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Groups of intelligent agents are the object of study in several subareas of
Al notably, autonomous agents, multiagent planning and action, discourse
understanding, and cooperative work. I present a formal theory of the ability
of a group of agents that analyzes ability directly in terms of the individual
skills of the group’s members, and its internal structure or organization.
Since this theory does not reduce “know-how,” the knowledge of skills, to
“know-that,” the knowledge of facts, it avoids many of the problems that
plague traditional theories of knowledge and action. In using the notion of
“strategies” (as described in the paper), this theory presents a realistic two-
layered view of action by, and interaction among, groups of agents. This
theory has important ramifications in the study of the intentions and beliefs
of groups of agents, and of the combination of their expertise.

1 Introduction

Several interesting and important subareas of Al involve groups of intelligent agents, with
varying degrees of autonomy, who share a fragment of the world and affect one another
through their actions. These subareas include autonomous agents, multiagent planning
and action, discourse understanding, and cooperative work [4, 5, 10, 12, 15, 16, 17]. 1
present a formal theory of the objective ability or know-how of a group of agents that
accounts for its internal structure. Since even individual agents can be treated as groups
of subagents [8], this theory also applies in areas such as real-time Al systems and robotics.
It also helps clarify the question of the joint intentions of a group of agents [4, 12, 24, 26].
A longer term research interest that this paper is a step towards is to formulate a logically
well-founded methodology for the design of systems of intelligent agents.

Traditional formal theories of knowledge and action [17, 20, 21] stress the conception of
knowledge corresponding to know-that, or the knowledge of facts, rather than know-how,
the knowledge of skills. It is assumed that know-how can be reduced to know-that. In
§3, I briefly review the arguments of [27] that know-how is important, and cannot be so
reduced. In §2, I argue that the internal structure of groups, also neglected by traditional



theories, is important. In §4, I present a formal model that I use for successively better
definitions of the know-how of a group in §4.1, §5 and §6. This definition involves the
notion of abstract strategies (defined in §5), and the ways in which they may be reactively
followed. In §6, I argue that the structure of a group can be best captured in terms of
the “strategic” and “reactive” interactions of its members. In §6.1, I briefly consider an
example where a theory such as the one proposed here may be applied. Finally, in §7, I
list some important formal consequences of the theory of this paper.

This paper largely focuses on the clarification and formalization of our pretheoretic
intuitions about the structure and ability of groups; it is successful to the extent that
it captures those intuitions, and provides a framework for further technical developmen-
t. Briefly, this paper seeks to identify the “external” or objective requirements for the
ascription of know how to groups of intelligent agents. By “external” I mean the require-
ments that are determined by the behavior of the agents, rather some claims about what
their internal structure must be like (e.g., I shall not restrict myself to agents who have
symbolic knowledge bases of facts, and reason by using a general purpose inference en-
gine). A consequence of this approach is that this theory, unlike [4, 12], does not require
a group of agents to have mutual beliefs (or common knowledge) to cooperate. Common
knowledge is impossible to achieve in most realistic scenarios; e.g., where communication
is not (known to be) guaranteed with only a finite delay [9, 13].

2 Groups

Traditional theories of multiagent intentions and action tend to ignore the structure of
the group of agents being considered [4, 8, 12, 24|, and assume that agents are equally
capable and perfectly cooperative. However, the knowledge and skills of a group depend
greatly on its structure, and on the knowledge and skills of its members. E.g., consider a
football team that includes a pass-thrower (i.e., a quarterback), and a pass-receiver, trying
to move the ball several yards. This team knows how to make this play (against some
opponent, say) because its members have the required skills: the quarterback can throw
well, the receiver can catch well, and so on. The players’ know-hows combine to yield the
know-how of the team. But the internal structure of the team also matters. Indeed, if the
players were not to cooperate, or if the quarterback and receiver were to exchange their
positions, the team may not know how to make the play even though individual abilities
would remain unchanged. Analogously, the team may know that it is best to throw the
ball in some situation because the quarterback does, and may not if he does not, even if
the receiver does. The individual players’ knowledge and skills “surface,” and influence
the knowledge and skills of the whole group, only because they play in specific positions
and cooperate with each other; i.e., they interact so as to bring out each others’ skills.
The structure of a group of agents emerges from the collective actions performed
by its members. In providing a formal action-based theory of the structure of a group
of agents, it is methodologically advantageous to consider not just the actions that are
actually done, but all actions that may potentially be done. In other words, we need to
consider the ability or know-how of a group of agents. I propose to consider the abilities
of groups of agents, and define the structure of a group, in terms of how its members act



and interact. This approach allows us to model externally the commitments of members
to each others’ goals; i.e., model groups whose members are only partially cooperative,
or are even adversaries. E.g., two opposing football teams interact such that the ability
of the two teams together to score a goal is much reduced than that of any one team by
itself (which could just walk straight with the ball to the goal).

Two observations are in order here. (1) A group (e.g., a sports team) may be consid-
ered as a single unstructured monolithic agent from without; i.e., groups are “Hobbesian
corporate persons,” in Hamblin’s term [14, pp. 60, 240]. The know-how of a group of a-
gents is the same kind of thing as the know-how of individual agents: the only difference is
one of extent: one would typically expect a cooperative group to have “greater” know-how
than any of its proper subgroups. One consequence of this is that groups (e.g., business
corporations) may recursively contain other groups. (2) Even though groups (e.g., teams
or corporations) seem monolithic from without, they are not homogeneous: the members
of a group may have not just different abilities, but also make different contributions to
the know-how of the group, depending on the manner in which they participate in it.

I plan to define the know-how of a group in terms of its structure; correspondingly,
restrictions on the combination of the members’ know-hows would give us a handle on the
structure of the group in the most significant way of all—its ability to act.

3 Know-How

We can attribute intelligence only to agents who can act effectively and skillfully. Indeed, if
agents did not act at all, it would be difficult even to assign any knowledge of facts to them,
except by arbitrarily interpreting their internal states [23]; e.g., we can say that a sunflower
knows that the sun is in a certain direction only because it turns to point that way. A book
or a library is not intelligent because neither can act. This much is accepted in traditional
AT; however, traditional Al theories assume that a knowledge base of facts or beliefs
coupled with an interpreter can be used to model all interesting forms of intelligence.
This approach leads to the view of know-how described in §3.1. Unfortunately, this
approach, while formally elegant, embodies many unrealistic assumptions; problems with
it are outlined in §3.2.

3.1 The Traditional Theory

Let Ky, and Ky 4 be predicates. Traditionally, an agent, x, knows how to achieve A
by doing an action (description), P, iff @ knows that P achieves A, and x can execute P
[20, 21]. Quantifying over action descriptions, and in the notation of this paper (with M
the model, s the current “situation,” and ‘result’ a predicate giving the result of executing

a plan in a situation), we obtain [20, p. 347]:

« M=, Ky, (z,A) iff
(3P : M | can-execute(z, P) A M =, Ky, (2, result(P, s)— A))

The agent, x, proves that P will yield A, and always explicitly represents both P and
all the knowledge required to instantiate and execute it. The theory of [11] is in the same



spirit, since it requires the agents in a group to have mutual beliefs about their “shared
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plans,” and about how they may execute them.

3.2 Problems with the Traditional Reduction

There are several problems with this reduction; they become even more urgent when
group know-how is considered. The major shortcomings are considered below.

1. Multiagent systems:

Traditional theories are based on plans, and typically consider only single agent
plans: thus they cannot account for the know-how of a group of agents. However,
organizations know how to do certain things, but may not have any explicit plan
[15]. And, even in organizations, the actual actions are taken by individual agents,
whose knowledge may not be easily combined. A reduction to what all members
know would be too strong, and that to what just some members know too weak.

2. Reactivity:

The reduction stresses explicitly represented action descriptions and plans. However,
much know-how is reactive; e.g., a football team may know how to score a goal, but
would not have a plan that will guarantee it, much less one that was explicitly
represented and interpreted. It would not, and could not, have a conditional plan
either, since all eventualities (e.g., moves of the opponent team, wind drag on the
ball) cannot be anticipated.

3. Basic actions and skills:

Traditional accounts assign the same basic actions to all agents in all situations.
Expertise can vary only because of differences in the knowledge of facts (e.g., “Bill’s
telephone number”), not because of differences in abilities: given the same facts,
all agents have the same know-how. However, groups are useful and successful, at
least in part, because members may have differing abilities. I submit that ‘basic’
actions are actions done by an agent with a single choice, and depend on its physical
capabilities and skills. The effect of an action depends on the situation it is done in,
and on the other events that take place with it. The agents’ procedural skills, habits,
and practical wisdom in selecting their actions jointly determine their know-how.

4. Complexity of decision making:

Real-life agents have to act rapidly on the basis of incomplete information, and lack
the time and knowledge required to form complete plans before acting. Further, they
cannot choose optimal actions in real-time, so the assumption of pure reactivity
is not realistic. Abstract “strategies” (discussed in §5) simplify reactive decision
making by letting an agent have partial plans that can be effectively followed in
real-time.



3.3 The New Analysis

A group, G, knows how to achieve A, in loose parlance to “do” A, if it is usually able
to bring about the conditions for A through its actions. The world may change rapidly
and unpredictably, but GG is able to force the situation appropriately. The group has a
limited knowledge of its rapidly changing environment. It has too little time to decide
on an optimal course of actions, and can succeed only if it has the required physical
resources and is appropriately attuned to its environment. While this “situated” theory
does not use plans, it can accommodate the richer notion of strategies (see §5). Therefore,
it contrasts both with situated theories of know-that [22], and informal, and exclusively
reactive, accounts of action [1].

4 The Formal Model

The formal model is based on possible worlds.! Each possible world has a branching
history of times. At each time, environmental processes and agents’ actions occur. Agents
influence the future by acting, but the outcome also depends on other events. The actions
an agent can do can differ at each time—this allows for learning and forgetting, acquiring
and losing physical capabilities, and changes in the environment.

Let M = (F, N) be an intensional model, where F' = (W T, I, A, U} is a frame, and
N = ([],B) an interpretation. Here W is a set of possible worlds; T is a set of possible
times; I is the class of domains of the various possible worlds; A, the class of agents in
different possible worlds, is a subclass of I; U is the class of basic actions; as described
below, [ ] assigns intensions to predicates and actions. B is the class of functions assigning
basic actions to the agents at different worlds and times. Each world w € W has exactly
one history, constructed from the times in T. Histories are sets of times, partially ordered
by <. They branch into the future; each linear closed suborder of a history is called a
scenario. The sets of times in the history of each world are disjoint. “Times” could be
instants or periods. A world and time are a “situation.”

A scenario at a world and time is any maximal set of times containing the given time,
and all times that are in a particular future of it; i.e., a scenario is any single branch of
the history of the world that begins at the given time, and contains all times in some
linear subrelation of <. I define a skeletal scenario as an eternal linear sequence of times
in the future of the given time; i.e., SS at w,t is any sequence: (t = tg,%1,...), where
(Vi:1 > 0—t; < tiy1) (linearity) and (Ve, ' : ¢/ > t;,— (37 : t' # t;)) (eternity). Now,
a scenario, S, for w,? may be defined as the “linear closure” of some skeletal scenario
at w,t. Formally, S, relative to some SS, is the minimal set that satisfies the following
conditions:

Eternity: SS C S

Linear Closure: (Vt":1" € S— (Vt' 1 to <t/ <t"— t' € 9))

!This formal model resembles those of McDermott [19] and Shoham [25]. However, those accounts
emphasize a language that might be used for representing and reasoning about temporal information.
The stress here is on giving the formal definition for know-how. A significant difference is that I consider
the basic actions of agents explicitly, and describe how the reactive behavior of agents may be modeled.
I also consider strategies as abstract specifications of the behavior of individuals and groups (see §5).



This definition applies to arbitrary histories, not just discrete ones. S,,; is the class of
all scenarios at world w and time ¢. (S,¢,%') is a subscenario of S from ¢ to ¢, inclusive.

Basic actions may have different durations relative to one another in different scenarios,
even those that begin at the same world and time. The intension of a predicate is, for
each world and time, the set of the relations that model it; that of an action is, for each
agent x, the set of subscenarios in the model in which an instance of it is done (from start
to finish) by z; e.g., (5,t,t') € [a]* means that agent « does action @ in the subscenario
of S from time ¢ to t’. An agent (or subgroup) could do several actions at once; since
the [] is a part of the model, the actions that are done simultaneously are automatically
mutually compatible. I assume that [] respects B; i.e., a € By, (). Although I will not
pursue this here, restrictions on [] can be used to express the limitations of agents, and
the ways in which their actions may interfere with those of others; e.g.,  cannot pick up
three glasses at once and at most one person can enter an elevator at a time. The habits
of agents can be similarly modeled; e.g., = always brakes before turning.

4.1 Action Sequences and Trees

It is useful for the definitions that follow to extend the definition of intension of an action
in the following ways. Let G = {x1,...,2,} be a group. Let ‘seq;, = (ag,...,amnm-1)" be a
sequence of actions of member x;. Then [seq;] = {(5,t,t)|(Fte < ... <t :t =ty Al =
tn N(Yg g €[l...m]— (S,tj_1,t;) € [aj_1]"))}; i.e., the set of subscenarios over which
it is done. A sequence for a group is a set of member sequences executed in parallel;
formally, seq = (seq; || ... || seq,). The intension of ‘seq’ is the set of all subscenarios in
which the member sequences are executed starting together (and ending in any order).
[seq] = {(S,t,t")|(Feo,...€m-1 : {eoy...€mor} ={0,....m—1} At,, < ... <t _, AN(Vj:
J € [1...m]= (S,t,t.,) € [seq;]))}. (S,t,t') € [seq] means that ‘seq’ starts at ¢ and
ends at t'; [seq] = () means that a subset of the member sequences is inconsistent. Sets
of simultaneous actions can be treated as sets of sequences of length unity.

The formal language here is the predicate calculus, augmented with a two-place pred-
icate, K, (agent, formula). Here ‘agent’ could itself be a group. The semantics is given
relative to intensional models: it is standard for the predicate calculus; the predicate
Ky, 18 considered below. Some auxiliary predicates are defined where needed.

In order to put a bound on the number of actions required by a group to achieve
something for it to have the corresponding know-how, it is useful to define know-how
relative to a ‘tree’ of actions. A ‘tree’ of actions consists of a set of action-sets (one
action-set per member of the given group), and a set of subtrees. The set of action-sets
is called the ‘root’ of the tree in the sequel; it is convenient to let ‘root’ be a sequence
as defined in the previous paragraph, rather than just a set of action-sets. The idea is
that the group does ‘root,” i.e., the initial action-sets first (each member doing his part),
and then picks out one of the available subtrees to pursue further. A group knows how
to achieve A relative to a tree of actions iff on all scenarios where the root of the tree is
done, either A occurs or the group can choose one of the subtrees of the tree to pursue,
and thereby achieve A. The definition requires A to occur on all scenarios where the root
is done. The group gets to “choose” one subtree after the root has been done. This is
to allow the choice to be based depending on how the group’s environment has evolved.



However, modulo this choice, the group must achieve A by forcing it to occur—i.e., the
group cannot take advantage of luck. This definition requires the root of the tree to be
done entirely, but allows A to occur fortuitously, before it has been completed. This
definition is best applied to models that consist only of “normal” scenarios (see [27] for
a discussion). It is important to note that the tree need not be represented jointly or
severally by the members of the group, and is intended not to be so represented. The tree
just encodes for the group of agents the selection function it may be deemed to be using
in picking out their actions at each stage. The agents just happen to behave according to
this function—they don’t need to symbolically represent or compute it any special part
of their architecture.

Formally, a tree is either (1) (), the empty tree or (2) (root, (subtrees)), where ‘root’ is
a non-empty sequence of actions (as described above), and ‘subtrees’ is a non-empty set
of trees. In the sequel, I assume that the variable ‘tree’ refers to a tree of this form.

o (M.0) s Kjypp(G,A) Hf M =, A

o (M, tree) [Fu Kp (G, A) I (VS € Sy AT : (S, 1, 1) € [root])— (Jt': (S,1,1) €
[root] A[(Ft" :t < t" <t AM |=p A)V (Isub € treesubtrees : (M, sub) |, v
Kpow(G, A))N))

One could possibly say that a group knows how to achieve a condition, if it can achieve
it relative to some tree of actions that it can do. However, this definition seems to require
that the members of a group be able to coordinate their activities at the level of their
basic actions (in order for each to do its part of the tree, in particular to “select” the same
subtree at once); otherwise, it would attribute know-how to a group just because the right
choices are open to it, even though its members would not be able to make them. Because
of this reason, this approach yields an extreme definition of know-how. It can certainly
be applied purely externally on groups that are somewhat rigidly structured, but then it
de-emphasizes the inherent autonomy of complex intelligent agents. However, it is not
acceptable to require that groups of agents explicitly represent and interpret shared plans.
This motivates us to look at abstract strategies that need not be explicitly represented,
but which can characterize the coordinated behavior of groups whose members are largely
autonomous.

5 Group Strategies

Strategies abstractly characterize the behavior of agents and, as I show in §6, the structure
of groups of agents (in terms of their interactions). In more detail, the behavior and habits
of agents are characterized by how they do sequences of actions (derived from the tree
characterizing their selection) in following their strategies. When strategies are construed
as abstract specifications, we can be agnostic about whether they are hard-wired into the
agents who belong to the given group, or learned or obtained through planning by one or
more of its members. They need not even be explicitly represented or computed before
action begins. It is tempting to say that G knows how to achieve A, if it can achieve A
whenever it so “intends.” Strategies are a simple, albeit incomplete, way of analyzing



intentions (see [26] for a formalization of this idea in the same general framework as this
paper). I now let each group have a strategy that it follows in the current situation.
Intuitively, a group knows how to achieve A if it has a strategy Y such that its members
possess the skills required to follow Y in such a way as to achieve A. Thus know-how is
partitioned into two components: the “ability” to have satisfactory strategies, and the
“ability” to follow them.

Let Y be a strategy of group G; ‘current(Y')’ the part of ¥ now up for execution; and
‘rest(Y')’ the part of Y remaining after ‘current(Y’)’ has been done. I will define strategies,
‘current,’ ‘rest” and the strategy-relative intension of a tree (i.e., [[ly) shortly, but first I
formalize know-how using the auxiliary definition of know-how relative to a strategy.

o (M\Y) |Fuw: Khow(G7 A)iff (3 tree: (3S,t": (S, t, 1) € [[tree]]currem(y))/\
(M, tree) = Kpp(G,A) V(VS 0 S € Sy (ATt : (S, 1, 1) € [tree]currenyy))— (31
(S, 1,1") € [tree]cument(vy A (M, rest(Y)) Fuwe Kppl G, A))))

In English, this definition says that a group, G knows how to achieve A iff there is a
tree of actions for it such that it can achieve the ‘current’ part of its strategy by following
that tree, and that on all scenarios where it does so it either achieves A or can continue
with the ‘rest’ of its strategy (and knows how to achieve A relative to that). The agents
act in parallel, but the entire group has only one strategy at this point; i.e., the activities
of the group as a whole are abstracted, and its members always follow the current part of
the group strategy. Now satisfaction simpliciter may be defined as follows:

o M =y Ky (G A)ME (BY - (MY ey Ky A)) A3S € Suy A (VE € S
M fwp A))

Here the second conjunct excludes inevitable conditions. This definition meets many
of our desiderata. It allows us to incorporate abstract specifications of the group’s actions
from the designer’s point of view, and yet is able to admit the purely reactive aspects
of their behavior. No requirements are imposed as to what the agents must be able to
represent explicitly or symbolically; thus it applies to the wider range of intelligent agency
that we wished to consider.

As a first approximation, I define a strategy, Y, recursively as follows.

0. skip: the empty strategy

—_

. do(A): a condition to be achieved

2. wait(A): a condition to be awaited, (for synchronization with other events)
3. Y1; Y, asequence of strategies

4. if A then Y] else Y5: a conditional strategy

5. while A do Y;: a conditional loop



The ‘current’ part of a strategy depends on the current situation. For case (0),
‘current(Y)” is ‘skip’; for cases (1) and (2), it is ‘Y itself; for (3), it is ‘current(Y;)’;
for (4), it is ‘current(Y;)’ if A holds in the current situation, and ‘current(Y3)” otherwise;
for (5) it is ‘current(Y7),” if A holds (in the current situation), and ‘skip’ otherwise. The
‘rest” of a strategy is what is left after the current part is performed. For cases (0), (1)
and (2) ‘rest(Y)" is ‘skip’; for (3), it is ‘rest(Y7); Y2'; for (4), it is ‘rest(Y;),” if A holds and
‘rest(Y3)’ otherwise; for (5), it is ‘rest(Y7); while A do Y3,” if A holds, and ‘skip’ otherwise.
It can easily be seen that relative to the standard semantics for the constructs introduced
above (e.g., see [18]), ‘Y is equivalent to ‘current(Y); rest(Y').” Some other obvious, but
useful consequences of these definitions are:

Lemma 1: ‘current(Y)’ is always of the form ‘skip” or ‘do(A)’ or ‘wait(A)’

Lemma 2: ‘current(current(Y; Y3))" = ‘current(Y;)’

Lemma 3: ‘rest(current(Y;); ¥2)" = ‘Y5’

By Lemma 1, and since ‘skip’ is the empty strategy, [tree]cument(y) is invoked (for a
given tree) only for cases (0), (1) and (2), and is defined for them below. Here I assume
that Constr is the conjunction of background constraints (e.g., to not run into a car, and
to not die) that must never be violated. The expression [[tree]]cumnt(y) denotes a restricted
intension of ‘tree’ relative to an agent or group (implicit here) and the substrategy it is
to achieve by following ‘tree’—in the sequel, I refer to it as the strategy-relative intension
of ‘tree.” This expression considers only those subscenarios where the success of the given
substrategy is assured, i.e., forced, by the agent—fortuitously successful subscenarios are
excluded. This expression captures the inherent reactivity of real-life agents—typically,
a sequence of actions derived from a tree that just includes what a strategy prescribes
would violate some constraint, or fail to achieve the relevant condition.

This leaves [tree]current(y) to be defined for all the possible cases of ‘current(Y’).” Briefly,
[[tree]]current(y) is the set of subscenarios corresponding to executions of ‘tree’ such that they
lead to the strategy ‘current(Y)” to be forced. The three cases are (for different values of
‘current(Y’)’) as follows.

(S,1,1") € [tree]cumrent(yy iff (here ¢,¢" € S; the world is w)

0. skip: The empty strategy, ‘skip’ is achieved by the empty tree. It would seem that
any tree would achieve ‘skip,” but that would only complicate the definition where
this expression is used, because the recursive condition applies at the end of any
subscenario in the set.

tree = ) and t =

1. do(A): ‘Tree’ follows ‘do(A)’ iff the group knows how to achieve A in doing it, and
all subscenarios over which it is done preserve the background constraints. This
allows agents to overact, i.e., to do more than A requires (because of their habits,
perhaps).
if tree = ) then t = ¢/ A M =y A else (M, tree) =y Kjy (G A) A (" 12 < 1" <
t'A(S,t,t") € [root]A(Isub : sub € tree.subtreesA(S,1",t') € [sub]cumenty)))A(VE" :
t <t"<t'— M . Constr)

2. wait(A): ‘Tree’ follows ‘wait(A)” iff it terminates just when A occurs, and all sub-
scenarios over which it is done preserve the background constraints.



if tree = () thent =t/ AM =, Aelse (Ft" 1t <" < ' AN(S,t,t") € [root] A (Tsub :
sub € tree.subtrees A (S,1",t) € [sub]current(y))) A (V" 1t < " < t'— M =y
Constr)

Now for some intuitions about the definition of know-how relative to a strategy. The
execution of a strategy by a group of agents is equivalent to its being unraveled into a
sequence of substrategies of the form do(A) and wait(A). Each of these substrategies is
followed by the group—it follows each by doing actions prescribed by some tree. Thus
the substrategies serve as abstractions of trees of basic (or reactive) actions. In this way,
the definition of know-how exhibits a two-layered architecture of agents: the bottom layer
determining how substrategies of limited forms are achieved, and the top layer how they
are strung together to form complex strategies.

6 Group Structure

The theory, as developed so far, ignores the internal structure of groups. Also, it consid-
ers only the strategies of the entire group, but not of its members individually; thus the
abstraction of behavior with strategies, which is useful in both the design and analysis
of multiagent systems, cannot be applied recursively to subgroups. With the inclusion of
member strategies, the framework could be used (1) internally as a rationale for limiting
the requirements on the perceptual hardware, knowledge, and reasoning abilities of mem-
bers to just those that their own strategies (and their interactions with others) require,
and (2) externally to motivate the combination of the knowledge of different members
as well as communications among them. Therefore, I now extend the theory to allow
individual strategies for the members of a group. When abilities are parsed into strate-
gies and reactive actions, it is natural to consider the structure of a group in terms of
interactions among its members at the levels of their strategies and their reactive actions.
Accordingly, I now define the structure of a group in terms of two kinds of interactions
among its members. The interactions among the members of a group can be seen as
determining their respective “roles” in the group. Specifically, strategic interactions are
the external correlates of the representational roles of Werner [29], where they are seen as
intentions to cooperate. The present approach is more general in allowing groups of agents
whose interactions are at the level of reactive actions, rather than intentional states, and
in allowing groups whose members are not cooperative (e.g., two opposing tennis players
constitute a non-cooperative group).

1. Strategic Interactions:

A set of strategies (one for each member of a group) becomes a strategy of the
group only if it satisfies the restrictions assigned by the structure of the group.
Whether these restrictions are in fact met cannot be determined from the strategies
alone, but depends on how the world evolves, and how the strategies are followed.
It is instructive to see what kinds of interactions among strategies are possible.
Some of these abstract interactions among agents may involve queries, requests
for certain (possibly abstract) actions, commands to do certain (possibly abstract)
actions—in short, all kinds of illocutionary acts [2]. The key point is that all of these
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involve the flow of abstractly specified information of some sort, be it a command
or a declaration, from one member to another. Note that information need not
be passed linguistically: nonlinguistic conventions, such as gestures, could serve as
well. Other abstract interactions involve the establishment of various conditions in
the world by some members’ strategies that other members’ strategies rely on. E.g.,
in a successful football team, the receivers run the patterns that the quarterback
asks them to, some players are supposed to clear a path for their teammates, and
whenever a defensive player identifies a move of the opposing team, he acts to block
it.

2. Reactive Interactions:

The structure of a group also determines the joint habits of its members. These
are not specified in terms of interactions of the members’ strategies, but rather in
terms of their interactions while acting reactively as they execute their strategies.
These may be implicit in the way in which a particular group acts. E.g., several
interactions that make a team successful are not present in the constraints on the
strategies of the members. A player may simply obstruct an opposing player trying
to tackle his teammate, even though his own strategy is to run; good players react
to their opponents’ moves by pushing as hard as possible without running into their
teammates or committing fouls. The joint habits of agents alluded to here show up
in the formal model in two places. One is as constraints that specify inadmissible
sets of actions or action sequences (by different members of a group); e.g., a member
of a group would not perform his basic action of running a step in a direction when
that would mean collision with a teammate. Another way in which joint habits show
up is as positive constraints on the ordering of basic actions of different members
of a group; e.g., a football player would block an opponent bearing down on his
teammate if the latter is carrying the ball.

Formally, let a group, G = {({x1,...,2,), s, [r), where the x; are the members of
G, and Ig and IR are, respectively, the sets of restrictions on the strategic and reactive
interactions among the members of (G. Then, the group strategy, Y, is an ordered set of
member strategies, (Y1,...,Y,) (where Y, is the strategy of x;), such that the restrictions
in g U IR are ‘met’ as each z; follows strategy Y;. The ‘current’ parts of the strategies
of different members could proceed differently and, in particular, not end synchronously.
Define the ‘current’ of a group strategy as just an ordered set of the ‘current’ of each
member strategy. I now introduce a predicate, ‘continuation,” on strategies. Intuitively,
if the ‘current’” part of a strategy is in progress, its continuation is the entire strategy;
if the ‘current’ part of a strategy is over, its continuation is just the ‘rest’ of it. This
is motivated by the lemmas of §5. I define ‘continuation(D,Ys)  as the group strategy
whose ith element, for ¢ € D, is ‘rest(Y;),” and for ¢ ¢ D, ‘Y;.” Intuitively, D is the subset
of members of G who have done their ‘current’ parts.

I also need to extend the definition of trees of actions so it would apply to groups
of relatively autonomous agents. For a group, a tree is defined as a set of trees, one
for each member of the group. For a set of ‘current’ parts of strategies (one for each
agent), a tree containing a set of trees ({treey,...,tree,}—also one for each agent) has
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a strategy-relative intension that contains all subscenarios (S,¢,%') such that (Vi : 1 <
i <no (3ot <" <A (S, 1, 17) € [treei]current(v;))). The members’ actions are thus
described independently of each other to the extent of the following of their respective
strategies. The required interactions are taken care of by the group restrictions described
above. Then,

o (M,YG) Fuws KpplG, A) iff (3 tree: (35,¢": (Ve 1 <o <n— (5,t,1) €
[trceJomentry) A (¥ 1 € (5 U ) — meets(r,#, Y, tree)) A(M, ree) ooy
Kpou(G,A) V(VS 2 S € Sup A (B2 (S,1,) € [trecourenr))— (3t".D : D C
[L,....,n]A (Vi:i€ D— (S,t,t") € [[treei]]current(m) AN(Yg,t" 5 e ([1,...,n]\ D)A
(S,t,1") € [tree;]currenyy,)— 1" < ") A (M, continuation(D, Yg)) [Fw,m
KpoulG, A))))

In words, a group knows how to achieve A relative to strategy Y iff its members can
follow the ‘current’ parts of their individual strategies while interacting in the right way,
and either (i) achieve A or, (ii) as they finish their ‘current’ parts, go on to do the ‘rest’ of
their respective strategies (this is captured by ‘continuation’), and know how to achieve
A relative to the ‘continuation’ of the group strategy. The recursive condition is applied
every time a subset of the members (whose indices are in D) complete performing the
sequence for the ‘current’ part of their strategies: those members then move on to the
next part of their strategies as the others simply carry on; i.e., the member strategies
need not proceed in lockstep. Satisfaction simpliciter is defined as before. This definition
is perhaps stronger than necessary since it requires that the restrictions on the actions
of different members of the group be met within each tree that they follow to achieve
the ‘current’ parts of their strategies. A weaker option would be to consider groups of
extended “memory,” whose members would take care of their interactions over their entire
sequences of actions for following their strategies.

The new predicate, ‘meets,” is meant to accommodate the restrictions on the interac-
tions among agents, and has to be defined for each kind of restriction in /gU/g. The kinds
of restrictions that would be of interest depend on the domain that is being modeled. I
consider two important classes of restrictions that occur in many application domains.
The first kind involve the temporal ordering of the substrategies of the members of G
(and is then in Ig), or the ordering of their actions (and is then in Ig). For Ig, I define
“labels” as predicates that are true exactly when the substrategy they name has been
successfully followed. This allows us to express temporal conditions such as ‘l, before .’
which states that [, always occurs before [,. Other conditions can be similarly handled.
Note that both this and the next definition, though syntactically defined for any strategy
Y, rely on the fact that they are invoked only with respect to a strategy of one of the
forms of ‘current(Y’),” which are the forms for which the strategy-relative intension of a
tree is defined.

o M =, meets(‘l, before [,), 1Y, tree) iff (VS : S € Sy, A (S, t, 1) € [tree]y— (V"
PSS NAM g ly— (3"t <" < " AM =y m 1))

Other kinds of restrictions in Ig correspond to the different illocutionary acts that
members are able to perform. Different restrictions would state that a member’s com-
mands to another would always be obeyed, or that a member’s request to another would
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be accepted if certain conditions obtain, and so on. I have space here only to outline the
approach for commands. Commands can be given only by agents to their subordinates:
I extend Is to include statements of hierarchy: ‘z; commands z;” (in other words, z; is
the master and z; the slave). Now let “command(agent, condition)” be an action that a
member’s (in this case, the master’s) strategy may require to be ‘done.” Then,

o M =, meets(‘x; commands z;’, t', Y, tree) iff (VS : S € S, :A(S,t,t') € [tree]y)—
(Vi bz 0t <ty <ty <t'A(S,t1,t2) € [do(command(z;, A))]*— (Fts : t2 < 15 <
t'AM Eu, A)))

Thus ‘tree’ ‘meets’ a command restriction, if all commands by superiors (as defined
by that restriction) to their subordinates are eventually obeyed within the ‘tree.’

While, as I had indicated in §4, it is possible to treat the “habits” of agents as restric-
tions on [], it is often convenient to treat the reactive interactions in a group explicitly.
Conditions that involve the relative ordering of actions of members can then be han-
dled in the formalism in the same manner as the ordering of substrategies, though their
implementational import is quite different.

6.1 Example: The Pursuit Problem

The theory developed above may be used in modeling the ability of multiagent systems. [
now apply it in the context of a well-known problem in DAI: the pursuit problem. Parts of
this section are borrowed from [26] which considers the same problem from the viewpoint
of the agents’ intentions. The pursuit problem problem was introduced by Benda et al. [3],
but has been extensively studied by others [6, 28]. We are given a finite two-dimensional
grid of points (see Figure 1). Each point may be occupied by either an agent called ‘Red’
(the “adversary”) or up to four ‘Blue’ agents. At each cycle, each agent can stay in its
location or move one square up, down, left, or right. The pursuit starts in some arbitrary
configuration and ends in either the Blue agents winning (when they occupy the four
locations surrounding Red) or losing (if Red gets to the edge of the grid).

Let the Blue agents be notated as B! through B* Red as R, and any of the five as
A. Let A, denote the x coordinate of A’s location, and A, the y coordinate. Initially, let
the agents be specified to get on different sides of R; e.g., B! above it, B? to its right,
B? below it, and B* to its left. One could talk of the know-how of these agents in the
purely reactive sense, and the know-how of the group that results from it. Instead it is
convenient to directly go to the case of strategic know-how. Each of the Blue agents could
be said to have some abilities on the basis of the strategies they can possibly have. The
group as a whole would have a strategy whose substrategies are the agents’ strategies.
The strategies that the agents can have are determined by how they are designed. But
even for a rigid design one can describe the agent as having several strategies at different
levels of detail.

In the simplest case, each of the Blue agents could be said to have a strategy that if
followed successfully would take it to its proper slot; e.g., Bl’s strategy, Y;, could just be
‘do(get-above-R)’; the others would be analogous. This specification assumes that lower
layers of the design are available to do the required actions. These layers would also ensure
that no constraint is violated (e.g., collision with Red is avoided). First consider the case
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(e = Red, o = Blue)

Figure 1: The Pursuit Problem: an example configuration

where no restrictions have been imposed on the group. Thus the group has the know-how
to achieve the condition that B! occupy the location above Red, B? the one to its right,
and so on. In other words, the condition the group as a whole has the know-how for is
that it win (or equivalently that Red lose). It is obvious from the construction that none
of the Blue agents can individually have the know-how for anything beyond occupying
a certain location. Yet the group knows how to achieve a win. The group’s know-how
derives simply from the combinations of its members’ know-hows.

At the next level of detail, we might assign strategies to the Blue agents as follows.

Let Y] be

while —over; do
if B; > R, + 1 then do(move-down)
else if B} < R, then do(move-right)
else if B! > R, then do(move-left)
else if B < R, then do(move-up) else skip

Figure 2: An Example Strategy for a Blue Agent

The other Blue agents’ strategies are analogous. Here I assume that ‘over’ is true when
the given Blue agent abuts Red on the appropriate side for two clock cycles. As before, [
also assume that the lower layers of the architecture ensure that no constraint is violated.
The above strategies provide a more detailed specification of what a Blue agent would do,
and thus of its internal architecture; i.e., they are quite close to its implementation.

In both these cases know-how was attributed to the group of Blue agents quite inde-
pendently of whether the individual agents knew of it or planned to achieve it. Indeed,
the group itself was described independently of whether its members knew they partic-
ipated in it. A more elaborate system in which the agents took on goals depending on
their location could also be described in this framework: their strategies would have to be
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more complex; e.g., they could each decide where to go depending on the globally optimal
assignment. At greater levels of detail, the strategies assigned to the agents could include
the aspects of interaction required for them to adopt non-conflicting goals. For concrete-
ness, consider a system where B! becomes the controller, and the other Blue agents its
slaves. Now Y] could begin by first making an assignment of the locations surrounding
Red to different Blue agents; then command the other Blue agents to go there. Y3, Y3 and
Y, could then simply be strategies to go to any specified location about Red. The group
would impose the strategic restriction that all commands from B! are obeyed. Again, the
know-how ascribed previously could be ascribed, along with that for some more complex
conditions, e.g., about the specific order in which actions are done by different agents.

The moral that I wish to derive from these examples is that while adding strategies,
and further constraints on the interactions between the members of a group does not seem
to add to its absolute know-how, it does serve a useful purpose from the point of view of
designing a group (and the agents in it). The process of design has not been formalized
here but is an important focus for future research. The idea is that while an unconstrained
group has the most know-how, the designer’s obligation so that member agents can meet
the specification is also the strongest—these agents must all be able to figure out what
to do when, and be able to make the relevant observations on the fly. For a constrained
group, the designer can manage to meet the specifications with a considerably simpler
design than otherwise.

7 Some Consequences

Some important consequences (both positive and negative) of the theory described in this
paper are enumerated below. These consequences help characterize the theory of this
paper in terms of the most important predicates and abstract out many of the details of
the model. They will also be useful in guiding the formulation of design principles for
multiagent systems. As usual, ‘= p’ indicates that p is valid, and ‘}£ p’ that it is invalid.
Following Emerson [7], AG means “at all times in all futures,” and P “sometimes in the
past.” These and other temporal operators could easily be given formal definition in the
model, if that is desired.

1. Meta Know-how Implies Know-how:
E Kol Gy Koo (G A)) = K oG A)

If a group knows how to come to know how to do A then it must already knows how
to do A. In particular, one sure way G has to achieve A is to achieve Ky, (G, A)
first, and then (using that know-how) to achieve A. This falls out as a simple
consequence of the formal definition of know-how. In a sense, this flattens the
metaplanning vs planning distinction.

2. Monotonicity Through Non-interactive Group Formation:
E (1 <i<nAKp,(e,A)= Kpyp(((21,. .., 2,),0,0), A)

The group consisting of just the given agents, and imposing no restrictions on their
interactions, has the know-how of each of them. This is because membership in a



group does not affect the agents’ basic actions; it only constrains how they may use
them (to make sure that all interactions are legitimate).

3. Cooperation By Chaining:

= K@ K gp(y; A)) = Kp (2, 9),0,0), A)
Thus z and y can collaborate by “chaining” their know-hows—z can first exercise

his know-how to bring about it that y has the know-how to achieve A. Then, since
y has the know-how to achieve A, he can do so independently of z’s actions.

. Command Restriction:
= [AG(¢— AG—p) A AG(KhO,w(y,q))]—)
Kpow{(@,y), {z commands y},0), (P command(y,p) A =Pp A ¢)])

If + commands y to achieve p, then y must achieve p, and thus ¢ (whose occurrence
would exclude p forever) cannot be achieved before p. If the group lacked the
‘commands’ restriction, the above implication would be valid.

. Temporal Order Restriction:

(Ko, p) AAG(KG oy, 9)) A AG(g— AG=K Y, (2, p))]—

Kol {{, y), {q before p}, 0),[(p Aq) V (p A Pq) V (Pp A q)])

If the group restriction were removed, = could achieve p, and then y could achieve
g. However, in the above case, ¢ must occur before p, and that erases x’s know-how
for achieving p.

. Emergence of Group Know-how:

E Kp oGy A)—= (Fi -z € GA Ky (2, A))

A group’s know-how arises from the interactions of its members; it is possible (and,
in practice, quite likely) that no single member of a group has the same know-how
as the entire group.

. Loss Due to Interactions (Weak):

(e as € GAKppypei, A))— Kj (G, A)

The strategy that the given member x; would follow to achieve A may be inadmis-
sible as a strategy in the definition of group know-how because it is not possible
to follow it appropriately (and meet all the restrictions imposed by the group’s
structure).

. Loss Due to Interactions (Strong):
= (Vi:x; € G—= Ky (xi, A))—= Ky po(G, A)

The same reason as in the previous case. Thus a group has greater know-how than
all its members, even if they are considered together.
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As remarked in §6.1, the inclusion of strategies and group structure into the theory
seems to reduce the know-how of groups. This is to be expected since strategies and group
structure allow us to model agents with limited abilities for perceiving, reasoning, and
communicating, who must also obey certain social constraints. The know-how of real-life
groups is not really reduced; rather, a more accurate estimate of it is obtained.

8 Conclusions

The theory presented here refines and formalizes some intuitions about the abilities and
structure of groups, and stresses the connection between them. I started out with a set
of obvious intuitions about the abilities and structure of groups of intelligent agents, and
with a simple formal model of action and time that allows concurrent actions by different
agents. This yielded a direct definition of the know-how of a group treated as a set of
purely reactive agents. However, it was felt that real-life groups (who are complex, and
need to act in a complex world) would of necessity have (or at least be designed to have)
some internal (i.e., architecture) structure. This structure should be accounted for in
a theory of action and ability, and could in fact be exploited in giving a more realistic
account of a group’s know-how.

Further work, however, is needed to obtain a more “internal” or architectural view
of know-how, and to relate it to the general “roles” that different agents may play in a
group [29]. An important problem in this framework is to relate abilities and structure
to perception and reasoning, especially when reasoning is not thought of as pure symbol-
processing. This work also has impact on the development of a unified theory of the
intentions, beliefs, and know-how of groups of autonomous intelligent agents. Such a the-
ory would be crucial in forming the basis for a philosophically and mathematically sound
theory of the design and analysis of groups of agents using folk psychological concepts.
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