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8 Formal Methods in DAI:

Logic-Based Representation and Reasoning

Munindar P. Singh, Anand S. Rao, and Michael P. Georgeff

8.1 Introduction

It is clear from a reading of the other chapters that agent applications are becoming
ever more important. Agents are being deployed in increasingly complex production
environments, where the failure or misbehavior of an agent might easily cause loss of
life or property. Accordingly, a major challenge is to develop techniques for ensuring
that agents will behave as we expect them to—or at least, will not behave in ways
that are unacceptable or undesirable.

Of course, ensuring correctness is a challenge for all of computer science. Previous
work in computer science has studied formal methods as a good basis for creating
systems with minimal errors. These methods have found useful application, but
much remains to be understood in terms of specifying complex systems in the
first place. Agents are desirable for the very reason that they provide higher-
level abstractions for complex systems. These abstractions can lead to simpler
techniques for design and development, because they offer an approach to sidestep
the complexity inherent in the larger applications.

Formal methods in DAI and elsewhere offer an understanding of the systems
being designed at a level higher than their specific implementation. They can
provide a way to help debug specifications and to validate system implementations
with respect to precise specifications. However, the role of formal methods in
DAI—like in the rest of computer science—is somewhat controversial. Despite the
above potential advantages, some practitioners believe that formal methods do
not assist them in their efforts. This might indeed be true in many cases. Formal
methods, because of their call for precision, naturally lag the ad hoc, quick-and-
dirty approaches to system construction, which are often effective in the short
run. Although several powerful formalisms exist, finding the right formalism is a
nontrivial challenge. Such a formalism would provide a level of expressiveness that
suffices for the practical problems at hand, but would nevertheless be tractable.
Also, formal methods are the most effective when included in tools and used
by specially trained designers. For that reason, just as software engineers have
discovered, there is no substitute for good tools nor for education in formal methods.

Despite the above controversy, there is general agreement that formal methods
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do help in the long run, in helping developing a clearer understanding of problems
and solutions. Indeed, over the years, a number of formal techniques developed in
DAI have found their way into practical systems. They usually do not constitute
the entire system, but provide key functionality.

This chapter covers the major approaches to formal methods for describing and
reasoning about agents and their behavior. It puts a special emphasis on how these
methods may be realized in practical systems. It discusses the state of the art
in theory and practice, and outlines some promising directions for future research.
This chapter is primarily focused on formalizations that involve variants of symbolic
logic. Some other mathematical techniques are discussed in Chapters 5 and 12.
Although this chapter is self-contained, some familiarity with logic would help the
reader.

8.2 Logical Background

In general, formalizations of agent systems can be, and have been, used for two
quite distinct purposes:

as internal specification languages to be used by the agent in its reasoning or
action; and

as external metalanguages to be used by the designer to specify, design, and ver-
ify certain behavioral properties of agent(s) situated in a dynamic environment.

The first class of approaches is more traditional in DAI. It presupposes that the
agents have the capability to reason explicitly. Such agents are commonly referred
to as cognitive, rational, deliberative, or heavyweight—some of this terminology is
introduced in Chapter 1. The second class of approaches is more recent in the study
of agents, although it is more traditional in the rest of computer science. This is to
use the formalism to enable a designer to reason about the agent. The agent may
or may not be able to reason itself when it is deployed in the field.

Fortunately, although the conceptual basis of the two approaches is radically
different, the underlying mathematics is not always as different. We exploit this
similarity by presenting most ideas in terms of what reasoning is required and
how it may be performed, and only secondarily treating its actual realization as a
component for the agent, or as a tool for its designer. Ideally, one would like to have
the same logical language serve both of the above purposes. However, the trade-
off between expressiveness and computability makes this ideal somewhat infeasible
in general. The real-time constraints on agents situated in dynamic environments
require the internal language to be computationally efficient, while the variety of
complex behaviors that are possible in a system of distributed autonomous agents
requires the external language to be more expressive.

We begin with the formalizations of distributed agents from the designer’s
perspective. We then move on to describe some of the practical tools and systems
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that have been built by reducing the expressive power of these languages to make
them more feasible for direct execution by distributed agents.

8.2.1 Basic Concepts

The techniques used in formalizing DAI concepts make extensive use of proposi-
tional, modal, temporal, and dynamic logics. We now review these logics, which
have been used in classical computer science to give the semantics of concurrent
programs. For reasons of space, we avoid many details of the logics, instead accret-
ing concepts that are of special value to DAI. We combine these into a single logic,
which we study in somewhat more detail.

Simply put, there are three aspects to a logic. The well-formed formulas of the
logic are the statements that can be made in it. These are specified as a formal
language that underlies a given logic. The proof-theory includes the axioms and rules
of inference, which state entailment relationships among well-formed formulas. The
model-theory gives the formal meaning of the well-formed formulas. The language
and proof-theory are called the syntax; the model-theory is also called the semantics.

An important practical consideration is to make the semantics natural. Since logic
is used to formalize our intuitions about computational systems, their interactions
with each other, or with the environments in which they exist, it is crucial that the
formulas refer to the meaning that we wish to formalize.

The purpose of the semantics is to relate formulas to some simplified represen-
tation of the reality that interests us. This simplified version of reality corresponds
to the nontechnical term “model.” However, in logic, a model means more than
just any simplified version of reality—it is one that is closely related to the formal
language that underlies the given logic. Fundamentally, logic can handle only one
kind of meaning, namely, the truth or falsity of a given formula. Since models are
often quite large and structured, we often need to specify a suitable component of
a model with respect to which the truth or falsity of a formula would carry the
intuitive meaning one seeks to formalize. We use the term index to refer to any
such component, be it a piece of the world, a spatial location, a moment or period
in time, a potential course of events, or whatever is appropriate.

A formula is satisfied at a model and some index into it if and only if it is given
the meaning true there. For a model M , index i, and formula p, this is written as
M |=i p. A formula is valid in a model M if and only if it is satisfied at all indices
in the model; this is written as M |= p.

The following exposition defines a series of formal languages to capture some
pretheoretic intuitions about concepts such as truth, possibility, action, time,
beliefs, desires, and intentions. The typical formal languages of interest are context-
free, and hence can be specified in the traditional Backus-Naur Form (BNF) [1,
chapter 4]. However, for simplicity, and in keeping with most works on logic, we
specify their syntax as a set of informal rules. Also, for most of the logics we present,
syntactic variants are possible, but it won’t be worth our while to discuss them here.

Along with each language, we will define a class of formal models that have the
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requisite amount of detail. Further, we will give meaning postulates or semantic
conditions defining exactly where in the model (i.e., at what indices) a formula is
true. A well-known caveat about logic in general is that the informal meanings of
different terms may not be fully captured by the formalization. Sometimes this is
because the informal meanings are not mutually consistent, and the formalization
helps remove harmful ambiguity. However, sometimes this is because certain nu-
ances of meaning are difficult to capture. If these nuances are not worth the trouble,
then nothing is lost; otherwise, one should to consider an alternative formalization.

8.2.2 Propositional and Predicate Logic

Propositional logic is the simplest and one of the most widely used logics to
represent factual information, often about the agents’ environment. Formulas in this
language are built up from atomic propositions, which intuitively express atomic
facts about the world and truth-functional connectives. The connectives ∧, ∨, ¬,
and → denote “and,” “or,” “not,” and “implies,” respectively. The reader may
consult a textbook, such as [26] for additional details.

Example 8.1

The facts “it rains” and “road is wet” can be captured as atomic propositions rains
and wet-road, respectively. The implication that “if it rains, then the road is wet”
can be captured by the propositional formula rain →wet-road.

LP is the language of propositional logic. It is given by the following rules. Here
we assume that a set Φ of atomic propositions is given.

Syn-1. ψ ∈ Φ implies that ψ ∈ LP

Syn-2. p, q ∈ LP implies that p ∧ q, ¬p ∈ LP

Let M0
def= 〈L〉 be the formal model for LP . We use 〈 〉 brackets around L to

highlight similarities with the later development. Here L ⊆ Φ is an interpretation
or label. L identifies the set of atomic propositions that are true. This gives us the
base case; the meanings of the nonatomic formulas are recursively defined.

Sem-1. M0 |= ψ iff ψ ∈ L, where ψ ∈ Φ

Sem-2. M0 |= p ∧ q iff M0 |= p and M0 |= q

Sem-3. M0 |= ¬p iff M0 6|= p

The atomic propositions and boolean combinations of them are used to describe
states of the system. They do not consider how the system may evolve or has
been evolving. Two useful abbreviations are false ≡ (p ∧ ¬p), for any p ∈ Φ, and
true ≡ ¬false. As is customary, we define p∨q as ¬(¬p∧¬q), and p→q as ¬p∨q.

With reference to the caveat mentioned above, the logic operators and their
natural language counterparts are different notions. For example, p→q is true if
p is false irrespective of q—thus it identifies potentially irrelevant connections.
Alternative, more faithful, formalizations of “implies” do exist, e.g., in relevance
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logic [2]. We will refer to a simple variant in Section 8.2.3. However, most current
research in logic and computer science ignores the subtlety and uses the above
definition.

Although we do not use predicate logic in the specification languages, we do use it
in the metalanguage, which is used in the semantic conditions. The universal (∀) and
existential (∃) quantifiers are used to bind variables and make claims, respectively,
about all or some of their possible values. A variable that is not bound is free. Let
Q(x) be some expression involving a free variable x, e.g., x < y. (∀x : Q(x)) holds
if Q(l) holds for each possible object l that may be substituted for x in the entire
expression Q. (∃x : Q(x)) holds if Q(l) holds for some possible object l substituted
throughout for x.

8.2.3 Modal Logic

Recall the remark in Section 8.2.1 that logic treats truth or falsity of a formula as
its exclusive notion of meaning. Modal logic has been used extensively in artificial
intelligence to refer to other kinds of meaning of formulas. In its general form,
modal logic was used by philosophers to investigate different modes of truth, such
as possibly true and necessarily true. In the study of agents, it is used to give
meaning to concepts such as belief and knowledge. In modal languages, classical
propositional logic is extended with two modal operators: 3 (for possibility) and 2

(for necessity). The modal language LM is defined as follows:

Syn-3. the rules for LP (with “LM” substituted for “LP ”)

Syn-4. p ∈ LP implies that 3p, 2p ∈ LM

Example 8.2

We can capture “it is possible that it rains” as 3rain, and “it is necessary that
the sun rises in the east” as 2sun-rises-in-the-east.

Models for modal logic require additional structure beyond M0. The semantics of
modal logics is traditionally given in terms of sets of the so-called possible worlds.
A world can be thought of in several different ways. A simple idea is that a world
is a possible state of affairs, corresponding roughly to an interpretation, as in the
semantics for LP . However, a world can also be treated as a history, i.e., a sequence
of states of affairs. It can even be treated as a set of all possible histories starting
from a given state. The above views—as a history or set of histories—are more
common in the philosophical literature. However, in this chapter, we treat a world
(in the technical sense) usually as a state of affairs, and sometimes corresponding
to a possible history.

With sets of worlds as primitive, the structure of the model is captured by relating
the different worlds via a binary accessibility relation [54]. Intuitively, this relation
tells us what worlds are within the realm of possibility from the standpoint of a
given world. A condition is possible if it is true somewhere in the realm of possibility;
a condition is necessary if it is true everywhere in the realm of possibility.
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Let M1
def= 〈W,L, R〉, where W is the set of worlds, L : W 7→ 2Φ gives the set of

formulas true at a world, and R ⊆ W ×W is an accessibility relation. Here, since
the model is structured, the relevant index is the possible world with respect to
which we evaluate a formula.

Sem-4. M1 |=w ψ iff ψ ∈ L(w), where ψ ∈ Φ

Sem-5. M1 |=w p ∧ q iff M1 |=w q and M1 |=w q

Sem-6. M1 |=w ¬p iff M1 6|=w p

Sem-7. M1 |=w 3p iff (∃w′ : R(w, w′)&M1 |=w′ p)

Sem-8. M1 |=w 2p iff (∀w′ : R(w, w′)⇒ M1 |=w′ p)

Example 8.3

Modal logics enable us to represent strict conditionals, which offer a more accurate
formalization of natural language implication than the propositional operator.
2(p→q) holds not merely when p is false, but if p and q are appropriately related
at all possible worlds.

Importantly, algebraic properties of the accessibility relation translate into entail-
ment properties of the logic. Some common algebraic properties are the following.

R is reflexive iff (∀w : (w, w) ∈ R)

R is serial iff (∀w : (∃w′ : (w, w′) ∈ R))

R is transitive iff (∀w1, w2, w3 : (w1, w2) ∈ R&(w2, w3) ∈ R⇒ (w1, w3) ∈ R)

R is symmetric iff (∀w1, w2 : (w1, w2) ∈ R⇒ (w2, w1) ∈ R)

R is euclidean iff (∀w1, w2, w3 : (w1, w2) ∈ R&(w1, w3) ∈ R⇒ (w2, w3) ∈ R)

We leave it to the reader to verify that models that satisfy the above properties
validate the following formulas, respectively.

2p→p

2p→3p

2p→22p

p→23p

3p→23p

Since the above formulas do not depend on p, they are properly viewed as schemas
that apply to any condition. In the literature, these are termed the T , D, 4, B, and
5 schemas, respectively [12].

8.2.4 Deontic Logic

Deontic logic is about what ought to be the case or what an agent is obliged to do.
Traditional deontic logic introduces an operator Obl for obliged, whose dual is Per

for permitted. Deontic logic is specified as a modal logic with the main axiom that
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Oblp→¬Obl¬p, i.e., the agent is obliged to bring about p only if it is not obliged
to bring about ¬p. The rest of the logic is fairly straightforward. Unfortunately,
this formulation suffers from a number of paradoxes. We shall not study it in detail
here, nor the more sophisticated approaches of dyadic deontic logic and logics of
directed obligation. Instead, we refer the reader to some important collections of
essays on this subject [40, 41, 62].

8.2.5 Dynamic Logic

Dynamic logic can be thought of as the modal logic of action [53]. Unlike traditional
modal logics, however, the necessity and possibility operators of dynamic logic are
based upon the kinds of actions available. As a consequence of this flexibility, it has
found use in a number of areas of DAI.

We consider the propositional dynamic logic of regular programs, which is the
most common variant. This logic has a sublanguage based on regular expressions
for defining action expressions—these composite actions correspond to Algol-60
programs, hence the name regular programs. We define LD along with LR as an
auxiliary definition. Here, B is a set of atomic action symbols.

Syn-5. the rules for LP applied to LD

Syn-6. β ∈ B implies that β ∈ LR

Syn-7. a, b ∈ LR implies that a; b, (a + b), a∗ ∈ LR

Syn-8. p ∈ LD implies that p? ∈ LR

Syn-9. a ∈ LR and p ∈ LD implies that [a]p, 〈a〉p ∈ LR

Intuitively, the atomic actions are what the agent can perform directly. The
program a; b means doing a and b in sequence. The program a + b means doing
either a or b, whichever works. This is nondeterministic choice—although it might
sound a little unintuitive at first, it is logically clean and one gets to appreciate it
after some experience. However, a nondeterministic program may not be physically
executable, because it can require arbitrary lookahead to infer which branch is
really taken. The program p? is an action based on confirming the truth value of
proposition p. If p is true, this action succeeds as a noop, i.e., without affecting the
state of the world. If p is false, it fails, and the branch of the action of which it is
part is terminated in failure—it is as if the branch did not exist. The program a∗
means 0 or more (but finitely many) iterations of a.

Example 8.4

The Algol-60 program if q then a else b endif is translated as ((q?; a) +
((¬q)?; b)). If q holds, the (¬q)? branch fails, so a must be performed. Otherwise b

must be performed.

The semantics of dynamic logic is given with respect to a model that includes a
set of states (or worlds) related by possible transitions based on the actions in B.
Let M2

def= 〈W,L, δ〉, where W and L are as before. δ ⊆ W ×B ×W is a transition
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relation. It is convenient to define a class of accessibility relations based on LR.

Rp-1. Rβ(w,w′) iff δ(w, β, w′)

Rp-2. Ra;b(w, w′) iff (∃w′′ : Ra(w,w′′)&Rb(w′′, w′))

Rp-3. Ra+b(w,w′) iff Ra(w, w′) or Rb(w,w′)

Rp-4. Ra∗(w, w′) iff (∃w0, . . . , wn : (w = w0)&(w′ = wn)&(∀i : 0 ≤ i <

n⇒ Ra(wi, wi+1)))

Sem-9. M2 |=w 〈a〉p iff (∃w′ : Ra(w, w′)&M2 |=w′ p)

Sem-10. M2 |=w [a]p iff (∀w′ : Ra(w, w′)⇒ M2 |=w′ p)

We refer the reader to the survey by Kozen & Tiurzyn [53] for additional details.

8.2.6 Temporal Logic

Temporal logic is, naturally enough, the logic of time. There are several variants.
Of these, the most important distinctions are the following:

Linear versus Branching: whether time is viewed as a single course of history or
as multiple possible courses of history. The branching can be in the past, in the
future, or both.

Discrete versus Dense: whether time is viewed as consisting of discrete steps (like
the natural numbers) or as always having intermediate states (like the rationals
or reals).

Moment-Based versus Period-Based: whether the atoms of time are points or
intervals.

t0
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Figure 8.1 An example structure of time
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Although there are advantages to each of the above variants, we will concentrate
on discrete moment-based models with linear past, but consider both linear and
branching futures. Let us consider an informal view of time before we enter into a
formalization. This view is based on a set of moments with a strict partial order,
which denotes temporal precedence. Each moment is associated with a possible
state of the world, identified by the atomic conditions or propositions that hold at
that moment. A path at a moment is any maximal set of moments containing the
given moment, and all moments in its future along some particular branch of <.
Thus a path is a possible course of events. It is useful for capturing many intuitions
about the choices and abilities of agents to identify one of the paths beginning at a
moment as the real one. This is the path on which the world progresses, assuming
it was in the state denoted by the given moment. Constraints on what should or
will happen can naturally be formulated in terms of the real path. Figure 8.1 has a
schematic picture of this view of time.

Example 8.5

Figure 8.1 is labeled with the actions of two agents. Each agent influences the
future by acting, but the outcome also depends on other events. For example, in
Figure 8.1, the first agent can constrain the future to some extent by choosing to
do action a or action b. If it does action a, then the world progresses along one of
the top two branches out of t0; if it does action b, then it progresses along one of
the bottom two branches.

The important intuition about actions is that they correspond to the granularity
at which an agent can make its choices. The agent cannot control what exactly
transpires, but it can influence it to some extent through its actions.

Example 8.6

In Figure 8.1, the first agent can choose between t1 and t2, on the one hand, and
between t3 and t4, on the other hand. However, it can choose neither between t1
and t2, nor between t3 and t4.

8.2.6.1 Linear Temporal Logic

LL is a linear-time temporal language.

Syn-10. the rules for LP

Syn-11. p, q ∈ LL implies that pUq, Xp, Pp ∈ L
pUq is true at a moment t on a path, if and only if q holds at a future moment on

the given path and p holds on all moments between t and the selected occurrence of
q. Fp means that p holds sometimes in the future on the given path and abbreviates
trueUp. Gp means that p always holds in the future on the given path; it abbreviates
¬F¬p. Xp means that p holds in the next moment. Pq means that q held in a past
moment.

The semantics is given with respect to a model M3
def= 〈T, <, [[ ]]〉, where T is

the set of moments, < the temporal ordering relation, and [[ ]] gives the denotations
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of the atomic propositions. It is convenient to use [[ ]], which is the dual of the
interpretation L: w ∈ [[ψ]] iff ψ ∈ L(w).

Sem-11. M3 |=t Pp iff (∃t′ : t′ < t and M3 |=t′ p)

Sem-12. M3 |=t Xp iff M3 |=t+1 p

Sem-13. M3 |=t pUq iff (∃t′ : t ≤ t′ and M3 |=t′ q and (∀t′′ : t ≤ t′′ ≤
t′⇒ M3 |=t′′ p))

For the later formal development, it is useful to keep in mind that M3 is linear, i.e.,
< here is a total ordering.

8.2.6.2 Branching Temporal and Action Logic

LB is a branching-time temporal and action language. It builds on top of LL

and LD, and especially uses the ideas of the well-known language CTL* [24]. LB

captures the essential properties of actions and time that are of value in specifying
agents.

Formally, L is the minimal set closed under the rules given below. Here Ls is
the set of “path-formulas,” which is used as an auxiliary definition. Here X is a
set of variables and A is a set of agent symbols. We give intuitive meanings of the
constructs of this formal language after the following syntactic definitions.

Syn-12. the rules of LP

Syn-13. p, q ∈ LB and implies that Pp, (
∨

a : p) ∈ LB

Syn-14. LB ⊆ Ls

Syn-15. p, q ∈ Ls, x ∈ A, and a ∈ B implies that p∧ q, ¬p, pUq, Xp, x[a]p, x〈a〉p
∈ Ls

Syn-16. p ∈ Ls implies that Ap, Rp ∈ LB

Syn-17. p ∈ (Ls \ LB) and a ∈ X implies that (
∨

a : p) ∈ Ls

The formulas in LB refer to moments. The formulas in Ls refer to paths as in
the models of LL. Although LB ⊆ Ls, the formulas in LB get a unique semantics.

The branching-time operator, A, denotes “in all paths at the present moment.”
Here “the present moment” refers to the moment at which a given formula is
evaluated. A useful abbreviation is E, which denotes “in some path at the present
moment.” In other words, Ep ≡ ¬A¬p.

Example 8.7

In Figure 8.1, EFr and AF(q∨ r) hold at t0, since r holds on some moment on some
path at t0 and q holds on some moment on each path.

The reality operator, R, denotes “in the real path at the present moment.” R is
not included in traditional temporal logics, but here helps tie together intuitions
about what may and what will happen.

Example 8.8
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In Figure 8.1, RFq holds at t0, since q holds on some moment on the real path
identified at t0.

LB also contains operators on actions. These are adapted and generalized from
LD, in which the action operators essentially yield state-formulas, whereas in LB

they yield path-formulas. The operators in LB capture the operators of LD. x[a]p
holds on a given path S and a moment t on it, if and only if, if x performs a on S

starting at t, then p holds along S at the moment where a ends. The formula x〈a〉p
holds on a given path S and a moment t on it, if and only if, x performs a on S

starting at t and p holds at the moment where a ends.

Example 8.9

In Figure 8.1, E〈b〉r and A[a]q hold at t0, since r holds at the end of b on one path,
and q holds at the end of a on each path. Similarly, A[d](q ∨ r) also holds at t0.
Also, A[e]true holds at t0, because action e does not occur at t0.

The construct (
∨

a : p) means that there is an action under which p becomes
true. The action symbol a typically would occur in p and would be replaced by the
specific action which makes p true.

Example 8.10

In Figure 8.1, (
∨

e : Ex〈e〉true ∧ Ax[e]q) holds at t0. This means there is an action,
namely, a, such that x performs it on some path starting at t0 and on all paths
on which it is performed, it results in q being true. In other words, some action is
possible that always leads to q. This paradigm is used in formalizing know-how.

Let M4
def= 〈T, <, [[ ]],R〉 be a formal model for LB . Unlike M3, M4 is branching,

and its [[ ]] also applies to actions. In other words, < is branching. It might partition
T into a number of connected components, each of which would then correspond
to worlds as traditionally understood. For an atomic proposition, p, [[p]] is the set
of moments where p holds; for an action a and an agent x, [[a]]x is the set of periods
over which a is performed by x. These periods are notated as [S; t, t′] such that a

begins at t and ends at t′, where t, t′ ∈ S. R picks out at each moment the real
path at that moment. This is the notion of relativized reality alluded to above, and
which is highlighted by a bold line in Figure 8.1.

For simplicity, we assume that each action symbol is quantified over at most
once in any formula. Below, p|ab is the formula resulting from the substitution of
all occurrences of a in p by b. We also assume that agent symbols are mapped to
unique agents throughout the model. Formally, we have:

Sem-14. M4 |=t ψ iff t ∈ [[ψ]], where ψ ∈ Φ

Sem-15. M4 |=t p ∧ q iff M4 |=t p and M4 |=t q

Sem-16. M4 |=t ¬p iff M4 6|=t p

Sem-17. M4 |=t Ap iff (∀S : S ∈ St⇒ M4 |=S,t p)

Sem-18. M4 |=t Rp iff M4 |=R(t),t p

Sem-19. M4 |=t Pp iff (∃t′ : t′ < t and M4 |=t′ p)
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Sem-20. M4 |=S,t Xp iff M4 |=S,t+1 p)

Sem-21. M4 |=t (
∨

a : p) iff (∃b : b ∈ B and M4 |=t p|ab ), where p ∈ L
Sem-22. M4 |=S,t (

∨
a : p) iff (∃b : b ∈ B and M4 |=S,t p|ab ), where p ∈ (Ls \ L)

Sem-23. M4 |=S,t pUq iff (∃t′ : t ≤ t′ and M4 |=S,t′ q and (∀t′′ : t ≤ t′′ ≤
t′⇒ M4 |=S,t′′ p))

Sem-24. M4 |=S,t x[a]p iff (∀t′ ∈ S : [S; t, t′] ∈ [[a]]x⇒ M4 |=S,t′ p)

Sem-25. M4 |=S,t x〈a〉p iff (∃t′ ∈ S : [S; t, t′] ∈ [[a]]x&M4 |=S,t′ p)

Sem-26. M4 |=S,t p ∧ q iff M4 |=S,t p and M4 |=S,t q

Sem-27. M4 |=S,t ¬p iff M4 6|=S,t p

Sem-28. M4 |=S,t p iff M4 |=t p, where p ∈ L

8.3 Cognitive Primitives

As discussed in Chapter 1, in many cases of interest, the agent metaphor is
most useful when the agents are given high-level cognitive specifications. This is
described as taking an intentional stance toward agents [60] or viewing agents at
the knowledge level [63]. There is sometimes disagreement as to the similarity of the
two doctrines, but for our purposes, they are essentially interchangeable. The high-
level cognitive specifications involve concepts such as beliefs, knowledge, desires,
and intentions (the terms intentional stance and knowledge level apply to more
than just intentions and knowledge). They are high-level, because they enable us to
define the current state of an agent, what the agent might do, and how the agent
might behave in different situations without regard to how the agent is implemented.
Specifications derived from cognitive notions are perhaps the most significant of the
AI contributions to agents.

Such high-level specifications serve as natural scientific abstractions for agents.
However, to be used effectively, cognitive notions must be given rigorous definitions
in general models of action and time. If they are to find broad application, DAI
approaches must meet the standards of traditional disciplines such as distributed
computing. Much of the material we discussed in Section 8.2 originated in con-
current or distributed computing. Here we build on it by including the concepts
of belief, desire, and intention (BDI), and giving them formal definitions. The re-
sulting logics can then be used to reason about agents and the way in which their
beliefs, intentions, and actions bring about the satisfaction of their desires. To this
end, we introduce the modal operators Bel (belief), Des (desire), Kh (know-how),
and Int (intention). The language LI is based on LB .

Syn-18. p ∈ Ls and x ∈ A implies that (xIntp), (xKhp), (xKtp), (xDesp) ∈ LI

The semantics for LI is given with respect to M5
def= 〈T, <, [[ ]],R,B,D, I〉. The

semantics for the part of LI that uses the constructs of LB is as given using M4.
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Example 8.11

Consider an agent who has the desire to win a lottery eventually and intends to buy
a lottery ticket sometime, but does not believe that he will ever win the lottery. The
mental state of this agent can be represented by the following formula: DesAFwin

∧ IntEFbuy ∧ ¬BelAFwin.

8.3.1 Knowledge and Beliefs

B, a belief accessibility relation, is introduced to give the semantics of the belief
operator, which behaves as a modal necessity operator, such as 2 above. B assigns
to each agent at each moment the set of moments that the agent believes possible
at that moment. Knowledge (know-that) is customarily defined as a true belief.
Traditionally, to model belief, B is assumed to be serial, symmetric, and euclidean
(as defined in Section 8.2.3). To model knowledge, it is in addition also assumed to
be reflexive. In that case, it becomes an equivalence relation, resulting in Kt being
an S5 modal logic operator [12].

When 2 is treated as belief (or knowledge), the schemas 4 and 5 of Section 8.2.3
have an interesting interpretation. The former means that if an agent believes a
condition, it believes that it believes it. The latter means that if an agent does
not believe a condition, it believes that it does not believe it. Therefore, these
schemas are referred to as positive and negative introspection, respectively. Negative
introspection is a particularly strong assumption for limited agents.

Sem-29. M5 |=t xBelp iff (∀t′ : (t, t′) ∈ B(x, t)⇒ M5 |=t′ p)

B depends on the given moment. Thus the agent can change its beliefs over time.

8.3.2 Desires and Goals

D associates with each moment a set of moments to represent the desires of the
agent. The agent has a desire φ in a given moment if and only if φ is true in all the
D-accessible worlds of the agent in that moment.

Sem-30. M5 |=t xDesp iff (∀t′ : (t, t′) ∈ D(x, t)⇒ M5 |=t′ p)

In the philosophical literature, desires can be inconsistent and the agent need not
know the means of achieving these desires. Desires have the tendency to ‘tug’ the
agent in different directions. They are inputs to the agent’s deliberation process,
which results in the agent choosing a subset of desires that are both consistent and
achievable. Such consistent achievable desires are usually called goals. As a great
simplification, the desires as presented here are logically consistent.

8.3.3 Intentions

At each moment in the model, I assigns to each agent a set of paths that the agent
is interpreted as having selected or preferred. Roughly, intentions are defined as
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the conditions that inevitably hold on each of the selected paths. Here we consider
achievement intentions in that these intentions are about achieving various con-
ditions. However, intentions can be defined for maintaining certain conditions as
well. Whereas achievement intentions are useful for liveness reasoning, maintenance
intentions are useful for safety reasoning. For reasons of space, we will not discuss
the latter in this chapter. We now turn to the fairly simple formal definition of
achievement intentions:

Sem-31. M |=t xIntp iff (∀S : S ∈ I(x, t)⇒ M |=S,t Fp)
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Figure 8.2 Intentions

Example 8.12

Consider Figure 8.2. Assume that ¬r and ¬q hold everywhere other than as shown.
Let the agent x (whose actions are written first in the figure) at moment t0 prefer
the paths S1 and S2. Then, by the informal definition given above, we have that x

intends q (because it occurs eventually on both the preferred paths) and does not
intend r (because it never occurs on S2).

The above definition validates several useful properties of intentions. Some of
these were obtained with an entirely different formal structure in [76]—the present
development uses fewer conceptual primitives but ignores certain abstraction issues.

IC1. Satisfiability:
xIntp→EFp

This says that if p is intended by x, then it occurs eventually on some path.
That is, the given intention is satisfiable. This does not hold in general,
since the sets of paths assigned by I may be empty. We must additionally
constrain the models so that I(x, t) 6= ∅.
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IC2. Temporal Consistency:
(xIntp ∧ xIntq)→xInt(Fp ∧ Fq)
This says that if an agent intends p and intends q, then it (implicitly)
intends achieving them in some undetermined temporal order: p before q, q

before p, or both simultaneously. This holds because the function I assigns
exactly one set of paths to each agent at each moment. Thus if both p and
q, which are path-formulas, occur on all selected paths, then they occur in
some temporal order on each of those paths. The formula (Fp ∧ Fq) is true
at a moment on a path precisely when p and q are true at (possibly distinct)
future moments on the given path.

IC3. Persistence does not entail success:
EG((xIntp) ∧ ¬p) is satisfiable
This is quite intuitive: just because an agent persists with an intention does
not mean that it will succeed. Technically, two main ingredients are missing.
The agent must know how to achieve the intended condition and must act
on its intentions. We include this here to point out that in the theory of
[15], persistence is sufficient for success (p. 233). This is a major conceptual
weakness, since it violates the usual understanding that intentions do not
entail know-how [75]. The need to state the conditions under which an agent
can succeed with its intentions is one of the motivations for the concept of
know-how.

Other important constraints on intentions include (a) the absence of closure of
intentions under beliefs, (b) the consistency of intentions with beliefs about reality,
and (c) the non-entailment of beliefs about reality. Of these, (a) and (b) are jointly
termed the asymmetry thesis by Bratman [5, p. 38]. He argues that they are among
the more basic constraints on the intentions and beliefs of rational agents.

8.3.4 Commitments

As presented, goals and intentions are quite similar in their semantic structure. The
difference in these modalities arises in their relationships with other modalities and
in terms of how they may evolve over time. One of the properties that separates
them is commitment.

An agent is typically treated as being committed to its intentions [5]. Such
commitments apply within a given individual agent, and are accordingly also termed
psychological commitments [10, 74]. An agent’s commitment governs whether it will
persist with its intentions and if so, for how long. There is general agreement that
commitment be treated as constraining how intentions are revised and updated,
and resides in their processing rather than in their core semantics [36, 65, 76]. A
contrasting approach is to include commitment in the core semantical definition of
intentions [15]; this approach is criticized by [65, 73, 75]. Constraint IC4 shows
how commitment may be expressed in the present framework. This version of
commitment is purely qualitative.
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IC4. Persist while succeeding:
This constraint requires that agents desist from revising their intentions as
long as they are able to proceed properly. If an agent selects some paths,
then at future moments on those paths, it selects from among the future
components of those paths:
(S ∈ I(x, t) and [S; t, t′] ∈ [[a]]x)⇒ (∀S′ ∈ I(x, t′)⇒ (∃S′′ ∈ I(x, t) and
S′ ⊆ S′′))

However, it is believed that handling commitment and the update of intentions
will involve greater subtlety than the above, e.g., see [34, 81] for logic-based and
probabilistic approaches, respectively.

8.3.5 Know-How

Intentions have an obvious connection with actions—agents act to satisfy their
intentions. However, intentions do not ensure success; IC3 above showed that even
persistence is not sufficient for success. A key ingredient is know-how, which we
now formalize.
Example 8.13

Consider Figure 8.2. At t0, x may do either action a or action b, since both can
potentially lead to one of the preferred paths being realized. However, if the other
agent does action d, then no matter which action x chooses, x will not succeed with
its intentions, because none of its preferred paths will be realized.

We propose that an agent, x, knows how to achieve p, if it is able to bring about
p through its actions, i.e., force p to occur. The agent’s beliefs or knowledge must
be explicitly considered, since these influence its decision. For example, if an agent
is able to dial all possible combinations of a safe, then it is able to open that safe:
for, surely, the correct combination is among those that it can dial. On the other
hand, for an agent to really know how to open a safe, it must not only have the
basic skills to dial different combinations on it, but also know which combination
to dial.

A tree of actions consists of an action, called its radix, and a set of subtrees. The
idea is that the agent does the radix action initially and, then, picks out one of the
available subtrees to pursue further. In other words, a tree of actions for an agent
is a projection to the agent’s actions of a fragment of T. Thus a tree includes some
of the possible actions of the given agent, chosen to force a given condition. Let Υ
be the set of trees. Then Υ is defined as follows.

T1. ∅ ∈ Υ (∅ is the empty tree)

T2. a ∈ B implies that a ∈ Υ

T3. {τ1, . . . , τm} ⊆ Υ, τ1, . . . , τm have different radices, and a ∈ B implies that
〈a; τ1, . . . , τm〉 ∈ Υ



8.3 Cognitive Primitives 17

Now we extend the formal language with an auxiliary construct. This extension
is only meant to simplify the definitions.

Syn-19. τ ∈ Υ, x ∈ A, and p ∈ LI implies that x[(τ)]p ∈ LI

x[(τ)]p denotes that agent x knows how to achieve p relative to tree τ . As usual,
the agent symbol can be omitted when it is obvious from the context. To simplify
notation, we extend

∨
to apply to a given range of trees. Since distinct trees in each

such range have distinct radix actions, the extension of
∨

from actions to trees is
not a major step.

Sem-32. M |=t [(∅)]p iff M |=t Ktp

Sem-33. M |=t [(a)]p iff M |=t Kt(E〈a〉true ∧ A[a]Ktp)

Sem-34. M |=t [(〈a; τ1, . . . , τm〉)]p iff
M |=t Kt(E〈a〉true ∧ A[a](

∨
1≤i≤m τi : ([(τi)]p)))

Thus an agent knows how to achieve p by following the empty tree, i.e., by doing
nothing, if it knows that p already holds. As a consequence of this knowledge, the
agent will undertake no specific action to achieve p. The nontrivial base case is
when the agent knows how to achieve p by doing a single action: this would be the
last action that the agent performs to achieve p. In this case, the agent has to know
that it will know p immediately after the given action.

It is important to require knowledge in the state in which the agent finally
achieves the given condition, because it helps limit the actions selected by the
agent. If p holds, but the agent does not know this, then it might select still more
actions in order to achieve p.

Lastly, an agent knows how to achieve p by following a nested tree if it knows
that it must choose the radix of this tree first and, when it is done, that it would
know how to achieve p by following one of its subtrees. Thus know-how presupposes
knowledge to choose the next action and confidence that one would know what to
do when that action has been performed.

Sem-35. M |=t xKhp iff (∃τ : M |=t x[(τ)]p)

Example 8.14

Consider Figure 8.3. Let x be the agent whose actions are written first there.
Assume for simplicity that each moment is its own unique alternative for x (this is
tantamount to assuming that x has perfect knowledge—the above definition does
not make this assumption). Then, by the above definitions, xKtq holds at t3 and
t4. Also, xKhq holds at t1 (using a tree with the single action a) and at t2 (using
the empty tree). As a result, at moment t0, x knows that if it performs a, then it
will know how to achieve q at each moment where a ends. In other words, we can
define a tree, 〈a; a, ∅〉, such that x can achieve q by properly executing that tree.
Therefore, x knows how to achieve q at t0.
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Figure 8.3 Know-how

A number of technical approaches to concepts of the know-how family exist. Some
of the leading ones are Segerberg’s bringing it about [68] and Belnap & Perloff’s
seeing to it that (STIT) [4] theories.

8.3.6 Sentential and Hybrid Approaches

The above approaches have used modal logics to formalize various cognitive con-
cepts. Although technically intuitive and elegant, modal approaches have the un-
desirable feature that they over-estimate the reasoning capabilities of an agent. For
example, an agent who knows (or intends) p is automatically assumed to know (or
intend) all logical consequences of p. For knowledge, this is termed the problem
of logical omniscience [42]. Real-life agents cannot be logical omniscient. Conse-
quently, alternative approaches have been proposed to formalizing the cognitive
concepts. These approaches include the explicit representations that an agent has
for its beliefs or intentions, e.g., [50, 51]. Unfortunately, although these approaches
solve the problem of logical omniscience, they do not naturally support any infer-
ences among the cognitive concepts. This too is undesirable, and has accounted for
the lack of attention paid to these approaches. Some hybrid approaches the give a
possible worlds semantics, but restrict it via some representational mechanism have
also been developed, e.g., [27, 82], but these two have not been intensively pursued
in the literature.

One way to understand the above issue is as a natural consequence of the
knowledge level [63]. Newell observed that the knowledge level (corresponding to
the modal approaches) would be inherently inaccurate, whereas the more accurate
symbol level (corresponding to the representational approaches) would be more
accurate, but only as a lower-level, procedural level of discourse.
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8.3.7 Reasoning with Cognitive Concepts

Section 8.2 described two main roles for formal methods in DAI. The concepts
introduced above may be used in each of those roles. In either case, there is
need for efficient reasoning techniques. In the first use, the agent itself applies
the logic, and needs methods such as theorem proving to decide its actions. In the
second use, the designer applies the logic to specify and validate the design of an
agent, and needs methods such as theorem proving and model checking to relate
logical specifications to the construction of the agent. The two uses differ in their
complexity requirements. Although both benefit from improved techniques, the first
use is by far the more demanding, because it requires an answer in less time than
the agent has to respond to its environment or to other agents. For this reason, the
second use is the more practical one, at least when the logic is expressive.

There are two main approaches for reasoning with a logic. The more traditional
one in logic and AI is theorem proving, which essentially involves establishing
that a given formula (the purported theorem) follows through a finite sequence of
applications of axioms and inferences rules of a given logic [26]. The other approach,
which was invented in logics of programs and is finding increasing application in AI,
is model checking. This involves checking if a given formula is satisfied at a given
model and index. For certain logics, model checking can be a lot more tractable
than theorem proving [24, 14]. However, model checking requires additional inputs
in the form of the model and index. This does not prove to be a problem in several
cases, where one if trying to validate a given agent design in a given environment.
The model can be derived given knowledge of the agent and its environment.

Temporal logics and modal logics of knowledge have been studied for some time,
and their complexity issues are well-understood. We lack the space to discuss
complexity issues in much detail here, and refer the reader to [24, 28, 53] for details.
The µ-calculus is a logical language that has explicit operators for computing
greatest and least fixpoints [24, 52]. This can be used to specify various modal
and temporal logics in uniform framework, which can be naturally used for model
checking [9, 14].

Both of the above classes of techniques are now being extended and applied in
DAI. Rao has developed some tableau-based decision procedures for variants of the
above BDI logics [64]. The µ-calculus is recently being applied to reasoning about
the actions of agents [17, 79].

8.4 BDI Implementations

We now consider some possible ways to realize the above theories of BDI concepts
in a computational system.
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8.4.1 Abstract Architecture

We first characterize a BDI architecture abstractly and then show how a concrete
practical instantiation may be obtained.

8.4.1.1 A Basic Interpreter

We now describe a basic abstract interpreter for situated systems. The architecture
makes use of the underlying concepts of BDI architectures, but implements the
entities defined by the modal operators directly as data structures.

The inputs to the system are events, received via an event queue. The system can
recognize (on its event queue) both external (environmental) and internal events.
External events may directly generate particular internal events, such as updating
some component of the system state. We assume that the events are atomic and
are recognized upon completion (and not during occurrence).

The outputs of the system are atomic actions, which are performed by an execute
function. The system may, but is not required to, recognize events corresponding
to the successful or unsuccessful execution of actions. Based on its current state
and the events in its queue, the system selects and executes options, which cor-
respond to subroutines, production rules, tasks, plans, finite automata, or circuit
networks. Correspondingly, the option-invoking events would be subroutine calls or
the assertion of antecedents of a production rule.

The abstract interpreter is given below. We assume the procedures and functions
appearing in the interpreter operate on the system state, denoted by S. The
interpreter continually performs the following. First, it determines the available
options. Next, it deliberates to commit to some options. It then updates its state
and executes appropriate atomic actions. Finally, the event queue is updated to
contain all those recognizable events that have occurred during the cycle. Since
events are recognized (and thus acted upon) only once per cycle, the system’s
reaction time is bounded from below by the time taken to perform a cycle.

basic-interpreter
initialize-state();
do

options := option-generator(event-queue, S);
selected-options := deliberate(options, S);
update-state(selected-options, S);
execute(S);
event-queue := get-new-events();

until quit.

This abstract interpreter can be used as a basis for different situated systems,
including those in which most of the deliberation is precompiled [67].
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8.4.1.2 An Abstract BDI Interpreter

We now consider the special case of a BDI architecture by refining both the sys-
tem state and interpreter. The system state comprises three dynamic data struc-
tures representing the agent’s beliefs, desires, and intentions. For simplicity, we
assume that the agent’s desires are mutually consistent, although not necessarily
all achievable. Such mutually consistent desires are called goals. The data struc-
tures support query and update operations, which include b-add, b-remove, g-add,
g-remove, i-add, and i-remove. The update operations are subject to compati-
bility requirements, captured in the functions b-compatible, g-compatible, and
i-compatible. These functions are critical in enforcing the constraints on the
agent’s mental attitudes.

The interpreter is refined as follows. Here get-new-external-events returns
the external events that have occurred since its last invocation. At the beginning
of a cycle, the option generator reads the event queue. It returns a list of the best
options for further deliberation and possible execution. Next, the deliberator selects
a subset of options and adds them to the intention structure. If there is an intention
to perform an atomic action now, the agent executes it. Any external events that
have occurred during the interpreter cycle are then added to the event queue.
Internal events are added as they occur. Next, the agent modifies the intention and
goal structures by dropping all successful goals and satisfied intentions, as well as
impossible goals and unrealizable intentions.

BDI-interpreter
initialize-state();
do

options := option-generator(event-queue,B,G,I);
selected-options := deliberate(options,B,G,I);
update-intentions(selected-options,I);
execute(I);
get-new-external-events();
drop-successful-attitudes(B,G,I);
drop-impossible-attitudes(B,G,I);

until quit.

This interpreter extends the basic interpreter mainly in the last three procedures,
which eliminate a number of options that would otherwise be carried over to the
next cycle.

8.4.2 Practical System

The above abstract architecture is a useful abstraction of the preceding theoretical
model. It illustrates the main components of practical reasoning: option generation,
deliberation, execution, and intention handling [5].

However, it is not practical. The architecture assumes a (logically) closed set
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of beliefs, goals, and intentions. It is not specified how the option generator
and deliberation procedures can be made sufficiently fast to satisfy the real-
time demands placed upon the system. We now make a number of additional
representational choices which, while constraining expressive power, provide a more
practical system. The resulting system is a simplified version of the Procedural
Reasoning System (PRS) [46].

8.4.2.1 Beliefs and Goals

The system operates only on explicit beliefs and goals and not on their consequential
closure. Further, we identify a subset of the agent’s beliefs and goals, which we call
current. These are taken to be ground literals (rather like atomic propositions, but
actually predicates applied to constants). Ground literals can be negated, but do
not include any binary operators such as disjunction or implication. Intuitively,
they represent beliefs and goals that are currently held, but which can be expected
to change over time.

It may seem that such a language is too simple to be of practical use. However,
implications and variables can be introduced through the plan constructs, resulting
in little loss of expressiveness, but for a substantial gain in control.

8.4.2.2 Plans

The above abstract interpreter represents information about means and options as
beliefs. These can be more directly represented as plans. A plan has a name or
type. The body of a plan is the method for executing it, and is specified by a plan
graph, which is a rooted, directed, acyclic graph whose edges are labeled with simple
plan expressions. A simple plan expression is either an atomic action or a subgoal.
The invocation condition (a triggering event) and precondition specify when the
plan may be selected. The add list and delete list of a plan respectively specify the
atomic propositions to be believed or not believed upon its successful execution.

Plans represent a number of beliefs corresponding to complex modal formulas.
Having a plan means that its body is believed to be an option whenever its
invocation condition and precondition are satisfied. A plan represents the belief
that, whenever its invocation condition and precondition are satisfied and its body
successfully executed, the propositions in the add list will become true. Since the
preconditions are conditions on the agent’s beliefs, the agent can execute plans to
compute new consequences. These consequences can trigger further plans to infer
further consequences. This gives the agent greater control as to when to compute
consequences of its current beliefs, goals, and intentions.

Example 8.15

Suppose John acquires a goal to quench his thirst. He believes he has two ways
to satsify it. One, perform a sequence of two atomic actions: open the tap and
drink water from the tap. Two, satsify a subgoal (obtain a soda bottle) and then
perform an atomic action (drink soda from the bottle). The subgoal can be satisfied
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(a)

Type: drink-soda
Invocation:
g-add(quenched-thirst)

Precondition: have-glass
Add List:{quenched-thirst}
Body: i1

have-soda
?i2

drink
?i3

(b)

Type: drink-water
Invocation:
g-add(quenched-thirst)

Precondition: have-glass
Add List:{quenched-thirst}
Body: i1

open-tap
?i2

drink
?i3

(c)

Type: get-soda
Invocation:
g-add(have-soda)

Precondition: true
Add List: {have-soda}
Body: i1

open-fridge
?i2

get-soda
?i3

Figure 8.4 Plans for quenching thirst

by opening the refrigerator and removing a soda bottle. These plans are shown in
Figure 8.4.

8.4.2.3 Intentions

Plans provide a hierarchical structure and allow tractable real-time option genera-
tion and means-end reasoning. The options are, in fact, plans. As they are adopted,
they are added to the intention structure. Thus, intentions are represented as sets
of hierarchically related plans.

To achieve an intended end, the agent forms an intention towards a means for this
end; namely, the plan body of an appropriate plan. This means-end pair, together
with information about variable bindings and control points, is called an intention
frame. An intention towards a means results in the agent adopting another end
(subgoal) and the means for achieving this end, thus creating another intention
frame. This process continues until the subgoal can be directly executed as an
atomic action. The next subgoal in the plan is then attempted.

An intention stack is used to keep track of variable bindings and control points.
Each intention stack represents a separate process or task. These intention stacks
are organized into an intention structure, which places various ordering constraints
on them. Intention stacks can also be created for any event that appears in the
invocation condition of a plan. This enables the system to be responsive to external
events without mediating everything through goals.

8.4.2.4 A Practical Interpreter

A practical interpreter can be derived from the above. The main loop for this inter-
preter is as above. However, as the system is embedded in a dynamic environment,
the procedures appearing in the interpreter must be fast enough to satisfy the
real-time demands of the appropriate applications.
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Given a set of trigger events from the event queue, the option generator iter-
ates through the plan library and returns those plans whose invocation condition
matches the trigger event and whose preconditions are believed by the agent. The
provability procedure involves simple unification with the beliefs.

option-generator(trigger-events)
options := {};
for trigger-event ∈ trigger-events do

for plan ∈ plan-library do

if matches(invocation(plan),trigger-event) then
if provable(precondition(plan),B) then

options := options ∪ {plan};
return(options).

The deliberate procedure’s execution time should conform with the time con-
straints of the environment. Under certain circumstances, random choice may be
appropriate. Sometimes, however, it is necessary to carry out lengthy deliberation.
Such deliberation can be achieved by including metalevel plans in the plan library.
Thus the deliberate procedure may select, and thus form an intention towards,
metalevel plans for performing more complex deliberation than it itself is capable.
We give a simplified version of the procedure implemented in PRS [32].

deliberate(options)
if length(options) ≤ 1 then return(options);
else metalevel-options := option-generator(b-add(option-set(options)));

selected-options := deliberate(metalevel-options);
if null(selected-options) then

return(random-choice(options));
else return(selected-options).

Note that there can be more than one metalevel option, which results in the
procedure being called recursively until at most one option remains. If no metalevel
options are available, the deliberator chooses randomly.

Option generation can be simplified by inserting post-intention-status at
the end of the loop. This procedure delays posting events on the queue to avoid
the work caused by spurious changes otherwise sent to the event queue. In the
abstract interpreter, commitment is achieved by reducing the options generated.
Since the options depend on the events in the queue, post-intention-status

determines the elements of the intention structure that are carried forward. Thus,
post-intention-status can yield various notions of commitment, which result in
different behaviors of the agent. One variant is given next.

post-intention-status()
if null(I) then

for goal ∈ G do

event-queue := event-queue ∪ g-add(goal);
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else for stack ∈ I do
event-queue := event-queue ∪ g-add(means(top(stack))).

Bel Goal Int done succeeded

glass – – – –

unchanged quench – – g-add(quench)

unchanged unchanged { soda; drink} – g-add(soda)

¬ remove-soda unchanged – fridge fridge,

g-add(quench)

unchanged unchanged { drink} tap tap

quench – – drink drink

Table 8.1 Trace of practical BDI interpreter

Example 8.16

Consider Example 8.15 with plans as shown in Figure 8.4. Assume that the event
g-add(quench) has just been added to the event queue. As the invocation conditions
of drink-soda and drink-water match with the trigger event and their context
conditions are believed, the option generator returns both these plans as suitable
options.

Assume that the deliberator first selects the drink-soda option. As this option is
to satisfy a new goal, rather than a subgoal of a previous intention, a new intention
stack is created. The end (goal) for the top intention frame of the stack is quench
and the means are given by the drink-soda plan. Since the first action in this plan
is not atomic, no action is executed. Assume that no external events occur on this
cycle. Thus the event queue contains only the internal event corresponding to the
creation of the intention for the chosen option. As the system has not succeeded
in any of its goals nor discovered that any intentions are impossible, it posts the
current intention status. This results in g-add(soda) being added to the event
queue.

In the next cycle, the option generator selects the plan for getting soda. This is
adopted, and its frame added to the intention stack. The agent opens the refrigerator
door, but at the next moment discovers that no soda is present. It is thus forced to
drop its intention. Finally, the initial goal is reposted by post-intention-status.

On the next cycle, the option to drink water is selected, and the plan is completed
successfully over further cycles. Table 8.1 shows the trace.

In the above we showed how the logics of the BDI concepts can be mapped into
realistic implementations of systems. Although we didn’t discuss the interactional
aspects in the above, those can be worked in as well [36, 66]. We now our attention
to some direct ways of capturing the interactional aspects of multiagent systems.
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8.5 Coordination

Coordination is one of the key functionalities needed to implement a multiagent
system. This is especially so when the component agents are heterogeneous, i.e.,
of diverse constructions and internal structures, and autonomous, i.e., making
decisions without regard to the other agents.

A number of techniques for coordination have been developed in DAI. These are
discussed in Chapter 3. A thorough logical account of these techniques, however,
remains to be developed. A logical account would have the usual benefits of
formal methods: a declarative, high-level specification independent of its ultimate
realization, and the possibility of rigorously validating the implementations with
respect to the specifications.

One formal approach to coordination was developed by Singh [77]. This approach
represents each agent as a small skeleton, which includes only the events or
transitions made by the agent that are significant for coordination. Coordination
requirements are stated as temporal logic formulas involving the events. Formulas
have been obtained that can capture the coordination requirements that arise in
the literature.

The specific approach uses a temporal logic that is a variant of the linear temporal
logic of Section 8.2.6.1. For that logic, it is possible to compile the specification in
such a way as to localize most decision-making information on the individual agents.
Effectively, the agents relinquish part of their autonomy (or their designers do it
for them) when they decide to be coordinated. This leads to constraints on some
of their events. If the agents respect these constraints, then the system as a whole
behaves in the desired coordinated manner.

Sometimes, the term coordination is taken to mean a bit more than the above.
In such cases, coordination involves the agents’ beliefs and intentions. We discuss
such cases under collaboration below.

8.5.1 Architecture

We now discuss the architecture that underlies a distributed coordination scheme
based on temporal logic. We assume that agents are designed autonomously, and
their internal details may be inaccessible. Also, that agents act autonomously and
may unilaterally perform certain actions within their purview. However, in order to
be able to coordinate the agents at all, the designer of the multiagent system must
have some limited knowledge of the designs of the individual agents. This knowledge
is in terms of their externally visible actions, which are potentially significant for
coordination. We call these the significant events of the agent. In other words, the
only events we speak of are those publicly known—the rest are of no concern to the
coordination service. These events are organized into skeletons that characterize
the coordination behavior of the agents. The idea of using events and skeletons is
well-known from logics of programs [25].
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8.5.1.1 Event Classes

We allow four classes of events, which have different properties with respect to
coordination. Events may be

flexible, which the agent is willing to delay or omit

inevitable, which the agent is willing only to delay

immediate, which the agent performs unilaterally, that is, is willing neither to
delay nor to omit

triggerable, which the agent is willing to perform based on external request.

The first three classes are mutually exclusive; each can be conjoined with trigger-
ability. We do not have a category where an agent will entertain omitting an event,
but not delaying it, because unless the agent performs the event unilaterally, there
must be some delay in receiving a response from the coordination service.

8.5.1.2 Agent Skeletons

It is useful to view the events as organized into a skeleton to provide a simple rep-
resentation of an agent for coordination purposes. This representation is typically
a finite state automaton. Although the automaton is not used explicitly by the
coordination service during execution, it can be used to validate specified coordina-
tion requirements. The set of events, their properties, and the skeleton of an agent
depends on the agent, and is application-specific. The coordination service is inde-
pendent of the exact skeletons or events used in a multiagent system. Examples 8.17
and 8.18 discuss two common skeletons in information search.

g
error

Failed

HHHHHY

g

g
6
start

©©©©©*

Executing

Succeeded

Not executing

respond

g

Figure 8.5 Skeleton for a Simple Querying Agent

Example 8.17

Figure 8.5 shows a skeleton that is suited for agents who perform one-shot queries.
Its significant events are start (accept an input and begin), error, and respond

(produce an answer and terminate). The application-specific computation takes
place in the node labeled “Executing.” We must also specify the classes of the
different events. For instance, we may state that error and respond are immediate,
and start is flexible and triggerable.
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Figure 8.6 Skeleton for an Information Filtering Agent

Example 8.18

Figure 8.6 shows a skeleton that is suited for agents who filter a stream, monitor a
database, or perform any activity iteratively. Its significant events are start (accept
an input, if necessary, and begin), error, end of stream, accept (accept an input, if
necessary), respond (produce an answer), more (loop back to expecting more input).
Here, too, the application-specific computation takes place in the node labeled
“Executing.” The events error, end of stream, and respond are immediate, and all
other events are flexible, and start is in addition triggerable.

8.5.2 Specification Language

LC is a language for specifying coordinations. It is a variant of LL, the linear-time
language, with some restrictions. LC is LP augmented with the before (·) temporal
operator. Before is related to the until operator of LL: it is used because it is easier
to process symbolically for the purpose at hand. The literals denote event types,
and can have parameters. Here we only consider the nonparameterized case, for
simplicity. Also, in LC negation applies only on the atoms, and is written as a
(bar) to highlight this fact. Further, the atoms are interpreted as events, such as
are listed in the agent skeletons.

Syn-20. ψ ∈ Φ implies that ψ, ψ ∈ LC

Syn-21. p, q ∈ LC implies that p ∧ q, p ∨ p, p · q ∈ LC

The semantics of LC is given with respect to a model M6
def= 〈T, <, [[ ]]〉. M6 has

the same structure as M3. However, we restrict M6 further so that it consists of
paths or traces, which are consistent. By a consistent trace, we mean one on which
no event is repeated and an event and its complement do not both occur. The
following semantic definitions take as their index a given trace, τ , not a specific
moment on it, as for the previous semantic definitions. The motivation for this is
that in giving a specification we only care about the behavior of the system as given
by a trace, not by what may or may not have transpired at a given moment. When
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we execute the coordinations, we do care about the specific moments, of course, but
that is not the concern of the specifier. The operator ¯ denotes concatenation of two
traces, the first of which is finite. The following semantics looks at specific indices
of a trace (as in τi). This substitutes for the labeling function or [[ ]] used previously,
and emphasizes the fact that each event happens at a particular moment.

Sem-36. M6 |=τ ψ iff (∃i : τi = ψ), where ψ ∈ Φ

Sem-37. M6 |=τ ψ iff (∃i : τi = ψ), where ψ ∈ Φ

Sem-38. M6 |=τ p ∧ q iff M6 |=τ p and M6 |=τ q

Sem-39. M6 |=τ p ∨ q iff M6 |=τ p or M6 |=τ q

Sem-40. M6 |=τ p · q iff (∃σ, γ : (τ = σ ¯ γ)&M6 |=σ p&M6 |=γ q)

ψ refers to the complement of ψ. From the above, it is possible that a trace τ may
satisfy neither ψ nor ψ. In this way, negation in LC is stronger than in traditional
logics. ψ means that it is definite that ψ will never occur. Consequently, maximal
traces will satisfy ψ ∨ ψ.

Singh [77] presents a set of equations that enable symbolic reasoning on LC to
determine when a certain event may be permitted, prevented, or triggered.

8.5.3 Common Coordination Relationships

Coordinations are specified by expressing appropriate relationships among the
events of different agents. LC allows a variety of relationships to be captured.

Name Description Formal
notation

R1 e is required by f If f occurs, e must occur before
or after f

e ∨ f

R2 e disables f If e occurs, then f must occur
before e

e ∨ f ∨ f · e

R3 e feeds or enables f f requires e to occur before e · f ∨ f

R4 e conditionally feeds f If e occurs, it feeds f e ∨ e · f ∨ f

R5 Guaranteeing e en-
ables f

f can occur only if e has oc-
curred or will occur

e ∧ f ∨ e ∧ f

R6 e initiates f f occurs iff e precedes it e ∧ f ∨ e · f
R7 e and f jointly require

g
If e and f occur in any order,
then g must also occur (in any
order)

e ∨ f ∨ g

R8 g compensates for e
failing f

if e happens and f does not,
then perform g

(e∨f∨g)∧(g∨e)∧
(g ∨ f)

Table 8.2 Example Relationships

Table 8.2 presents some common relationships. Some of the relationships involve
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coordinating multiple events. For example, R8 captures requirements such as that
if an agent does something (e), but another agent does not match it with something
else (f), then a third agent can perform g. This is a typical pattern in applications
with data updates, where g corresponds to an action to restore the consistency of
the information (potentially) violated by the success of e and the failure of f . Hence
the name compensation.

8.6 Communications

Communications are a natural way in which the agents in a DAI system may
interact with one another other than through incidental interactions through the
environment. Communications is discussed in detail in Chapter 2.

Speech act theory, which originated in the philosophy of language, gives the basis
for communications. Speech act theory is founded on the idea that with language
you not only make statements, but also perform actions [3]. For example, when
you request something you do not just report on a request, but you actually effect
the request; when a justice of the peace declares a couple man and wife, she is not
reporting on their marital status, but changing it. The stylized syntactic form for
speech acts that begins “I hereby request . . . ” or “I hereby declare . . . ” is called a
performative. With a performative, literally, saying it makes it so! [3, p. 7]. Inter-
estingly, verbs that cannot be put in this form are not speech acts. For example,
“solve” is not a performative, because “I hereby solve this problem” just does not
work out—or Math students would be a much happier lot! For most computing
purposes, speech acts are classified into assertives (informing), directives (request-
ing or querying), commissives (promising), permissives, prohibitives, declaratives
(causing events in themselves, e.g., what the justice of the peace does in a marriage
ceremony), expressives (expressing emotions and evaluations).

Austin identified three main aspects of a speech act. The locution refers to the
lowest level of the speech act, namely, the string that is transmitted. The illocution
refers to the intrinsic meaning of the speech act. The perlocution refers to the
possible effects of the speech act on the recipients. The locution can be varied
and the perlocutions depend on the recipient. However, the illocution tells us the
meaning that is conveyed. For this reason, studies of communication in DAI focus
primarily on the illocutions.

8.6.1 Semantics

Formalizing the semantics of communications has proved a longstanding challenge.
This is partly because more than one view of what can be formalized is possible. The
earliest work was carried out in computational linguistics, and sought to determine
the conditions under which the intended meaning of a speech act might be inferred.
For example, given a locution in the form of a question (e.g., “can you pass the
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salt?”), one might infer an illocution that is a request (e.g., “please pass the salt”).
There is considerable subtlety involved in this reasoning, but for the most part, it
is specific to human languages and can be avoided in DAI.

A different approach was developed by Singh [78]. This approach sought to give
the objective criteria under which speech acts of different illocutionary forces could
be said to be satisfied. The idea was to identify the conditions in a framework
that highlighted the proof-obligations of a designer in showing that different speech
acts were satisfied. Following Hamblin [38], Singh defined a notion of whole-hearted
satisfaction. This was formalized using a modal operator; truth conditions for this
operator corresponded to satisfaction conditions for the corresponding speech acts.
An example condition is that a directive for p is whole-heartedly satisfied if and
only if the recipient adopts and intention to satisfy p, has the know-how to achieve
p, and acts resulting in p.

Recently, Labrou & Finin have developed a formal semantics for communications
and conversations (consisting of a series of communications) that considers the
preconditions and postconditions for each speech act. These conditions are stated
in terms of the beliefs and wants of the participating agents.

Fundamentally, communication is a social phenomenon. Although this fact is
noted in informal discussions, existing approaches have not recognized it in their
theoretical development. We believe that the study of social primitives (discussed
below) has advanced enough that directly social semantics of communications can
now be explored. We leave the development as a significant open research problem
in DAI.

8.6.2 Ontologies

An ontology is a representation of some part of the world. Ontologies are thus of
interest to knowledge representation. Although ontologies in themselves are not a
social concept, they can provide a shared “virtual world” that can serve as the
basis for communications [44]. In fact, when many people talk of the “semantics”
of a communication, they mean understanding the concepts and terms used in it.
Ontologies provide a natural, declarative way of identifying concepts and terms. If
two agents agree on the upper nodes of a taxonomy, they can jointly traverse the
taxonomy till they find the location of a newly introduced concept. Thus, they can
build a shared understanding of their content language. It is this fact that makes
ontologies interesting. They found much application in DAI systems, especially
those involving access to, or interactions among, information systems and databases
[22, 90]. Consequently, ontologies are included in several multiagent architectures.

Ontologies are amenable to formal methods in two main places. One place is
in the algorithms for processing ontologies, which exploit the connection between
lattice theory and taxonomies [43]. Another place is in approaches to help interlink
ontologies developed by different vendors, or incorporated by different agents, who
must reconcile them in order to communicate. An interesting class of approaches
may be based on algebraic techniques [89]; however, this work is still in its infancy.
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8.7 Social Primitives

Arguably, it is the active use of social concepts in its design and implementation that
distinguish a DAI system from a traditional distributed computing system [31]. We
lump into the category of social primitives those that concern societies of agents as
well as those that concern smaller and more heavily structured organizations. Some
related social concepts are introduced in Chapter 2, and organizational concepts in
Chapter 7.

8.7.1 Teams and Organizational Structure

A group or multiagent system is a system of agents that are somehow constrained in
their mutual interactions. Typically, these constraints arise because the agents play
different roles in the group, and their roles impose requirements on how they are to
behave and interact with others. A team is a group in which the agents are restricted
to having a common goal of some sort. Typically, team-members cooperate and
assist each other in achieving their common goals. Groups and teams prove to be
a fertile ground for the development of formal theories in DAI, especially theories
that are unlike the theories in traditional AI or computer science. We emphasize,
however, that some of this work is still in an early stage, and the descriptions below,
although moderately stable, should not be taken as final.

Some good work has focused on formalizing cooperative problem solving [92],
and the representations needed for effective cooperation [21].

8.7.2 Mutual Beliefs and Joint Intentions

One of the oldest ways of lifting single-agent concepts to multiagent concepts is
through the use of mutual beliefs. A set of agents is said to have a mutual belief
that p if they each (a) believe p, (b) believe that condition (a) holds of the others
(that they believe p), (c) believe that condition (b) holds of the others, and so
on. Mutual belief thus provides a means to achieve the effect of a perfectly shared
mental state. It has been argued the mutual beliefs can account for various aspects
of human communication [13, 39] and social conventions [58].

Levesque & Cohen developed an approach that generalizes the notion of inten-
tions to joint intentions [57]. This theory is extremely complicated, and our pre-
sentation can at best be thought of an intuitive approximation of the original. A
joint intention for p exists among a group of agents if they (a) each have a goal
that p, (b) each will persist with this goal until it is mutually believed that p has
been achieved or that p cannot be achieved, (c) conditions (a) and (b) are mutually
believed.

Grosz & Kraus develop a formal theory of shared plans [35]. This theory relates
the cooperative activities of agents via their individual and shared plans. A distinc-
tion is sometimes made between an agent intending to achieve something and an
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agent intending that some condition be obtained. Usually, actions and propositions
are closely related, although they are often treated differently in human languages.
Grosz & Kraus adapt this idea to develop a framework in which the agent is itself
committed to performing the intentions toward actions, but depending on the situ-
ation can act on the intentions for propositions that are held by its team-members
(and, similarly, can expect others to take on the propositions it intends).

On the one hand, mutual beliefs play a role in several theories; on the other hand,
it is well-known that if communications among the agents are not reliable (in terms
of delivery and delay), then mutual beliefs cannot be attained [11, 37]. In other
words, the mutual beliefs are limited to the beliefs that the designer hard-wires
into the agents at the start, but additional mutual beliefs cannot be attained.

This conflict between some theoretically appealing properties of mutual beliefs
and their infeasibility in practical situations has led some researchers to explore
alternative ways to achieve the same effect. It has been suggested that social
primitives, appropriately formalized, might provide a more direct means to capture
the social aspects of multiagent systems, which apparently are the ones that mutual
beliefs seek to capture.

8.7.3 Social Commitments

Section 8.3.4 introduced psychological commitments. Here we consider social com-
mitments, which are the commitments that an agent toward another agent [10, 74].
Such commitments related to directed obligations [55] as studied in deontic logic
(see Section 8.2.4). Social commitments are a genuinely multiagent concept, since
they have no analog in a single-agent system. Social commitments can potentially be
used to give clear specifications at the social level of how the agents in a multiagent
system ought to interact; such specifications will not delve into implementational
details, and give maximal freedom to diverse designers to implement agents that
can behave together cohesively.

Although concepts such as social commitments have long been identified, this
topic has drawn much interest recently [10, 16, 23, 66, 80]. Castelfranchi introduced
the idea of a witness of a commitment, which certifies to its creation [10]. Singh
generalizes notion to a context group, which is usually the multiagent system within
which the given commitment exists [80]. The formalization of social commitments
involves defining an independent primitive. They also involve the description of
associated notions such as the roles that may exist in the given multiagent system,
and what capabilities and authorities (or authorizations) agents would need to play
specific roles. This work is still in its infancy, but we encourage the reader to peruse
the cited works for some open research problems.

8.7.4 Group Know-How and Intentions

There is a view that multiagent systems can themselves be treated as agents. These
are then referred to as groups and distinguished from ordinary individual agents.
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In many interesting cases, when an agent interacts with another entity, it may
have no knowledge or concern that the other entity is an individual or a group. It
may have expectations about the other entities as usual, and may enter into social
commitments with it. Thus the other entity is justifiably treated as an agent.

A natural question is how may we define the beliefs, knowledge, know-how, and
intentions of groups. Some conventional approaches were mentioned in Section 8.7.2.
An alternative approach is to define the structure of a group explicitly, and define
the intentions and know-how of the group as based on its structure and the
intentions and know-how of its members. The structure may itself be formalized in
several ways. One way is through a combination of the reactive and the strategic
interactions among the members that are called for by the group [71, 72].

For reasons of space, we only consider group intentions below. Recall the sce-
narios selected by the model component I in formalizing intentions. With reactive
interactions, the selected scenarios are restricted to those that satisfy some ad-
ditionally specified temporal (path) formulas, which intuitively correspond to the
habits of interaction of the different members. Similarly, strategic interactions re-
strict the selected scenarios to those in which the specified communications among
the members are satisfied. For example, a group could require that all directives
issued by an agent playing the role of leader must be satisfied, or that all commit-
ments created through explicit promises must be discharged. These requirements
eliminate unacceptable scenarios, leading to a stronger notion of intentions than if
we considered the agents individually. However, this notion is potentially weaker
than traditional notions, which always require some form of mutual belief among
the members.

Interestingly, when formalized, the above definitions lead to some algebraic
properties of group intentions that relate to the underlying structure of the given
groups [71].

8.8 Tools and Systems

Now we present a variety of implemented tools and systems for DAI that bear
some significant connection with the formal techniques introduced above. We have
three categories of these tools and systems: those that follow the above approaches
closely; those that are essentially traditional techniques applied to DAI, and those
that were informally influenced by the DAI approaches.

8.8.1 Direct Implementations

We now review some of the popular systems that are fairly directly based on the
above ideas.
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8.8.1.1 PRS and dMARS

The Procedural Reasoning System (PRS) [33] was one of the first implemented
systems to be based on a BDI architecture. As described in the foregoing, PRS
provides goal-oriented as well as reactive behavior. It was implemented in LISP
and has been used for a wide range of applications in problem diagnosis for the
Space Shuttle [46], air-traffic management [59], and network management [46].

dMARS is a faster, more robust reimplementation of PRS in C++. It has been
used in a variety of operational environments, including paint shop scheduling in car
manufacturing, air combat simulation, resource exploration, malfunction handling
on NASA’s space shuttle, and management of business processes in Internet and
call center applications [49].

8.8.1.2 COSY

COSY is also a BDI architecture, and bears several similarities to PRS and dMARS
[36]. It involves the same concepts, and uses plans as its core representation.
However, in addition, COSY has gives importance to both psychological and social
commitments. COSY has a strong component of cooperation, which is based on
formal protocols built on top of an agent communication language. The formation
of commitments is declaratively captured in various rules. The above protocols
involve commitments among the agents, and include rules through which tasks
may be delegated to and adopted by different agents.

8.8.1.3 Agent-Oriented Languages

The concepts discussed in the chapter are also finding their way into programming
language constructs. Shoham [69] in his proposal for an agent-oriented language
called AGENT0 made extensive use of notions such as beliefs, commitments, and
know-how. The language was subsequently extended by Thomas [88] to include
planning capability similar to that of BDI architectures.

Agent-oriented languages based on alternative formalisms are also gaining
ground. Golog and ConGolog [56] are logic programming languages that allow
explicit reasoning about actions. The system is based on situation calculus to rep-
resent and reason about change [61]. As the Golog interpreter can reason about
actions it can avoid “dead paths” that the BDI interpreter cannot. However, it does
not offer the reactivity offered by the BDI architecture because of its inability to
indirectly invoke the execution of plans.

8.8.1.4 Concurrent MetateM

An alternative approach uses temporal logic to specify the behavior of agents. A
Concurrent MetateM system [29] consists of a set of objects each executing temporal
specifications. A rule in this language is of the form “past and present formula”
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implies “present or future formula.” As a result, execution of this rule involves
matching the antecedent of these rules against the history of incoming messages
and then executing the present and future-time consequents. Enhancements with
explicit BDI operators are beginning to be developed [30].

8.8.1.5 ARTIMIS

Breiter & Sadek have implemented a formal theory of beliefs and intentions in the
ARTIMIS system [7]. The ARTIMIS system carries out intelligent dialogue with a
user in assisting the user in tasks such as information access. This system, being
designed as a user interface, applies the Gricean maxims, whereby the computer
attempts to infer the user’s intentions and act accordingly. It also uses an agent
communication language, Arcol, to carry out a dialogue with the user.

8.8.1.6 DEPNET

DEPNET is an interpreter for agents who can perform social reasoning [70]. Agents
in DEPNET represent knowledge about one another to determine their relative
autonomy or dependence for various goals. Dependence leads to joint plans for
achieving the intended goals. The underlying theory is based on dependence rather
than social commitments. Thus it is more amenable to processing by the agents
individually, but is also more limited because it cannot easily capture the normative
aspects of social interaction among agents. However, this tool shows how social
notions can be realized in tools for simulating and analyzing multiagent systems.

8.8.1.7 TFM-CAA: Coordinating Autonomous Agents

TFM-CAA is an implementation of a customizable coordination service based on
the approach described in Section 8.5. This service (a) takes declarative specifica-
tions of the desired interactions, and (b) automatically enacts them. This approach
enacts the coordination requirements in a distributed manner with minimal intru-
sion into the design of the agents being coordinated.

8.8.2 Partial Implementations

These are systems that do not involve a full implementation of the theoretical
concepts, but were influenced by the theories and used them in designing their
solutions. They are, however, full systems in their own right.

8.8.2.1 STEAM

STEAM is an architecture for teamwork by agents [87]. STEAM offers abstractions
for teams, based on the work on joint intentions and shared plans. STEAM also
uses some coordination abstractions. One of STEAM’s features is the specification of



8.8 Tools and Systems 37

team plan operators in terms of role operators—that is, plan operators for member
agents. Three role-monitoring constraints are defined, through which STEAM can
infer the potential achievability of a team operator. If a team operator becomes
unachievable because of a role-monitoring failure, it can be repaired by examining
the roles that caused the failure. STEAM is being enhanced with functionality using
which an agent can compare its behavior to that of its peers and thereby determine
if a failure has occurred. STEAM has been applied in domains such as military
helicopter missions and simulated soccer.

8.8.2.2 Carnot

Carnot was a research project primarily focused on accessing and updating in-
formation from heterogeneous databases, such as are common in large enterprises
[91]. Carnot was applied on accessing information from legacy databases, automat-
ing workflow for service-order processing, and retrieving related information from
structured and text databases [83]. In these applications, Carnot adapted formal
techniques for ontology management [43] and transaction management [84]. The
latter were a precursor of the formal theory later extended to coordinating au-
tonomous agents, as described in Section 8.5.

8.8.2.3 ARCHON

The ARCHON project developed a domain-independent architecture of multiagent
systems, which was applied in an electricity transportation management system
and a particle accelerator [48]. This architecture emphasized the role of cooperation
among agents through a declarative representation of cooperation, which was rea-
soned about explicitly. The agents autonomously detected the need to cooperate—
this generalizes distributed problem solving, and enhances the autonomy of the
agents. The agents maintain self models and acquaintance models to effectively
decide when and how to cooperate. This system adapted the notion of joint inten-
tions mentioned above. It also included a framework for information access similar
to Carnot’s.

8.8.2.4 maDes

Ishizaki develops maDes, a multiagent model of dynamic design. Design is under-
stood as the creative activity in which a designer constructs a suitable represen-
tation for a message [47]. Ishizaki’s model is interesting to the design community,
because it emphasizes the dynamic or active aspects of modern media, such as com-
puters. It is interesting to the agent community, because it finds a novel application
of agents. It considers a number of agents with different abilities who come together
to create a composite design. This model uses the theory of group ability as its basis
for defining the reactive interaction among design agents [72].
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8.8.3 Traditional Approaches

This section reviews some formal approaches that initially were designed for tra-
ditional software engineering, but which are being applied to DAI systems. We
include these here, because as we have maintained in this Chapter, DAI requires
the careful synthesis of traditional and new techniques.

8.8.3.1 DESIRE

Design and Specification of Interacting Reasoning Components, better known as
DESIRE, is a framework for the design and specification of multiagent systems [6].
DESIRE can be thought of as an object modeling framework with enhancements
for DAI. The primary unit of representation in DESIRE is a task. The user can
specify task composition, sequencing of tasks, and task delegation, in addition to the
information exchanged between agents and the knowledge structures that capture
the domain knowledge. Tasks are similar to PRS plans, except that when it comes
to execution plans are executed indirectly by posting an event to achieve a goal,
rather than directly. This has the advantage that any external events can be handled
during the execution of a plan.

8.8.3.2 The Z Specification Language

The Z language was developed for the formal specification of software systems [86].
It has found application in DAI as well. One class of uses of Z involves formally
specifying properties such as the autonomy and dependence of agents in multiagent
systems, as well as the cognitive concepts discussed above [20]. Another use involves
formalizing existing systems after the fact to give a mathematical characterization of
their behavior that may be more faithful than a pure knowledge-level BDI treatment
[19].

8.9 Conclusions

As DAI matures and its applications expand into increasingly critical settings,
we will need sophisticated approaches for engineering DAI systems. As in other
branches of computer science, these approaches will involve a combination of tools
and methodologies. Effective tools and methodologies must not only support a
rich variety of powerful abstractions, but also be founded on and respect rigorous
treatments of the abstractions they support.

DAI systems involve a variety of concepts. Some of these are the BDI concepts
that have been studied for the longest time in DAI. Other relevant concepts involve
communications among agents as well as a wide range of coordination and social
primitives. Consequently, formal methods in DAI inherently involve mathematical
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structures that explicate these notions. Although formal methods in DAI are still
in their infancy, some interesting results have been obtained. The formal techniques
have also been used to influence a variety of practical systems.

However, an important caveat is that most of the present-generation systems
that “implement” various theories have only limited fidelity to those theories. They
need to go beyond the theories to a significant extent. This deviation is essential
because current theories tend to be incomplete in their coverage and somewhat
simplistic and top-heavy. Consequently, more than in traditional systems, DAI
systems require a greater contribution of insights from their developers. Although
the insights are valuable, their insertion detracts from the formal underpinnings of
the work, because the insights are typically ad hoc, and do not facilitate establishing
the kinds of properties that make formal methods attractive.

This speaks to the need for carefully engineered, tractable logics that may not be
expressive in general, but have the power needed for a specific class of tasks. Full
automation may not be essential, especially at design time, if the insights a human
may offer are from a well-understood set of patterns. But, of course, that is what
tools and methodologies are all about. Consequently, a range of future challenges
is to develop well-honed formal theories that cover the phenomena that emerge in
practice, are more accurate in their treatment of real systems, and can be used to
analyze and design them.

8.10 Exercises

1. [Level 1] Formalize the following conditions in propositional logic:

(a) it is cold

(b) it is cold in room 1344

(c) room 1344 has an air conditioner

(d) the agent x feels cold

(e) if it is raining, it is cold

2. [Level 1] Formalize the following conditions in temporal logic:

(a) room 1344 will always be cold

(b) if room 1344 gets cold, it will stay cold forever

(c) room 1344 will repeatedly be getting cold and hot

3. [Level 1] Formalize the following conditions in dynamic logic:

(a) turning on the air conditioner makes room 1344 cold

(b) turning off the air conditioner does not make room 1344 hot

4. [Level 2] Formalize the following conditions in predicate logic [26] (requires
extra reading):

(a) every room with an air conditioner is cold
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(b) the agent x feels cold in every room that has an air conditioner

(c) some agent feels cold in every room that has an air conditioner

5. [Level 2] Verify the correspondence between the properties on accessibility
relations and inferences in modal logic, as mentioned in Section 8.2.3.

6. [Level 2] Translate while loops from Algol-60 into regular programs.

7. [Level 2] Relate partial and total correctness of programs (as defined in any
introductory text on analysis of programs) with the dynamic logic operators.

8. [Level 2] Prove or disprove the following properties about LL:

FFp→Fp

Gp→Fp

GGp→Gp

GGp→GFp

GFp→FGp

FGp→GFp

FGFp ≡ GFp

9. [Level 2] Prove or disprove the following properties about LB :

EXtrue

AGAGp→AGAFp

E(pUq)→(q ∨ p ∧ EX(E(pUq)))

(q ∨ p ∧ EX(E(pUq)))→E(pUq)

10. [Level 2] Establish the results mentioned in the context of Constraints cons-i-
sat, IC2, and IC3 in Section 8.3.3.

11. [Level 2] Prove or disprove the following properties about know-how (the agent
is omitted):

Khp→KhKhp

Khp→(Ktp ∨ (
∨

a : E〈a〉true ∧ A[a]Khp))

(Ktp ∨ (
∨

a : E〈a〉true ∧ A[a]Khp))→Khp

12. [Level 3] Implement a BDI interpreter based on the architecture described
above.

(a) Make turning on the air conditioner makes room 1344 cold

(b) turning off the air conditioner does not make room 1344 hot

13. [Level 3] Implement a deliberation component of a BDI interpreter based on
heuristic graph search.

14. [Level 4] What might be the nature of a social-level semantics for agent
communication languages? Give such a semantics.

(a) reconcile it with conventional approaches based on the BDI notions

(b) develop a scheme for testing compliance with your semantics of imple-
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mentations by different vendors.
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