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Abstract

Wehavebeendevelopinganapproachfor thedistributed
coordination of heterogeneous,autonomousagents. This
approach takes as input (a) agent skeletons,giving com-
pactdescriptionsof thegivenagentsin termsof their events
thataresignificantfor coordination,aswell as(b) relation-
shipsamongtheeventsoccurringin theseskeletons.A nat-
ural questionis how may the skeletonsand relationships
be producedin the first place. Parunakrecentlyproposed
a methodology for designingmultiagent systemsbasedon
Dooley graphsfromdiscourseanalysis.We showhowwith
a few key modifications,Dooley graphscanalsobeusedto
generatetheskeletonsandrelationshipsrequiredfor coor-
dination.Thiscombinesthebenefitsof an intuitivemethod-
ologywith a formalanddistributedframeworkfor develop-
ing multiagentsystemsfromautonomousagents.

1 Intr oduction

We have initiateda programof researchon interaction-
orientedprogramming(IOP). IOP seeksto develop tech-
niquesandtoolsfor theconstructionof multiagentsystems
by specifyingtheinteractionsamong(usually)autonomous
agents. We lack the spaceto review all of IOP here,but
additionaldetailsmaybefoundelsewhere[9, 10, 11].

Coordinationis animportantclassof interactions,which
dealswith how differentagentssynchronizetheiractivities.
As part of IOP, we developedan approachfor coordinat-
ing heterogeneous,autonomousagents[10]. Our approach
specifiesindividualagentsin termsof theirskeletons, which
give coarse(and thereforecompact)descriptionsof their�
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behavior that capturethe essentialaspectsof their behav-
ior of significanceto theirpotentialcoordinationwith other
agents.Desiredcoordinationsarespecifiedby statingrela-
tionshipsamongtheeventsof differentagents.Theserela-
tionshipsareexpressedin aformal languagebasedonevent
algebra(a form of temporallogic), and can be automati-
cally processedto yield distributedmeansof coordinating
theeventsof differentagents.

Applying this approachrequiresa meansto specifyco-
ordinationsintuitively andcorrectly. We considerDooley
graphsfrom discourseanalysis[2], which were recently
introducedto the multiagentcommunityby Parunak[7].
Interestingly, Dooley graphscan be usedto generatethe
skeletonsandrelationshipsthat areinput to our approach.
Thegraphis processedto highlight thecausalrelationships
amongactions,andthestructuralpropertiesof the interac-
tionsof agents.

Focus. Therehasbeena large amountof goodwork on
somerelatedareas,especiallyagentcommunicationlan-
guagesand protocols. We shall not be getting into that
subjecthere. For simplicity andeaseof presentation,we
follow Parunak’sclassificationof speechactsandhissetof
“relationships”amongutterances.However, webelievethat
our approachcanbeappliedin othersettingsaswell, pro-
videdthey canidentify thedifferent“characters”playedby
anagentin aconversation.(Thequotedtermsareexplained
below.)

Organization. Section2 describestheconceptsof ourco-
ordinationapproach.Section3 presentsa brief exposition
of Dooley graphs. Section4 shows how we carry out the
synthesisby working out anexamplefrom [7] to convert a
Dooley graphinto asetof agentskeletons.
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2 Coordination

We summarizethekey conceptsof ourcoordinationser-
vice. Additionaldetailsareavailablein [10].

2.1 Coordination Model

Thereare two aspectsof the autonomyof agentsthat
concernus.One,theagentsaredesignedautonomously,and
their internaldetailsmay be unavailable. Two, the agents
actautonomously, andmayunilaterallyperformcertainac-
tionswithin their purview. We assumethat, in orderto be
able to coordinatethemat all, the designerof the multia-
gentsystemhassomelimited knowledgeof thedesignsof
the individual agents.This knowledgeis in termsof their
externallyvisible actions,which arepotentiallysignificant
for coordination.We call thesethesignificanteventsof the
agents. In other words, the only eventswe speakof are
thosepublicly known—therestareof noconcernto theco-
ordinationservice.

Event Classes Our metamodelconsidersfour classesof
events,which have differentpropertieswith respectto co-
ordination.Eventsmaybe� flexible, which theagentis willing to delayor omit� inevitable, which theagentis willing only to delay� immediate, which theagentperformsunilaterally, that

is, is willing neitherto delaynor to omit� triggerable, which the agentis willing to perform if
requested.

Thefirst threeclassesaremutually exclusive; eachcanbe
conjoinedwith triggerability. Thecategory whereanagent
will entertainomitting but not delayingan event is empty,
becauseunlessthe agentperformsthe event unilaterally,
theremustbesomedelayin receiving a responsefrom the
service.

Agent Skeletons It is useful to view the eventsasorga-
nizedinto a skeletonto providea simplemodelof anagent
for coordinationpurposes.Skeletonsarewell-known from
logicsof program,especiallysinceEmerson& Clarke [3].
Theskeletonsaretypically finite stateautomata.However,
they canbeanythingasfarasour formalsystemandimple-
mentationareconcerned—neitherlooks at their structure.
In particular, the skeletonsmay be setsof finite stateau-
tomata,whichcanbeusedto modelthedifferentthreadsof
a multithreadedagent. The setof events,their properties,
andthe skeletonsof the agentsareusually realizedby an
agentand, if so, in an application-specificmanner. These

canbeviewedasrequirementsthataresetby theprotocol
in which thedesignerwishestheagentsto participate.Ex-
ample1 discussestwo commonskeletons.
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Figure 2. Example Skeleton for Information
Filtering

Example1 Figures1 and2 show two skeletonsthat arise
in informationsearch. The skeletonof Figure1 is suited
for agentswho perform one-shotqueries. Its significant
eventsarestart(acceptan input andbegin), error, andre-
spond(producean answerandterminate). he skeletonof
Figure2 is suitedfor agentswho filter a streamor monitor
a database.Its significanteventsarestart(acceptan input,
if necessary, andbegin), error, endof stream, accept(ac-
ceptan input, if necessary),respond(producean answer),
more(loop backto expectingmoreinput). In both skele-
tons,theapplication-specificcomputationtakesplacein the
nodelabeled“Executing.” We must also specify the cat-
egoriesof thedifferentevents. For instance,we maystate
thaterror, endof stream, andrespondareimmediate,andall
othereventsareflexible, andstartis in additiontriggerable.

Althoughtheskeletonis not usedexplicitly by thecoordi-
nationserviceduring execution,it canbe usedto validate
specifiedcoordinationrequirements.More importantly, the



skeletonis essentialfor understandingthe public behavior
of anagent,andfor giving intuitivemeaningto its actions.

2.2 Coordination Relationships

Coordinationsarespecifiedbyexpressingappropriatere-
lationshipsamongtheeventsof differentagents.Ourformal
languageallows a variety of relationshipsto be captured.
For reasonsof space,we includetheformal syntaxandse-
manticsof this languagein AppendixA.

Table1 presentssomecommonexamples. The events
all carry parametertuples,but we don’t show thembelow
to reduceclutter. Someof therelationshipsinvolve coordi-
natingmultiple events. For example,R8 capturesrequire-
mentssuchasthat if an agentdoessomething(  ), but an-
otheragentdoesnotmatchit with somethingelse( � ), thena
third agentcanperform � . This is a typicalpatternin appli-
cationswith dataupdates,where� correspondsto anaction
to restorethe consistency of the information (potentially)
violatedby thesuccessof  andthefailureof � . Hencethe
namecompensation.

3 DooleyGraphs

Ourpresentationof Dooley graphsis basedon theexpo-
sition in [7]. Thekey ideathatinterestsushereis thatDoo-
ley graphsprovideanaturalwaytopresentanactualconver-
sationasit happened.By concentratingon specificconver-
sations,Dooley graphscanseparatethedifferentcharacters
playedby a single agent. The characterscan correspond
to differentcomponentsin anagent—roughly, this is what
interestsParunak. However, we arealso interestedin the
structureimposedon anagent’s skeletonby thecharacters
it plays.Further, theinteractionsamongthecharacterslead
to coordinationrelationshipsamongtheskeletons.

Agents act, both communicatively (i.e., using speech
acts[1]) and physically. We are interestedin the agents’
interactionswith oneanother. Typically, theagents’actions
do not arisein isolation,but aspartsof extendedcommu-
nicativeactivities. Theseactivitiescanbethoughtof aspro-
tocols,dialogues,arguments,or negotiationsamongagents.
Parunakusesthe term conversationfor a specificinstance
of thesecompositeactivities.

Conversationsnaturallyincludenotonly speechacts,but
alsosomephysicalactionsby meansof which the agents
deliverontheirpromises.Parunakallowsthespeechactsof
Solicit (Requestor Question)or Assert(Inform, Commit,
andRefuse).Heallows two physicalacts:ShipandPay.

In addition to the acts in a conversation,there is also
knowledgeof certainrelationshipsamongthespeechacts.
Theserelationshipsarerestrictedto beoneof thefollowing.
Here, ��� and ��� refersto differentutterancesin a conversa-
tion. �	� refersto thesenderof ��� .

� Respond. ��� respondsto ��� if f (a) �	� previously re-
ceived ��� , (b) ��� ’s impacton �	� caused�	� to send��� ,
and(c) � � is thefirst utteranceof � � to satisfy(a) and
(b).

� Reply. � � repliesto � � if f (a) � � previously received� � , (b) � � ’s impacton � � caused� � to send� � , and(c)� � is thefirst utteranceof � � directedto � � thatsatisfies
(a)and(b).

� Resolve. ��� resolves ��� if f ��� repliesto ��� and ��� fol-
lowsthe“rulesof engagement”definedin ��� .

� Complete. ��� completes��� if f ��� is a Commitand ���
eithersatisfiesor cancelstheassociatedcommitment.

Respond,Reply, and Resolve are progressively more re-
strictive. Completeis mutuallyexclusivewith Resolve—an
actcannotbothcompleteanutteranceandresolve anutter-
ance(notevena differentone).

Example2 Considera requestfor proposals(RFP)from A
to B, C, andD. Thefirst actthatany of themdoesthatwas
causedby the RFPis a Responseto it. If it is a message
backto A, thenit is alsoa Reply. If theReplyis a Commit
or aRefuse,thenit is alsoaResolve.

Example3 Table2 shows an exampleconversationfrom
[7]. The#spartially ordertheutterancesfrom earlyto late.
In thisconversation,A announcesanRFPfor 50widgetsto
B, C, andD. B checkswith C is C is bidding. C saysit is.
B thenrefusesA. C, however, makesa counteroffer of 40
widgets.A acceptsandC commits.In themeanwhileD of-
fersto accepttheinitial RFP, whichis morepreferableto A.
A thendeclinesC,whocancelsits commitment.D delivers,
but theorderis short(45only). A informsit. WhenD com-
plies, A pays. Table2 alsoshows the discourserelations
amongtheutterances.

Parunak’s exampleis oversimplifiedin that D commits
to supplyingthe widgetswithout botheringto checkif A
actuallyacceptedits bid. However, this andothersimplifi-
cationswon’t affect themainthrustof ourpaper.

A Dooley graphis generatedby analyzingaconversation
in sucha mannerthatthesetsof utterancesthatareclosely
relatedto oneanotherarebroughtcloser. This is usedto
inducea setof characters from eachparticipantin thecon-
versation.Thecharactersreflectthe rhetoricalstructureof
theconversation,andbecometheverticesof thegraph.

Example4 Figure 3 gives the Dooley graphfor Table2.
Thenumberedutterancesrelatethecharactersthatsendand
receivethem.



Name Description Formal notation

R1 � is requiredby � If � occurs,� mustoccurbeforeor after � ��� �
R2 � disables� If � occurs,then � mustoccurbefore� ��� ����� �!�
R3 � feedsor enables� � requires� to occurbefore �"�#�$� �
R4 � conditionallyfeeds� If � occurs,it feeds� ���%�"�&��� �
R5 Guaranteeing� enables� � canoccuronly if � hasoccurredor will

occur
��'���� �(' �

R6 � initiates � � occursiff � precedesit ��' ���%�)�*�
R7 � and � jointly require+ If � and � occurin any order, then + must

alsooccur(in any order)
��� ��� +

R8 + compensatesfor � failing � if � happensand � doesn’t, thenperform + , �-�.�/�0+21�'3, +4�.�516', +7� �	1
Table 1. Example Relationships

# S R Utterance Respondto Reply to Resolve Complete
1 A B,C,D Request(RFPfor 50)
2 B C Question:bidding? 1
3 C B Inform: yes 2 2 2
4 B A Refuse 3 1 1
5 C A Propose(take40) 1 1
6 A C Request(send40) 5 5 5
7 C A Commit(deliver40) 6 6 6
8 D A Commit(deliver50) 1 1 1
9 A C Assert(decline) 7, 8 7
10 C A Refuse 9 9 7
11 D A Ship(deliver45) 1 1 8
12 A D Assert(short) 8 Request 11 11
13 D A Shipremainder, i.e.,5 12 12 12
14 A D Pay 13 13 13

Table 2. Example Conversation

4 Approach

Dooley graphshighlighttherhetoricalstructureof acon-
versation,but hideits causalstructureor, in moremundane
terms,thecontrolflow amongtheagentswheremorethan
onecharacterof anagentis involved. (Parunak’sproposed
extensionalso doesnot display the actualcausalconnec-
tions,andwedon’t considerit in detailhere.)

Ourapproachproceedsasfollows.Webeginwith aDoo-
ley graphdepictingthe conversationbeinganalyzed. We
analyzethis Dooley graphto explicitly identify the causal
relationshipsamongthe variousutterances. We separate
out thehistoriesof thedifferentparticipants,but recordthe
contribution of eachcharacter. Table3 shows thehistories
derived from the Dooley graphof Figure3. The different
charactersarehighlightedin eachhistory.

4.1 Inducing Agent Skeletons

We usethefollowing conventions.An eventtypenamed
“get . . . ” correspondsto the receiptof an utterance.We
would expectaneventtypein anotheragentcorresponding
to themakingof thatutterance.Thereis noassumptionthat
thetwo eventshappenin synchrony, andusuallythey would
not. In the skeletons,we parentheticallyshow the corre-
spondingutterancenumberfrom Table2. A * indicatesan
actionnot in thegivenconversation.

Figure 4 shows possibleskeletonsfor B. The first re-
quiresthe agentto consultC beforedecidingwhetherto
propose.It wouldbeinappropriatein mostsettings,because
it putsstrongconstraintson B’s design.Thesecondskele-
ton goeseven fartherandrequiresB’s decisionto depend
on C. TheseskeletonsplaceB’s decision-makingpublicly
in theprotocol,andareclearlyunacceptable.Thelastskele-
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Figure 3. Example Conversation as a Dooley Graph

Role History

B 9;:7<>=!?@=6AB<DCFE 9GA7HI=KJ2=KL�M#CFE#9;L(MI=ON�=OAPH!C ; 9;AQ<>=SRT=6:7<!C
C 9;:7<>=!?@=OLU<DCDE 9GA7H@=OJ2=KL(M*CFE#9;L(M@=6N�=OAPH*C ; 9VLU<5=KW2=6:PH*CDE*9G:PHI=OX�=KLY<!CFE#9;LU<5=FZ[=O:)H!CDE 9;:)H@=6\�=KL(H*CFE#9;L(H@=!?I=O]I:PH!C
D 9;: < =!?@=6^ < CDE*9G^ < =6_�=O: < CFE*9;^ < =!?@?I=O: < CDE 9;: < =!?#J�=6^ H CDE*9G^ H =!?*N�=6: < CFE#9G: < =!?*R�=O^ H C
A 9;: < =!?@=6A < CFE#9G: < =*?I=OL < CFE*9;: < =!?@=6^ < CFE#9GA < =6R�=O: < CDE 9VL < =OW�=6: H CFE#9G: H =6X�=OL < CDE*9VL < =KZ2=6: H C ; 9G^ < =6_�=O: < CFE

9;:)H>=O\�=KL�H#CFE#9;L(HI=*?*]�=6:)H#C ; 9G^4<&=*?I?I=O:7<!CFE*9;:7<>=!?&J2=6^`HDCDE*9G^`H@=!?#N�=6:Q<FCFE#9G:Q<5=*?!R�=O^`H!C
Table 3. The Histories of Agents in a Conversation

ton,however, leavesit up to B to decidewhetherto consult
C andhow to useits response.This skeletoncapturesthe
key intuition aboutcharacterA H , which is thatit engagesin
asubdialoguewith characterL(M . This justifiesselectingthe
lastof thepossibleskeletonsfor B.

Notice that whenB asksC, C’s responseis relevant to
B’s further actions. However, whenB asksC, this query
mayhavenoconsequenceonC’sactions(andin thisproto-
col doesn’t). Consequently, Figure5 showsaskeletonfor C
in whichC maygeta queryfrom B, but this queryis struc-
turally independentof how C handlesRFPs.Similarly, the
counter-proposalis kept asa separateloop but attachedto
themainflow. This too is anexamplewherea characteris
modeledwith aseparatesubskeleton(physicallyathread)in
theagent’s skeleton. (For reasonsof space,D is discussed
whenintegratedbelow.)

Thedecisionwhetherto haveaseparatethreador a loop
in asinglethreaddependsonhow weunderstandtheagents
to beactingandinteracting.Clearly, wemustseparatewhat
the agentshappento do from what is essentialfor coordi-
nationin thegivenapplication.Dooley graphs,by focusing

on a specificconversationarein tensionwith this process.
However, in settingssuchasour presentexample,we can
derivemoreinformationfrom thegraphby recognizingthat
the samerole is instantiatedby multiple agents.Here,the
multicastby A is a clue thatB, C, andD areto be treated
alike. In sucha case,we canachieve the correctsolution
by integratingthe skeletons. Figure6 shows a composite
skeletonassumingB, C, andD play therole of contractor.
By integratingtheskeletons,wecanconstructasinglemore
completeskeletonthanany of theagentsin thegivencon-
versationindicates. The ship and get-errorloop refersto
character̂ H of Figure3. In this case,giving it a separate
loop would have causedthe ship action to appearon two
differenttransitions,andwouldhavebeenlessclear.

Figure 7 shows the skeletonfor A. The main quirk in
this is thatA performsa multicast,andeffectively keepsa
separatethreadto dealwith eachcontractor. Notethat it is
not clearif only onebid canbeaccepted,becausethebids
may eachbe partial. If thereweresucha requirement,it
would be capturedasa disablingrelationship(a la R2 in
Table1).



a
a
a
a

a a

b
b
bccc d e e e

egf

getrequest(1)

askC (2)

getinform (3)

refuse(4)

commit*

a
a
a

a

a

a
a

b
bccc d e e e

egf
bb

getrequest(1)

askC (2)

refuse(4)

getNo

getYes(3)

commit*

a
a

a
a a

b
h h
h h hji

kk
kk l

m m m mon n nqp
nn r

getrequest(1)

refuse(4)

commit*

askC (2)

getinform (3)

Figure 4. Possible Skeletons for Agent B

a
a

a

a
a

a

a

a
ab

ssss tm m m mon n nqp
b
e e egfuuu v

b

ssss t e e egf
getrequest(1)

ship*
getcancel(9)

ackcancel(10)

commit(7)

counter(5)

getrequest(6)

getquery(2)

inform(3)

Figure 5. Possible Skeleton for Agent C

4.2 Inducing Event Classes

With the skeletonsin hand,thepropertiesof the events
can be readily inferred. The “get” events for requests,
queries,or cancelationsareall triggerable,becausethat is
how the agentis informedby others. In particular, unex-
pectedeventsmustconceptuallybe treatedas triggerable.
In somecases,theagentmaybe implementedso that trig-
gerability is effectedby polling, but that is a detail that is
independentof ourconceptualunderstanding.

Many of the agents’eventsmay be modeledas imme-
diateor at leastinevitable,becausetheagentswill perform
themif they wish,althoughthey maybewilling to wait. For
example,whenA cancels,it cannotbe told it shouldnot.
That is simply its prerogative asan autonomousagent. In
somecases,however, whenwe wish to monitor theagents
moreclosely, wemightrestricteventssuchascancelsothey

mayoccuronly aftera commitmenthasbeencreated,e.g.,
aftera contractorhasresponded.In sucha case,theevent
maybemodeledasflexible.

4.3 Inducing Relationships

The above exampledoesnot involve enoughvariety of
relationshipsto exerciseall of our formal language.There
areno importantorderingconstraintsamongthe eventsof
different agents,except for when triggering is involved.
However, thefollowing rulesareeasilyidentified—forcon-
veniencewereferto Table1 below.w Every Solicit is Repliedto (R1). Repliesmayor may

notberequiredin everyprotocol,however.w The Repliesmust be enabledby the utterancesthey
Replyto (R3).
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� EveryCommitis completed(R1).

� Respondsis implementedin an application-specific
manner. However, inputSolicitscanenableassociated
Responds.Sometimes,wemaynotwish to allow this,
e.g.,soB canaskC anyway.

� Thepresenceof a non-ReplyRespondto anutterance,
e.g., �;�P�&�I�(�#� , indicatesthattheReplyis not required
right away. Thenon-ReplyResponditself is doneuni-
laterallyby theagentandmustbemodeledasimmedi-
ate.

5 Conclusionsand Future Work

We showedhow we canbegin with Dooley graphsand
with someheuristicsaboutwell-formedskeletonsandsym-
metryacrossagentsin thesamerole,comeupwith reason-
able skeletonsfor coordination. We can also infer many
of thedesiredrelationshipsamongtheskeletons.Thepro-
cessis notautomatic,but canhelpa humandesignercreate
a goodspecification.A large-scaleevaluationhasnot yet
beenperformed,however.

We stronglybelieve that the nascentscienceof multia-
gent systemsis inherentlyinterdisciplinary. Accordingly,
researchersin this areashouldbe continually looking for
usefulideasin otherfields. We applaudParunakfor his ef-
forts in recruitingideasfrom appliedlinguistics.1 For our
part, we have pursuedideasfrom logics of programand
databasesin developingour coordinationservice.Herewe
showedhow we cancombineseparatelyborrowedideasto
strengthenmultiagentapproachesstill further!

Thereare a numberof topics for future investigation.
One is the considerationof conversationsthat are effec-
tively nonterminating.If thesearespecifiableasfinite state
machines,we shouldbe able to generalizeDooley graphs
to accommodatethem. Repeatedinteractionsamongthe
agentscanhelp identify moreof the branchesof the pos-
sibleconversations,but caremustbetakensothatunneces-
sarycausalconnectionsarenot inferred.Anotherchallenge
is to usenegativeexamples,i.e.,graphsthatdescribefailed
conversationsor conversationsthat do not meetsomede-
siredcriteria.Thesetaskscouldbefacilitatedby a tool that
incorporatessomemachinelearningideas.

We areintriguedby thedistributedcomputingliterature

1It is interestingthat Dooley graphsdon’t featurein [6], which is a
revisedversionof [5], soonewondersif thediscourseanalysiscommunity
foundDooley graphsnot souseful.



onpotentialcausality, andspeculatethatit will beara fruit-
ful relation to the presentsubject[4]. Potentialcausality
is the idea that wherethereis an informationflow across
eventswithin an agentor acrosseventsin differentagents
(throughmessagepassing),theremaybea causalconnec-
tion. A problem is that there can be far more potential
causesthan real causes[8]. An analysisof a numberof
conversationsmayhelp restrictthenotion,however. Also,
if we can usepotentialcausality, we needreducedinput
from the designeror analyzer. This would not only sim-
plify their task,but morereadilyincorporateheterogeneous
agents,e.g.,producedby differentvendors,whoseinternal
detailsarenotknown.
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A Formal Syntaxand Semantics

We formalizeinteractionsin anevent-basedlinear tem-
poral logic. � , our specificationlanguage,is propositional
logic augmentedwith thebefore ( � ) temporaloperator. The

literalsdenoteeventtypes,andcanhave parameters.A lit-
eral with all constantparametersdenotesan event token.
Crucially, � can expressa remarkablevariety of interac-
tions,yetbecompiledandexecutedin adistributedmanner.

The syntaxof � follows. � includesall event literals
(with constantor variableparameters);�0��� containsonly
constantliterals.A dependencyis anexpressionin � .

Syntax1 �o���
Syntax2 �#�5�O�D�B `�¢¡£�*�¥¤¦�D�@�6�*�¨§%�D�@�6�#�(�!�D�B ©�

Our formal semanticsis basedon traces,i.e., sequences
of events.Ouruniverseis ª©« , whichcontainsall consistent
tracesinvolving eventtokensfrom � . Consistenttracesare
thosein which an event token and its complementdo not
occur, and in which event tokensare not repeated. ¬ ¬® /¯�.°±³²)´;ª «gµ givesthedenotationof eachmemberof � . The
specificationsin � selecttheacceptabletraces—specifying� meansthattheservicemayacceptany tracein ¬ ¬ �>  .

Let constantparametersbewrittenas ¶D· etc.;variablesas¸ · etc.;andeithervarietyas ¹ · etc. º[¬ ¶ �q»*»!» ¶!¼" meansthatº occursappropriatelyinstantiated.

Semantics1 ¬ ¬ º[¬ ¶ �½»!»!» ¶D¼)¾ Y¿ÁÀ*Â� �ª4«Ã¯Äº[¬ ¶ �½»!»!» ¶D¼) oc-
curson Â�Å
º refersto thecomplementof º . Since ¬ ¬®  yieldssetsof

traces,complementationis strongerthannegationin other
temporallogics. Intuitively, º[¬ ¶ �q»*»!» ¶D¼) is establishedonly
whenit is definitethat º[¬ ¶ �q»!»*» ¶D¼) will never occur. Com-
plementedliterals are includedin � andneedno separate
syntaxor semanticsrule.�T´ ¸ µ refersto anexpressionfreein variablȩ . �T´ ¸ ¯Æ¯Ç¿3¶ µ
refersto theexpressionobtainedfrom �T´ ¸ µ by substituting
every occurrenceof ¸ by ¶ . Variableparametersareeffec-
tively universallyquantifiedby:

Semantics2 ¬ ¬ �T´ ¸ µ  g¿ÉÈ`Ê6Ë>ÌT¬ ¬ ��´ ¸ ¯¾¯Í¿Î¶ µ  
�*�"¤0�D� meansthat either �*� or �D� is satisfied. �*�)§0�D�

meansthatboth �*� and �D� aresatisfied(in any interleaving).�*�-�[�!� meansthat �*� is satisfiedbefore �!� (thus both are
satisfied).

Semantics3 ¬ ¬ � � ¤%� �  	¿Ï¬ ¬ � �  2Ð�¬ ¬ � �  
Semantics4 ¬ ¬ �*�¥§%�D�D 	¿Ï¬ ¬ �*�F 2Ñ�¬ ¬ �D�! 
Semantics5 ¬ ¬ � � ��� �  4¿³À#Â � Â �  Òª©«Ó¯)Â �  Á¬ ¬ � �   andÂ �  ¢¬ ¬ � �  ;Å

Elsewhere[10], wepresentasetof equationsthatenable
symbolicreasoningon � to determinewhena certainevent
maybepermitted,prevented,or triggered.


