self-adjusting
consideration of trust for selection falls under the goals of
autonomic computing [11].

Self-adjusting trust. The autonomic characteristic of a
multiagent system whereby the levels of trust between
the interacting parties are dynamically established and
adjusted to reflect recent interactions.

Handling service selection and binding in open environ-
ments, presupposes self-adjusting trust.

3. FRAMEWORK
Our solution involves attaching a software agent, autonomously-

configured software component, to each Web service. This
agent proxies the service for its consumer, exposing the same
interface as the service but additionally enabling other use-
ful functionality. Instead of communicating directly with
the service, the service consumers now communicate with
the agent. In this manner the agent can add value to the
consumer-service interaction.

Consumer

Application

Agent Service 1

Agent Service 2

Policy1

Policy2

Service Providers

Service1
ImplementationB

Service2
ImplementationB

Service1
ImplementationA

<<uses>>

<<selects>> Agencies

Service1
Interface

Service2
Interface

Selection

is achieved

partly by using

agencies data

Data

WSAF Server

Figure 1: Architecture overview.

3.1 Architecture
Our architecture uses service agents that conceptually re-

side between the consumer of a service and the service it-
self. The consumer makes use of one agent per Web service
interface, hence the moniker: Web service agent. The ar-
chitecture essentially expands on the classic service-oriented
architecture (SOA) diagram by augmenting the service con-
sumer’s role with software agents that automate some of
that role’s tasks [6]. We extend the service broker role with
agencies that facilitate the sharing of data among the par-
ticipating agents.

Figure 1 gives an overview of the architecture showing the
static components and their relationships. In our current im-
plementation, the agents and agencies reside in a server that
the consumers know about a priori. However, this topology
can be changed to co-locate the consumers and agents. By
having the agents on a server, the computational burden
of the agent is decoupled from the consumer and also, im-
portantly, the agent can expose a Web service interface to
the client and thus allow cross-platform consumer-to-agent
interactions. For instance, the consumer can be a .NET
or Python application while the agent is implemented in
Java. To better understand the overall architecture and re-
sponsibilities of the various components, we discuss each of
the four main components that constitute the Web Service
Agent Framework (WSAF).

1. Service providers. We assume that providers describe
their services using the WSDL standard. WSDL con-
tains both the interface description for the service and
the binding information for the implementation. In
Figure 1 we show two service providers A and B im-
plementing service Interface1 and Interface2. Notice
that Interface1 is implemented by both providers.

2. Service brokers. The SOA architecture calls for broker
registries where providers register their services along
with classification attribute data to enable service con-
sumers to find services. We extend the registry concept
with the notion of agency where our service agents can
collaborate and share data.

3. WSAF server. The WSAF server is where the service
agents reside and are managed. QoS ontologies and
configuration files are also located here.

4. Consumer Applications. These are the consumers of
services using the service agents. Typical applications

contain various business objects along with proxy ob-
jects that act as local surrogates for the services being
consumed via the service agents.

3.2 QoS Ontology
Our framework takes a different approach to QoS specifi-

cation and monitoring than explicit semi-contractual docu-
ments which are used in current QoS specifications like Web
service-level agreement (WSLA). For one, our QoS specifi-
cation is an ontology that allows us to match services se-
mantically and dynamically. The semantic matching allows
the service agent to match consumers to services using the
provider’s advertised QoS policy for the services and the con-
sumers’ QoS preferences. The provider policy and consumer
preferences are expressed using the concepts in the ontology.
Further, by using the same ontology, the service agent is able
to automatically configure itself with the correct behaviors
(attached to the ontology) so that interactions between the
consumer and the service are monitored and recorded in the
appropriate agencies.

Figure 2 is an overview of the key aspects of our QoS
upper ontology. Some of its main concepts are:

• Quality. Represents a measurable nonfunctional as-
pect of the service within a certain domain. Quality
instances have attributes, are measured by agents, and
have relationships with each other.

• QAttribute. The value of a Quality concept is deter-
mined by the type of QAttributes that constitute it.
For instance, a Quality that has a monotonic float at-
tribute will necessarily have values that are float and
which are monotonic; that is, where larger values re-
flect improving qualities.

• QMeasurement. How a Quality is measured. This
measurement can be objective or subjective. Objective
measurements are made automatically via a software
agent, whereas subjective measurements are via some
human agent. A measurement has a validity period
and can be certified.

• QRelationship. Qualities are typically related in a man-
ner that shows through their values. These relation-
ships are manifestations of the tradeoffs that providers
make in their service implementations. We distinguish
the following relationships:

– Independent. The qualities are completely inde-
pendent of each other. In other words, a change
in one quality value has no effect on the other.

– Related. We distinguish the following:

∗ ValueImpact. The values affect each other.
The impact is measured as a strength which
we divide into: Weak, Mild and Strong.

∗ ValueDirection. The values of the related at-
tributes exhibit a general directional relation-
ship such as: Opposite and Parallel.

• AggregateQuality. A Quality that is composed from
other qualities. For instance, the PricePerformance
ratio combines Price and Performance.

Further details on our QoS ontology, including the middle
ontology, can be found in [15].

Quality

Class

attributes

ObjectProperty

domain

QAttribute

Class

range

M
o
n
o
to
n
ic
A
tt
ri
b
u
te

C
la
s
s

DecayingAttribute

Class

ValuedAttribute

Class

DiscreteAttribute

Class

subClassOf

subClassOf

subClassOf

subClassOf

QMeasurement

Class

Objective

Class

Subjective

Class

Agent

Class

subClassOf
subClassOf

measurement

ObjectProperty

range
domain

agent
ObjectProperty

domain

range

Thing

v
a
lu
e

D
a
ta
T
y
p
e
P
ro
p
e
ry

range

QRelationship

Class

relationships
ObjectProperty

range

domain

Strong

Class

Weak
Class

Mild
Class

ValueDirection

Class
Inverse

Class

Opposite

Class

Parallel

Class
ValueImpact

ClassAggregateQuality

ClassaggregatedQualities

ObjectProperty

range

domain

domain

certifiedBy
ObjectProperty

range

domain

re
la
te
d
Q
u
a
litie
s

O
b
je
c
tP
ro
p
e
rty

range

Figure 2: QoS upper ontology.

3.3 QoS Policy
The consumers of a particular service have a wide range of

quality expectations for the services they use. For instance,
a stock quote service available for quick viewing on a finan-
cial page does not have to have the same response time or
availability needs as in a brokerage application.

Similarly, service providers have different policies for each
service implementation that they publish. The binding of
consumers to providers needs to take into account these poli-
cies. Since we have a shared conceptual notion of qualities
in the QoS ontology, the policy language needs to use the
ontology concept as its atoms.

3.3.1 Provider Policies
Consumer and provider policies are defined in XML with a

specified XSD schema. Listing 1 shows a simplified example
of the provider policy.

WsPolicy The root element. It has a required name at-
tribute which is used to uniquely identify it. The re-
quired type attribute must equal provider indicating
that what follows is a provider policy.

Services A sequence of Service elements containing the de-
tails for each service that this policy applies to.

Ontologies This element, starting in line 7, is a collection
of Ontology elements each referring to an ontology.

QoSPolicy Captures provider’s advertised QoS policy for a
service or set of services. For each quality specified, the
promise attribute indicates the level of commitment
of the provider to the advertised policy. This promise
can be one of: bestEffort, guaranteed, notSpecified, or
noGuarantee.

qValue This element gives the policy details for the values
of a quality. For instance, line 15 specifies the value de-
tails for the ResponseTime quality. They are: typical,
min, max, and unit for the specified quality.

Listing 1: Provider policy example

<WsPolicy . . . name=‘Provider1 ’ type=‘ prov ider ’>
2 <Se r v i c e s>

<Se r v i c e name=‘ Se r v i c e1 ’
4 i n t e r f a c e =‘ h t tp : / / . . . / s1 ?wsdl ’ />

<Se r v i c e name=‘ Se r v i c e2 ’ i n t e r f a c e = ‘ . . . ’ />
6 </ Se r v i c e s>

<Onto log i e s>
8 <Ontology name=‘QoSOnt ’

u r i =‘ h t tp : / / . . . / owl/qos . owl ’ />
10 </Onto l og i e s>

<QoSPolicy ontology =‘QoSOnt ’ methods=‘∗ ’
12 s e r v i c e s =‘ Serv i ce1 , S e r v i c e2 ’>

<QoS name=‘#ResponseTime ’
14 promise=‘ b e s tE f f o r t ’>

<qValue>
16 <t yp i ca l >60</ typ i ca l >

<min>50</min>
18 <max>100</max>

<unit>ms</unit>
20 </qValue>

</QoS></QoSPolicy>
22 </WsPolicy>

Similar to a provider advertised policy, the customer pref-
erence policy specifies a set of services and ontologies and a
set of QoS policies. However, some aspects of the specifica-
tion differs. Specifically, there is a preferred element to the
qValue element indicating the favored value for the quality
in question. Additionally, the consumer policy contains a
BindingPolicy element, indicating the consumer’s required
service binding policy.

BindingPolicy Like the QoSPolicy element, it contains the
ontology which refers to the ontology used. The services
attribute is a comma separated list of services names.
Additionally it contains is a sequence of Bind elements.

Bind This element specifies the binding condition for a spe-
cific time in the service life cycle. The when attribute
can have the values:

• onConnect . When the agent first connect to a
service.

• onFailure . A failure occurs invoking a service.

• onQoSValueViolation. A monitored QoS value is
observed to be outside the range specified in the
policy.

• onRebind . The agent is performing a rebind to
potentially a new service implementation.

Different kinds of bindings can be specified. This is
indicated with the type attribute whose possible values
are: bestMatch , firstMatch , or anyMatch .

Constraints Constraints can be specified for each Bind ele-
ment. For instance, a retry constraint can be specified
when a failure occurs.

3.4 Matching Algorithm
We now give an overview of the matching algorithm used

to match consumer policies to advertised provider service
policies. The algorithm is divided into Listings 2, 3, and 4
and specified in Python.

Listing 2 shows the high level part of the algorithm. Two
methods serve as entry points to the algorithm:

findBestService This essentially returns the “best” match-
ing service found. It returns the first service in the
sorted list returned by findBestServices . If no match-
ing service is found then it throws an exception (line 5).

findBestServices The first step in finding all of the match-
ing services is to only consider services matching the
interface . This is done in line 10 with a call to the
iMatch method (starting in line 22). Next it performs
a policy match on the list returned in line 11. Next
it reduces the returned list with a semantic match in
line 12. If the resulting list is not empty it is sorted in
line 15 which is then subsequently returned. However,
if the policy match is empty, it performs a semantic
match on the services matching the interface in line 17
and then performs a sort.

The sorting of services (line 30) is done according to
the dMatch attribute of a service object (set in the
code of the matching algorithms).

Listing 2: Matching algorithm.

#@return the ‘ b e s t ’ matching s e r v i c e
2 def f i ndBes tSe r v i c e (i n t f , po l i cy , s e r v i c e s) :

matches = f i ndBes tSe r v i c e s (i n t f , po l i cy ,
s e r v i c e s)

4 i f l en (matches) == 0:
raise NoServiceMatchException ()

6 return matches [0]

8 #@return a sor t ed l i s t o f matching s e r v i c e s
def f i ndBe s tSe r v i c e s (i , p , s) :

10 iMatches = iMatch (s , i)
pMatches = pMatch (iMatches , p)

12 spMatches = sMatch (pMatches , p)
matches = []

14 i f l en (spMatches) != 0 :
matches = sortMatches (spMatches)

16 else :
sMatches = sMatch (iMatches , p)

18 matches = sortMatches (sMatches)
return matches

20

#@return a l i s t o f s e r v i c e s matching i n t e r f a c e
22 def iMatch (s e r v i c e s , i n t e r f a c e) :

l i s t = []
24 for s in s e r v i c e s :

i f s . i n t e r f a c e == i n t e r f a c e :
26 l i s t . append (s)

return l i s t
28

#@return rever se l i s t o f degree matches
30 def sortMatches (s e r v i c e s) :

return s e r v i c e s . s o r t (lambda s1 , s2 : s2 . dMatch
−s1 . dMatch)

The policy matching algorithm is illustrated in Listing 3.
The methods are:

pMatch A policy match is performed by matching the ad-
vertised policy for each service with the required pol-
icy. As such, this method iterates (line 35) over all
services and performs a pMatchAdvert on each. If
the dMatch of a service is positive (thereby indicating
some match) then the service’s dMatch is set in line 38
and added to the list of matches to be returned.

pMatchAdvert The policy-to-advertisement match is per-
formed by iterating over all QoS for the policy (line 45)
and finding a matching QoS in the advertisement (in-
ner for-loop in line 46). If such a match is found then
in line 47, a quality match is performed which results
in the increase of the dMatch . Note that the best pos-
sible match occurs when all QoS in the policy perfectly
match the advertisement QoS, thereby resulting in a
maximum value for the dMatch of the advertisement
and policy pair.

qualityMatch A quality match occurs when the quality
type and unit are the same (lines 52 to 55). We ad-
ditionally make sure, starting in line 57, that if the
qualities are monotonically increasing then the first
quality’s (or q1) preferred value is within the range
of the second (or q2) and also that q1 ’s range is a
subset of q2 ’s. Similarly for monotonically decreas-
ing quality types. When the conditions are satisfied
the degree is calculated by calculateDegree (starting in
line 74). When the conditions are not satisfied, the
degree is forced to be negative since even though there
is a match of quality, the advertised policy values do
not match.

calculateDegree This is achieved by first adjusting the
dataSet by adding the reputation for the quality [14].
Then we calculate the second moment of the q1 about
the q2 .preferred value and then normalizing the result
in equation 5.

�x = 〈x1, x2, . . . , xn〉 (1)

Moment(�x, a) =

∑n
i=1(a − xi)

2

n − 1
(2)

�q = 〈q1.min, q1.max, q1.typical , (3)

q2.min, q2.max, q2.preferred 〉 (4)

degree(�q) = norm(Moment(�q, q2.preferred)) (5)

Listing 3: Policy matching algorithm.

32 #@return l i s t o f s e r v i c e s matching prov ider
adv e r t i s e d po l i c y

def pMatch (s e r v i c e s , po l i cy) :
34 matches = []

for s in s e r v i c e s :
36 dMatch = pMatchAdvert (s . advert i sement ,

po l i cy)
i f dMatch > 0 :

38 s . dMatch += dMatch
matches . append (s)

40 return matches

42 #@return the degree o f p o l i c y match
def pMatchAdvert (advert i sement , po l i cy) :

44 dMatch = 0
for qos in po l i cy . qo sL i s t :

46 for aQoS in advert i sement . qo sL i s t :
dMatch += qual ityMatch (aQoS . qua l i ty , qos .

qua l i t y) :
48 return dMatch

50 #@return degree o f match between q1 and q2
def qual ityMatch (q1 , q2) :

52 i f type (q1) != type (q2) :
return 0

54 degree = 0
i f q1 . un i t != q2 . un i t :

56 convertUnit (q1 , q2)
i f checkMonoIncreasingQs (q1 , q2) or

checkMonoDecreasingQs (q1 , q2) :
58 dataSet = [q1 . min , q1 .max , q1 . typ i ca l , q2 .

min , q2 .max , q2 . p r e f e r r ed]
adjustWithReputation (q2 , dataSet)

60 degree=ca l cu l a t eDeg r e e (p r e f e r r ed , dataSet)
else :

62 degree = −100
return degree

64

#@return t rue i f t he two monoIncreasing q u a l i t y
qValue are compat i b l e

66 def checkMonoIncreasingQs (q1 , q2) :
return q2 . type . monoIncreasing and q1 . type .

monoIncreasing and q2 . p r e f e r r ed >= q1 . min
and q2 . p r e f e r r ed <= q1 .max and q1 . min
>= q2 . min and q1 .max <= q2 .max

68

#@return t rue i f t he two monoDecreasing q u a l i t y
qValue are compat i b l e

70 def checkMonoDecreasingQs (q1 , q2) :
return q2 . type . monoDecreasing and q1 . type .

monoDecreasing and q2 . p r e f e r r ed <= q1 . min
and q2 . p r e f e r r ed >= q1 .max and q1 . min
<= q2 . min and q1 .max >= q2 .max

72

#@return the normal ized degree
74 def ca l cu l a t eDeg r e e (p r e f e r r ed , dataSet) :

degree = 0
76 m = s t a t s . moment (2 , dataSet , p r e f e r r ed)

i f m < 1:
78 degree = 100 − m

else :
80 degree = 100 / m

return degree

Listing 4 shows the details of the semantic matching al-
gorithm. It comprises the following methods:

sMatch Similar to pMatch listed starting in line 33, sMatch
iterates over all services to determine the semantic
dMatch of each.

sMatchAdvert Also, similar to the policy advertisement
match, a semantic advertisement match figures out the
total dMatch for the policy and the adverstisement by
doing a semanticQualityMatch on each pair of match-

ing qualities.

semanticQualityMatch We semantically match two qual-
ities by iterating over their relationships (line 85) to
find if they are related. We then determine the de-
gree of the relationship in line 87. The total degree of
match is the sum of the degree of all of the matching
relationships.

degreeOfRelationship The degree of a relationship is cal-
culated by determining if the relationship isSubclassOf
of ValueImpact (line 93) or of ValueDirection (line 100)
and assigning increasing degree values for the actual
type of relationship (lines 94 to 98 and lines 101 to 105).
The actual constant value affecting the degree calcula-
tion defaults to the value listed but can be refined for
a specific domain by attaching it to the ontology.

Listing 4: Semantic matching algorithm.

82 #@return semantic match f o r q1 and q2
def semanticQual ityMatch (q1 , q2) :

84 dMatch = 0
for r in q1 . r e l a t i o n s h i p s :

86 i f r . r e l a tedQs . conta ins (q2) :
dMatch += degreeOfRe lat i onsh ip (r)

88 return dMatch

90 #@return the degree o f the r e l a t i o n s h i p
def degr eeOfRe lat i onsh ip (r e l a t i o n s h i p) :

92 degree = 0
i f i s s u b c l a s s (type (r e l a t i o n s h i p) , ValueImpact

. type) :
94 i f type (r e l a t i o n s h i p)==Weak . type :

degree = 10
96 e l i f type (r e l a t i o n s h i p)==Mild . type :

degree = 20
98 e l i f type (r e l a t i o n s h i p)==Strong . type :

degree = 30
100 e l i f i s s u b c l a s s (type (r e l a t i o n s h i p) ,

Va lueDi r ect i on . type) :
i f type (r e l a t i o n s h i p)==Pa r a l l e l . type :

102 degree = 10
e l i f type (r e l a t i o n s h i p)==Opposite . type :

104 degree = −10
e l i f type (r e l a t i o n s h i p)==Inve r s e . type :

106 degree = −20
return degree

4. EMPIRICAL EVALUATION
The primary goal of our evaluation is to show empirically

that the system enables a certain level of trust between con-
sumers and providers while respecting autonomy. The ex-
periment is made up of a series of simulations of consumers
that use a set of integer sorting services. We first give an
overview of the environment for the simulations and then
discuss the expected and actual results.

4.1 How to Evaluate?
Along with the framework, we constructed a simulation

component that allows the creation of different types of con-
sumers in a simple Java scripting language: Jython [8]. Each
consumer can have their own preference or policy. Con-
sumers can be part of a group where they share the same
script and policy. Each consumer script terminates by col-
lecting data on its agent choices and the selected service.
The following simulation parameters can also be specified:

1. Service dopings. These are runtime behavioral modi-
fications to a service, specified to affect some service
quality. The dopings can be parameterized to affect
the level of each doping, e.g., a FaultDoping has op-
tions to specify the period of the faults and whether
the faults should be random.

2. Consumer groups. Various groups of consumer can be
specified for a simulation along with the group’s size.

3. Execution strategy. This specifies the execution strat-
egy for the various consumers. We have created two
main strategies. First, a random sequential strategy
where all consumers (for all groups) are executed in
sequence but the selection as to which consumer to ex-
ecute is random; and second, a random parallel strat-
egy where n consumers execute in parallel but their
selections from the consumer groups is random.

4.2 Setup Summary
We conducted five simulations for this experiment. Each

simulation consists of three groups of five identical providers
and five identical consumer instances.

Table 1 shows the secondary parameters for each simula-
tion. Each consumer executes a random-sort.py script which
calls the sorting service with a set of random integers. The
set size is also random but bounded to 1000. Each simula-
tion is set up to iterate 10 times.

Table 1: Simulations secondary parameters.

Simulation Doping Agency data?

0 N/A No
1 Full doping No
2 Full doping Yes
3 Delayed full doping Yes
4 Delayed partial doping Yes

We implement each simulation using service providers of
predictable behaviors. The primary service domain is Math.
The domain and service interface are kept simple to facilitate
measurement and fine-tuning of system parameters. The
following artifacts are also used in the experiment.

• Sorting service consumers. We deploy three pools of
consumers, each with its own QoS policy (part of which
is summarized in Figure 3).

1. Careful. As the name implies, this consumer’s
primary concern is safety.

2. Mellow. This consumer’s policy is to primarily
find any service that is reliable and performs rel-
atively well compared to the others.

3. Rushed. This consumer is primarily concerned
with execution speed.

• Integer sorting interface. This is the interface used by
all sorting services. Essentially, it provides a method
to sort an array of integers.

• Integer sorting services. Three implementations of the
sorting service interface are deployed: BubbleSort, Merge-
Sort and QuickSort.

We create a pool of five identical provider instances
for each implementations. Table 2 shows the identifier

Table 2: Providers number assignment (doped and clean).

Size Doped Clean

BubbleSort pool 5 {0, 1, 2, 3} {4}
MergeSort pool 5 {5, 6, 7, 8} {9}
QuickSort pool 5 {10, 11, 12, 13} {14}

preferred = 30 ms

preferred = 50 ms

MethodInvokeTime

preferred = 20 ms
Rushed

Mellow

Careful
80 ms0 ms

MergeSort
typical = 40 ms

min

BubbleSort
typical = 60 ms

QuickSort
typical = 20 ms

C
o
n
s
u
m
e
rs

P
r
o
v
id
e
r
s

Figure 3: MethodInvokeTime policies.

number assigned to each instance in the pool along
with the set of instances that is doped and the set
that remains clean.

• Provider doping. A provider’s service is doped by ar-
tificially decreasing or increasing a particular quality.
For this experiment we introduce three types of service
doping:

1. DelayDoping. Introduces a delay in a service method
invocation.

2. FaultDoping. Increases a service method fault
rate by introducing artificial faults.

3. AvailDoping. Decreases the availability of a ser-
vice.

• Sorting service agent. This is the service agent for the
sort service.

4.3 Results
Now we discuss the results obtained for all five simula-

tions. For each simulation we show the obtained results as
graphs illustrating the service selection choice for each pool
of consumers. For each graph, the y-axis denotes the service
number of the selection. Services are numbered according
to Table 2. The x-axis shows the normalized execution se-
quence for the consumers of a pool. Since the execution
strategy for all of the simulations is set to random sequen-
tial, the actual execution sequence is non overlapping for
each pool of consumers. By normalizing the execution se-
quences, we effectively show the order of execution for each
consumer pool. For instance, point 10 on the x-axis for any
consumer pool represents the 11th consumer execution for
that particular pool.

Finally, all simulations start with a clean database for all
agencies. That is, the agencies are set up so that collected
data do not persist across simulation runs. Thus, in the
initial stages of any simulation run there will be no quality
data to bias the agents toward any particular service for any
pool.

4.3.1 Simulation 0 and 1: Base line service selection
In these first two simulations we try to establish a base

line for the service selections of our pool of consumers. We

Service select io n (f ul l do p ing and no ag ency d at a)

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

Execut ion sequence (normalized)

Rushed M ellow Careful

Figure 4: With doping but no agency data (Simulation 0).

Service select ion (f ull d op ing)

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Execution sequence (normalized)

Rushed M ellow Careful

Figure 5: Full doping (Simulation 2).

run the simulations without any agency data for the entire
duration of the simulation. That is, the service agents do
not consider the collected quality data in their selection de-
cisions. The first simulation runs with doping turned off and
the second with doping turned on.

As expected, the results show that service agents for a par-
ticular pool of consumer randomly selects between members
of the service pool for which their policy biases them.

Figure 4 is similar to the graph obtained when doping is
turned on and no agency data is used by the agents. This is
the case because the agents are not considering the agency
data in their decisions; although the services are doped,
which increases their MethodInvokeTime, FaultRate and de-
creases PercentAvailability, the agents are blinded to that
fact and thus cannot improve their decisions.

The remaining simulations show what happens when the
agents start accounting for the agency data into their selec-
tion decisions.

4.3.2 Simulation 2: Full service doping
In this simulation all services but the last numbered ser-

vice of each pool are doped. Since the last service of each
pool is clean, we would expect that the agent would, in time,
find that service and increasingly select it. Figure 5 shows
that for all three pools of consumers, we obtain, as expected,
convergence of all consumers for each pool to the lone clean
service instance of each service pool. Notice also that since
the doping occurs from the start of the simulation the con-
vergence is gradual and start early on the simulation.

Service select io n (delayed f ul l d o p ing)

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Execut ion sequence (normal ized)

Rushed M ellow Careful
Ser vi c e 11 wi l l s tar t bei ng

doped r andoml y af ter

thi s i nv oc at i on.

Figure 6: Delayed full doping (Simulation 3).

Service select io n (half d elayed d o p ing)

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Execution sequence (normalized)

Rushed M ellow Careful

Figure 7: Delayed half-service doping (Simulation 4).

4.3.3 Simulation 3: Delayed full doping
In this simulation we introduce a delay for all doping.

Essentially, all service doping will only start occurring after
the 4th invocation for a particular service. For instance,
Figure 6 shows that service 11 will not experience any doping
until the 7th invocation or so—since all doping are random.

As expected, the delay essentially shifts the convergence
to the clean service to the right of the graph. Figure 6
shows clearly that that although all services are doped as
in Simulation 2, the delay in the doping causes the agent to
converge more slowly to the clean service.

4.3.4 Simulation 4: Delayed half doping
This simulation introduces delayed doping of services but

in a more incremental manner. Figure 7 shows the results
for this simulation. As can be noticed from the graph, there
is a slight push for convergence to the right part of the graph
when compared to the full delayed case. Further, the con-
vergence seems to occur in two steps at around execution
sequence 11. This agrees with what we except since with
half of the services doped, the agent should find the group
of clean services early in the graph and then when doping
starts taking effect for the other half, the agent gradually
begins converging to the sole clean service.

5. RELATED WORK
Quality of service has been extensively studied in the

context of computer networks and specifically the Internet.
However, QoS in the context of software engineering and

Web services has seen a flurry of recent research activity.
We discuss relevant literature on QoS requirements, QoS
models and metrics, QoS middleware and frameworks and
QoS-driven service discovery and selection.

5.1 QoS Requirements
Early articles [13, 16] highlighted the need for QoS in

Web services as well as the main Web services standards
themselves, e.g., UDDI.

The Web Services Level Agreement (WSLA) [7] addresses
dynamic Web services procurement and qualities. WSLA
emphasizes contracts agreed on by the providers and con-
sumers for some usage. While WSLA solves some of the
problems to guarantee quality levels, it lacks support for
dynamism as required for a truly open environment.

Inspired by previous work [19, 7, 23], the W3C [24] sum-
marizes the key requirements of QoS for Web services. Lud-
wig summarizes the current efforts in the field, especially by
contrasting the work on service level agreement with other
QoS brokering approaches [12].

5.2 QoS Models and Metrics
Although many works on QoS mention similar metrics

such as reliability, availability, and security, most fail short of
giving a full ontology of QoS in the context of Web services.
Sabata et al. [20] sketched a QoS taxonomy, mostly in the
context of Web applications. Recent work [23, 19, 12] gives
some level of QoS modeling and hints at a QoS taxonomy
without expanding the details. Our work, addresses this
shortcoming by providing an initial QoS ontology.

Interestingly, the work by [23] also considers higher level of
qualities such as Quality of Experience (QoE), the subjective
quality perception of the end user; and Quality of Business
(QoBiz), the economic characteristic of the service to the
service provider. This work also stresses the importance of
relationships among qualities. We also model relationships
between qualities and use such relationships to improve ser-
vice selection by better computing the preferences of the
consumers.

The Web Services Policy Framework (WS-Policy) [4] gives
a flexible open language for expressing policy constraints
for services. Wohlstadter et al. [25] extend WS-Policy to
express QoS of services. Our own policy language can be
incorporated into WS-Policy in a straightforward manner.

UML profiles to model QoS are emerging [1, 5]. Aagedal
and Ecklund [2] propose extensions focused on reliability.
Our models are similar; however, we focus on Web services
and model semantic quality relationships, which the UML
profiles do not address.

5.3 QoS Middleware and Frameworks
Sheth et al. [21] highlight the need for QoS in composed

services for dynamic selection of their parts. They point
out that QoS concepts have dependent parameters. For in-
stance, the request-response time is dependent on the input
and output size of the service invocation. We adopt this
notion of explicit QoS parameterization and model all QoS
concepts to allow parameters.

Wohlstadter et al. [25] propose a middleware to pair clients
and servers using QoS policies. They describe a policy lan-
guage for expressing client and server policy requirements.
They also describe a protocol executed by the middleware
to find matches. Our work differs in the following main as-

pects. First, we use a decentralized multiagent architecture
but their middleware is a centralized matchmaker. Second,
we infer QoS relationships and interactions at runtime; they
assume design time setup.

Menascé et al. [17] describes a framework and architecture
to create software components that are QoS aware; that is,
these components expose a service interface and allow ne-
gotiation of QoS requirements. Our work differs primarily
from this one in that we use a multiagent systems architec-
ture whereas they use a centralized middleware approach.
They consider QoS negotiation as an explicit step whereas
we do not; and instead, our agents determine the best ser-
vice providers automatically without requiring negotiation.

5.4 QoS-Driven Discovery and Selection
Brokers can enable dynamic selection of services using

QoS [19, 22]. The brokers use third party certifiers to col-
lect QoS data on the services. The main difference with our
work is that we do not use a centralized broker and certifier
to determine a service’s QoS characteristics.

Al-Ali et al. [3] introduce the concept of application QoS
(AQoS) and describe a framework for adding QoS consid-
erations in Grid Services for selection and management of
individual services within the Grid. They differ primarily
from our approach in that our aim is to select services in
open environments.

Kalepu et al. [9] propose a new QoS metric to help select
Web services. Building on previous work [14, 7, 19], they
introduce the notion of Verity, which measures the consis-
tency of compliance over time.

Zeng et al. [27] discuss a global planning approach for
selecting composed services. They propose a simple QoS
model using the examples of price, availability, reliability,
and reputation. They apply linear programming for solving
the optimization QoS matrix formed by all of the possible
execution plans that result in the plan with the maximum
QoS values. This work is similar to ours in some of the
QoS modeling (which we extend) and applying statistical
variance to deal with the nondeterministic characteristics of
QoS values. The major differences with our work is that we
extend reputation to encompass all qualities and our model
for reputation has a dampening temporal characteristics.

Poladian et al. [18] present a mathematical model of the
problem of configuring user tasks. They assume that each
configuration is based on selecting services from providers of
differing QoS. They give an optimization algorithm, which
is known to be NP-complete but show a heuristic that sim-
plifies it. Our work too models selection decision as an op-
timization problem.

6. CONCLUSIONS
We have described a framework to achieve service selec-

tion in a manner that considers the preferences of service
consumers and the trustworthiness of providers. We evalu-
ated our approach with simulation experiments and showed
that a level of self-adjusting trust emerges from the system.
We are exploring the idea of adding explorer agents to our
framework to achieve better self-adjusting trust so that as
bad services correctly behave they are reconsidered. In fu-
ture work, we will expand our selection algorithm to take
into account multiple quality objectives [10] and additional
structural properties of QoS, e.g., statistical distribution of
values and their correlation.

7. ACKNOWLEDGMENT
We thank Nirmit Desai of NCSU and the anonymous re-

viewers for useful comments.

8. REFERENCES
[1] J. O. Aagedal, M. A. de Miguel, E. Fafournoux, M. S.

Lund, and K. Stolen. UML Profile for Modeling
Quality of Service and Fault Tolerance Characteristics
and Mechanisms. Technical Report 2004-06-01, Object
Management Group, June 2004.

[2] J. O. Aagedal and E. F. E. Jr. Modelling QoS:
Towards a UML Profile. In Proc. of � UML � 2002,
pp. 275–289, Dresden, Germany, Oct. 2002. Springer
LNCS.

[3] R. J. Al-Ali, O. F. Rana, D. W. Walker, S. Jha, and
S. Sohail. G-QoSM: Grid Service Discovery Using QoS
Properties. Computing and Informatics Journal,
21(4):363–382, 2002.

[4] D. Box et al. Web Services Policy Framework
(WSPolicy) Specification Version 1.01.
www-106.ibm.com/developerworks/
library/ws-polfram/, June 2003.

[5] V. Cortellessa and A. Pompei. Towards a UML profile
for QoS: a contribution in the reliability domain. In
Proc. of the fourth international workshop on Software
and performance, pp. 197–206. ACM Press, 2004.

[6] IBM Corporation. Web Services Conceptual
Architecture (WSCA 1.0).
www-306.ibm.com/software/solutions
/webservices/pdf/WSCA.pdf, 2001.

[7] IBM Corporation. Web Services Level Agreements.
www.research.ibm.com/wsla/
WSLASpecV1-20030128.pdf, 2003.

[8] Jython. Jython 2.1. www.jython.org, 2001.

[9] S. Kalepu, S. Krishnaswamy, and S. W. Loke. Verity:
A QoS Metric for Selecting Web Services and
Providers. In Proc. of the First Web Services Quality
Workshop, Rome, Italy, Dec. 2003. IEEE Computer
Society.

[10] R. L. Keeney and H. Raiffa. Decisions with Multiple
Objectives: Preferences and Value Tradeoffs. John
Wiley & Sons, Hoboken, NJ, 1976.

[11] J. O. Kephart and D. M. Chess. The Vision of
Autonomic Computing. IEEE Computer, 36(1):41–50,
Jan. 2003.

[12] H. Ludwig. Web Services QoS: External SLAs and
Internal Policies Or: How do we deliver what we
promise? In Proc. of the First Web Services Quality
Workshop, Rome, Italy, Dec. 2003. IEEE Computer
Society.

[13] A. Mani and A. Nagarajan. Understanding Quality of
Service for Web Services.
www-106.ibm.com/developerworks/webservices
/library/ws-quality.html, Jan. 2002. IBM
DeveloperWorks.

[14] E. M. Maximilien and M. P. Singh. Conceptual Model
of Web Service Reputation. SIGMOD Record,
31(4):36–41, Dec. 2002.

[15] E. M. Maximilien and M. P. Singh. A Framework and
Ontology for Dynamic Web Services Selection. IEEE
Internet Computing, 8(5):84–93, Sept. 2004.

[16] D. A. Menascé. QoS Issues in Web Services. IEEE
Internet Computing, 6(6):72–75, Nov. 2002.

[17] D. A. Menascé, H. Ruan, and H. Gomaa. A
Framework for QoS-Aware Software Components. In
Proc. of the Fourth International Workshop on
Software and Performance, pp. 186–196. ACM Press,
2004.

[18] V. Poladian, D. Garlan, M. Shaw, and J. P. Sousa.
Dynamic Configuration of Resource-Aware Services.
In Proc. 26th International Conference on Software
Engineering (ICSE 2004), pp. 604–613, Edinburgh,
Scotland, May 2004. IEEE Computer Society.

[19] S. Ran. A Framework for Discovering Web Services
with Desired Quality of Service Attributes. In L.-J.
Zhang, editor, Proc. of the International Conference
on Web Services, pp. 208–213, Las Vegas, NV, June
2003. IEEE Computer Society.

[20] B. Sabata, S. Chatterjee, M. Davis, J. J. Sydir, and
T. F. Lawrence. Taxonomy for QoS Specifications. In
Workshop on Object-Oriented Real-Time Dependable
Systems (WORDS), Newport Beach, CA, Feb. 1997.
IEEE Computer Society.

[21] A. Sheth, J. Cardoso, J. Miller, and K. Kochut. QoS
for Service-Oriented Middleware. In Proc. of the 6th
World Multiconference on Sytemics, Cybernetics and
Informatics (SCI02), volume 8, pp. 528–534, Orlando,
FL, July 2002.

[22] M. Tian, A. Gramm, T. Naumowicz, H. Ritter, and
J. Schiller. A Concept for QoS Integration in Web
Services. In Proc. of the First Web Services Quality
Workshop, Rome, Italy, Dec. 2003. IEEE Computer
Society.

[23] A. van Moorsel. Metrics for the Internet Age: Quality
of Experience and Quality of Business. Technical
Report HPL-2001-179, Hewlett-Packard, Erlangen,
Germany, July 2001.

[24] W3C. QoS for Web Services: Requirements and
Possible Approaches. www.w3c.or.kr/kr-office/
TR/2003/ws-qos/, Nov. 2003. Note.

[25] E. Wohlstadter, S. Tai, T. Mikalsen, I. Rouvellou, and
P. Devanbu. GlueQoS: Middleware to Sweeten
Quality-of-Service Policy Interactions. In Proc. of 26th
International Conference on Software Engineering
(ICSE 2004), pp. 189–199, Edinburgh, Scotland, May
2004. IEEE Computer Society.

[26] G. Zacharia and P. Maes. Trust Management Through
Reputation Mechanisms. Applied Artificial
Intelligence, 14:881–907, 2000.

[27] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang. QoS-Aware
Middleware for Web Services Composition. IEEE
Transactions on Software Engineering, 30(5):311–327,
May 2004.

