
Producing Compliant Interactions: Conformance,
Coverage, and Interoperability

Amit K. Chopra and Munindar P. Singh

North Carolina State University

Abstract. Agents in an open system interact with each other based on (typically,
published) protocols. An agent may, however, deviate from the protocol because
of its internal policies. Such deviations pose certain challenges: (1) the agent
might no longer be conformant with the protocol—how do we determine if the
agent is conformant? (2) the agent may no longer be able to interoperate with
other agents—how do we determine if two agents are interoperable? (3) the agent
may not be able to produce some protocol computations; in other words, it may
not cover the protocol—how we determine if an agent covers a protocol?
We formalize the notions of conformance, coverage and interoperability. A dis-
tinctive feature of our formalization is that the three are orthogonal to each other.
Conformance and coverage are based on the semantics of runs (a run being a
sequence of states), whereas interoperability among agents is based upon the tra-
ditional idea ofblocking. We present a number of examples to comprehensively
illustrate the orthogonality of conformance, coverage, and interoperability.
Compliance is a property of an agent’s execution whereas conformance is a prop-
erty of the agent’s design. In order to produce only compliant executions, first
and foremost the agent must be conformant; second, it must also be able to inter-
operate with other agents.

1 Introduction

We investigate the topic of an agent’s compliance with a protocol by checking its design
for conformance with the protocol and interoperability with other agents. Our agents are
set in an open environment, and thus expected to be autonomous and heterogeneous.
The interactions of agents are characterized in terms of protocols. The autonomy of
an agent is reflected in its policies, which affect how it interacts with others, possibly
resulting in deviations from the given protocol.

Deviations complicate the task of determining compliance. To take a simple exam-
ple, a customer in a purchase protocol may send reminders to a merchant at its own
discretion even though the protocol did not encode sending reminders. Some devia-
tions can be flagrant violations. For example, a customer may not pay after receiving
the goods it ordered. What can we say about the compliance of these agents? Send-
ing a reminder seems like an innocuous deviation from protocol, whereas not sending
the payment appears more serious. One could argue that sending reminders could have
been easily incorporated into the protocol. However, when we consider that deviations
in protocol are a manifestation of the individual policies of agents, the number of pos-
sible deviations from a protocol is potentially infinite. As more deviations are encoded,



the resulting protocol would become large and unwieldy. If each deviant protocol were
published as a separate protocol, too many niche protocols would arise. It is better to
maintain a smaller number of general protocols and to entertain deviations from such
protocols. However, not all deviations are acceptable from the point of view of compli-
ance.

1.1 Compliance: Conformance and Interoperability

For an agent to be compliant with a protocol, first and foremost it must be conformant
with the protocol. While agent compliance can only be checked by monitoring the mes-
sages the agent exchanges with its peers at runtime, conformance can be verified from
its design. The design of an agent involves two primary components: protocols and
policies. Protocols are the public part of the design and can be considered fixed for the
set of agents that adopt specific roles in the protocol. However, the policies are private
to each agent, and potentially unique to each agent. Hence, the design of an agent is a
function of its policies. An agent is conformant with a protocol if it respects the seman-
tics of the protocol. A useful criterion when considering conformance is the satisfaction
of commitments. Our definition of conformance supports commitments, but it is more
general.

The distinction between conformance and compliance is important: an agent’s de-
sign may conform, but its behavior may not comply. This may be not only because of
the agent’s failure or unreliable messaging (which do not concern us here), but also be-
cause an agent’s design may preclude successful interoperation with its peers. In other
words, even though an agent is individually conformant, it may not be able to generate
compliant computations because of the other agents with whom it interacts, apparently
according to the same protocol. Interoperability is distinct from conformance; interop-
erability is strictly with respect to other agents, whereas conformance is with respect to
a protocol.

1.2 Coverage

A protocol may offer a number of alternative execution paths. Some of those paths may
be impossible for an agent who deviates from the protocol. Such a reduction in possi-
ble paths may be viewed as a reduction in the capabilities of an agent. Conversely, the
agent’s design may make it possible to interact along paths unforeseen in the protocol.
Such an addition may be viewed as an increase in the capabilities of an agent. Infor-
mally, we say an agent covers a protocol if it capable of taking any of the paths in the
protocol.

This notion of coverage is an important one: if an agent covers a protocol it would
appear to be at least as flexible as the protocol. That is, the agent can handle whatever the
protocol can “throw” at it. Moreover, in some settings it may be institutionally required
that an agent cover a protocol. For example, a tax official must report discrepancies in
reviewed filings to the main office; the official cannot ignore them.



1.3 Contributions and Organization

Our contributions include (1) an account of conformance and coverage based on a se-
mantics for protocols suitable for open systems; (2) showing how conformance, cover-
age, and interoperability are orthogonal concerns; and (3) establishing that in order to
only produce compliant interactions, one has to consider both an agent’s conformance
with the protocol, and its interoperability with other agents.

Section 2 presents the representation of protocols as transition systems. Section 3
discusses the way in which an agent may deviate from protocol. Section 4 defines con-
formance and coverage. Section 5 discusses the interoperability of agents. Section 6
shows that conformance, coverage, and interoperability are orthogonal; it also discusses
the relevant literature.

2 Protocols

We represent protocols as transition systems; the transition systems are similar to those
described byC+ specifications [5]. Thesignatureof a transition system is the setσ of
constants that occur in it. Hereσact andσfl represent the sets of actions and fluents,
respectively. Each constantc is assigned a nonempty finite domainDom(c)of symbols.
An interpretationof σ is an assignmentc = v for eachc∈ σ wherev∈ Dom(c).

Informally, a transition system is a graph with states as vertices and actions as edges.
A states is a particular interpretation ofσfl, the set of fluents; a transition is a triple
〈s, e, s′〉 wheres ands′ are states, ande is an interpretation ofσact, the set of actions.
In addition, the initial and final states are marked.

Definition 1. A transition system is a〈σfl, σact, S, s0, F, δ〉, whereσfl is the set of
fluents,σact is the set of actions,S is the set of states such thatS ⊆ 2σfl

, s0 ∈ S is an
initial state,F ⊆ S is the set of final states,δ ⊆ S × E × S is the set of transitions,
whereE ⊆ 2σact

.

Figure 1 shows the transition system of a purchase protocol. The protocol has two
roles:merchant(mer) andcustomer(cus) engaging in the steps below:

1. The customer sends arequestfor quotes to the merchant.
2. The merchant responds either by sending anoffer for the goods for which the cus-

tomer requested a quote, or by indicating the nonavailability of requested goods in
which case the protocol ends. By sending an offer, the merchant creates the con-
ditional commitmentCC(mer, cus, aprice, anitem) meaning that if the customer
pays pricea price, then the merchant will send the goodsan item.

3. The customer can respond to the offer by either sending anaccept, or areject. Ac-
cepting the quote creates a conditional commitmentCC(cus, mer, anitem, aprice),
meaning that if the merchant sends the goods, then the customer will pay. If the cus-
tomer sends areject, the protocol ends.

4. If the customer sends apayment to the merchant, thenCC(cus, mer, anitem,
a price) is discharged andCC(mer, cus, aprice, anitem) is reduced toC(mer, cus,
an item) meaning that the merchant is now committed to sending the goods. But



S0

S1

S4

S3

S2

sendRequest(cus,mer,an_item)

sendOffer(mer,cus,an_item,a_price)

sendAccept(cus,mer,an_item,a_price)

sendGoods(mer,cus,an_item,a_price)

S5

6S

sendGoods(mer,cus,an_item,a_price)sendPayment(cus,mer,an_item,a_price)

CC(cus,mer,an_item,a_price)
CC(mer,cus,a_price,an_item)

CC(mer,cus,an_item,a_price)

 C(cus,mer,a_price)

sendReject(cus,mer,an_item)

sendPayment(cus,mer,an_item,a_price)

C(mer,cus,an_item)

7S

S8

sendNoOffer(mer,cus,an_item)

Fig. 1. A purchase protocol

if the merchant sendsan item to the customer, thenCC(mer, cus, aprice,anitem)
is discharged andCC(cus, mer, anitem, aprice) is reduced toC(cus, mer, aprice)
meaning that the customer is now committed to paying for the goods.

5. If the customer has paid in the previous step, then the merchant sends the goods,
thereby discharging its commitment. But if the merchant has sent the goods in
the previous step, then the customer sends the payment, thereby discharging its
commitment. In either case, no commitments or conditional commitments hold in
the resulting state, which is a final state of the protocol.

Table 1 shows the interpretation of states in the transition system. An action starting
with ‘send’ represents a single message exchange between roles with thesenderrole
andreceiverrole as the first and second arguments, respectively. The fluentsinitial and
final mark the start state and the final states respectively.

We now introduce some definitions related to transition systems.

Definition 2. A path in a transition system is a series of transitions〈s0, e0, s1〉,〈s1, e1, s2〉,
. . .,〈sf−1, ef−1, sf 〉 such thats0 is the initial state, andsf is a final state.

A path may be abbreviated as〈s0, e0, s1, e1, . . . , ef−1, sf 〉. Given a path
ρ = 〈s0, e0, s1, . . . , si, ei, . . . , ef−1, sf 〉, we sayei ∈ ρ (0 ≤ i < f ), andsi ∈ ρ
(0 ≤ i ≤ f ).

We restrict our attention to two-party protocols. All the actions performed by the
agents are communications. We further assume about the transition system of any pro-
tocol or agent that (1) only one action is performed along any transition; (2) in any
transition〈s, e, s′〉, s 6≡ s′; (3) there exist no transitions〈s, e, s′〉 and〈s, e′, s′〉 such
that e ≡ e′ (in other words, no two distinct actions cause a transition into the same
destination state from the same origin state); (4) the transition system is deterministic;
and (5) along any path in the transition system, an action is performed at most once.

Definition 3. A run in a transition system is a series of states〈s0, s1, . . . , sf 〉 such that
there exists a path〈s0, e0, s1, e1, . . . , ef−1, sf 〉 in the transition system.



State Fluents

s0 initial
s1 request(cus, mer, anitem)
s2 request(cus, mer, anitem), offer(mer, cus, anitem, aprice),

CC(cus, mer, anitem, aprice)
s3 request(cus, mer, anitem), offer(mer, cus, anitem, aprice),

accept(cus, mer, anitem, aprice), CC(cus, mer, anitem, aprice),
CC(mer, cus, aprice, anitem)

s4 request(cus, mer, anitem), offer(mer, cus, anitem, aprice),
accept(cus, mer, anitem, aprice), goods(mer, cus, anitem, aprice),
C(cus, mer, aprice)

s5 request(cus, mer, anitem), offer(mer, cus, anitem, aprice),
accept(cus, mer, anitem, aprice), pay(cus, mer, anitem, aprice),
C(mer, cus, anitem)

s6 request(cus, mer, anitem), offer(mer, cus, anitem, aprice),
accept(cus, mer, anitem, aprice), goods(mer, cus, anitem, aprice),
pay(cus, mer, anitem, aprice), final

s7 request(cus, mer, anitem), offer(mer, cus, anitem, aprice),
reject(cus, mer, anitem, aprice), final

s8 request(cus, mer, anitem), no offer(mer, cus, anitem), final
Table 1.States in Figure 1

For example, the protocol of Figure 1 has the runs:〈s0, s1, s8〉, 〈s0, s1, s2, s7〉,
〈s0, s1, s2, s3, s4, s6〉, and〈s0, s1, s2, s3, s5, s6〉. Note that given the above restrictions,
each run maps to a unique path and vice versa.

Definition 4. The t-span[T ] of a transition systemT is the set of paths inT .

Notice that t-span is thus defined for protocols, role skeletons, and agents.
For example,{〈s0, s1, s2, s7〉, 〈s0, s1, s8〉, 〈s0, s1, s2, s3, s4, s6〉, 〈s0, s1, s2, s3, s5, s6〉}

is the t-span of the purchase protocol of Figure 1.

3 Deviating from Protocol

A role skeleton is a projection of a protocol onto a particular role; it is the transition
system of the role. Figure 2 shows the customer skeleton. A customer’s policies are
combined with the customer role to create a new transition system representing the
customer agent. Saying an agent is conformant with a protocol is the same as saying it
is conformant with the role it adopts in the protocol; the same holds for coverage. Also
note that if the transition system of an agent is identical to the skeleton of the role it
adopts, we shall say that the agentfollowsthe role.

The policies that go into designing an agent may be such that it follows a protocol.
Or, they may be such that the agent encodes deviations from the protocol. Below, we
list some common kinds of deviations.

Narrowing. The t-span of an agent is a proper subset of the t-span of the role skeleton
it adopts: a typical reason for this would be to simplify its implementation.



S0

S1

S4

S3

S2

sendRequest(mer,an_item)

recvOffer(mer,an_item,a_price)

sendAccept(mer,an_item,a_price)

recvGoods(mer,an_item,a_price)

S5

6S
recvGoods(mer,an_item,a_price)sendPayment(mer,an_item,a_price)

7S
sendReject(mer,an_item)

sendPayment(mer,an_item,a_price)

8S

recvNoOffer(mer,an_item)

Fig. 2. Customer role skeleton

Example 1.As shown in the agent’s transition system in Figure 3, the customer re-
quires the goods to arrive before it sends the payment. Essentially, the customer has
removed a run from the role skeleton, namely, the run in which payment happens
before the delivery of goods.

S0

S1

S4

S3

S2

sendRequest(mer,an_item)

recvOffer(mer,an_item,a_price)

sendAccept(mer,an_item,a_price)

recvGoods(mer,an_item,a_price)

6S
sendPayment(mer,an_item,a_price)

7S
sendReject(mer,an_item)

8S

recvNoOffer(mer,an_item)

Fig. 3. Customer who sends payment only after receiving goods

Broadening. The t-span of the role skeleton is a proper subset of the t-span of the
agent that adopts that role: a typical reason for this would be to handle scenarios
not encoded in the protocol.

Example 2.The customer agent sends a reminder to the merchant about its com-
mitment to send goods. Thus, in addition to the original runs, the customer agent



includes the run in which it sends a reminder. For the sake of brevity, Figure 4 only
shows the additional run; the remaining runs are as in Figure 2.

S0

S

S"4

S3

S2

sendRequest(mer,an_item)

recvOffer(mer,an_item,a_price)

sendAccept(mer,an_item,a_price)

recvGoods(mer,an_item,a_price)

6S" sendPayment(mer,an_item,a_price)

sendReminder(mer,an_item,a_price)S 9

1

Fig. 4. The run in which customer sends a reminder

Lengthening. The t-span of an agent is similar to that of the role skeleton except that
some runs in the t-span of the agent are longer than the corresponding runs in the
role skeleton: the reason is that additional actions happen along the path corre-
sponding to the run.

Example 3.If we replace the run〈s0, s1, s2, s3, s4, s6〉 in the customer role skele-
ton (shown in Figure 2) with the run in which a reminder is sent (shown in Figure 4),
then it represents an example of lengthening.

Example 4 illustrates the shortening of runs.

Example 4.Consider the customer of Figure 5. After receiving goods, the customer
does not send payment for them. States4 is a final state for this customer.

Gating. An agent may broaden or lengthen a protocol in such a way that it expects to
receive additional messages from its partners in order to proceed.

Example 5.The customer agent may ask for warranty information upon receiving
the goods, in which case it expects the merchant to send the information before it
makes the payment. The customer is thus “gated” upon the receipt of warranty in-
formation. Figure 6 shows the additional run; the remaining runs are as in Figure 2.

Note that combinations of the above deviations are also possible. Example 5, for
instance, represents a case of both gating and broadening. It is also possible that an
agent represents narrowing as in Example 1, and at the same time represents broadening
and gating as in Example 5.



S0

S1

S4

S3

S2

sendRequest(mer,an_item)

recvOffer(mer,an_item,a_price)

sendAccept(mer,an_item,a_price)

recvGoods(mer,an_item,a_price)

S5

6S
recvGoods(mer,an_item,a_price)

7S
sendReject(mer,an_item)

sendPayment(mer,an_item,a_price)

8S

recvNoOffer(mer,an_item)

Fig. 5. Customer who does not pay for received goods

4 Conformance and Coverage

What can we say about the conformance of the customer agent in each of the above
examples? Clearly, no customer is following the purchase protocol. Then, are they are
all nonconformant? If we look at the agents from the point of view of commitments,
it sheds some light on their conformance. No commitments remain unsatisfied in any
run in the customers in Examples 1, 2, 3, and 5. We would expect that these customers
are determined conformant to their roles. The customer of Example 4, however, has a
pending commitment (to pay) in its final states4. Consequently, this customer should
be determined to be nonconformant.

Similarly, what can we say about the coverage of the customer agent in each of the
above examples? Based on the discussion of coverage in Section 1, we would expect the
customers in Examples 2 and 5 to be determined to be covering the protocol, whereas
the customers in Examples 1 and 4 to be determined to be noncovering. The customer
of Example 3 is more interesting: it could be identified as noncovering since one of the
runs of the protocol is missing. However, this run has been replaced by a run that sends
a reminder: the replacement run is quite similar to the missing run. Sending a reminder
does not affect the commitments. Hence, we would expect the customer in Example 3
to be covering.

Our definitions of conformance and coverage rely on the notion of run subsump-
tion [6]. In the following, we briefly discuss run subsumption, then we formally define
conformance and coverage.

We introducestate similarityto compare states. A state-similarity functionf maps a
state to a set of states, i.e.,f : S → 2S. Fromf , we induce a binary relation≈f⊆ S×S,
where≈f= {(s, f(s)) : s ∈ S}. We requiref to be such that≈f is an equivalence
relation. For example, commitments could be used to compare states. Two states are
commitment similarif the same set of commitments hold in them.

Let≺τ be a temporal ordering relation on states in a runτ . That is,s ≺τ s′ means
thats occurs befores′ in τ .



S0

S1

sendRequest(mer,an_item)

recvOffer(mer,an_item,a_price)

S4

S
3

S2 sendAccept(mer,an_item,a_price)

recvGoods(mer,an_item,a_price)

6S"

sendPayment(mer,an_item,a_price)

S
10

sendInquiry(mer,an_item,a_price,warranty)

S
11

recvInfo(mer,an_item,a_price,warranty)

Fig. 6. The run in which the customer asks for warranty information

Definition 5. A run τj subsumesτi under a state-similarity functionf , denoted by
τj Àf τi if for every statesi that occurs inτi, there exists a statesj that occurs inτj

such thatsj ≈f si, and for alls′i that occur inτi, if si ≺τi s′i then there existss′j that
occurs inτj such thatsj ≺τj s′j ands′j ≈f s′i.

Run subsumption is reflexive, transitive, and antisymmetric up to state similarity
[6]. Longer runs subsume shorter runs, provided they have similar states in the same
temporal order.

The closure of a protocol is a span that is closed under run subsumption. That is,
if a run is in the closure, then all the runs that subsume it (under some state-similarity
function) are also in the closure. Closures are unique (under a particular state-similarity
function), and provide a firm basis for comparing protocols; a different closure may be
obtained by changing the state-similarity function. For the purposes of this paper, we
will use the commitment-similarity function.

Definition 6. The closure of a protocolP under a state-similarity functionf is given
by [[P ]]f = {τ | ∀τ ′ ∈ [P ] : τ Àf τ ′}.
Definition 7. An agentα is conformant with a protocolP under a state-similarity func-
tion f if [α] ⊆ [[P ]]f .

As expected, Definition 7 renders the customers in Examples 1, 2, 3 and 5 con-
formant with the protocol, and the customer in Example 4 nonconformant with the
protocol.

Definition 8. An agentα covers a protocolP under a state-similarity functionf , if for
eachτ ∈ [P ], there exists aτ ′ ∈ [α] such thatτ ′ Àf τ .

As expected, Definition 8 renders the customers in Examples 2, 3 and 5 as covering
the protocol, and the customers in Examples 1 and 4 as noncovering.



5 Interoperability

Section 4 defines the conformance of an agent with respect to its role skeleton. A con-
formant agent respects the semantics of the protocol: it encodes only runs in the closure
of the protocol. However, just because an agent is conformant does not mean it can
always successfully interoperate with other conformant agents. Let us consider the ex-
amples below involving conformant customer and merchant agents; the merchant, in
particular, follows its role in the protocol.

It is worth considering the idea of how protocols can be operationally interpreted.
An agent may ignore messages that are not in its vocabulary (i.e., do not occur in its
t-span). Or an agent may ignore all messages that are unexpected, specifically including
those that are in the vocabulary but arrive out of order.

Example 6.The customer sends reminders as shown in Figure 4. The reminders are not
in the t-span of the protocol, but are in its closure. Thus they are allowed but may not
be implemented by agents playing other roles. Such reminders do not cause a problem
in interoperation: the merchant cannot handle reminders, but can ignore them.

Example 6 is benign in that even though the customer does something the merchant
does not expect, both can execute the protocol to completion. Therefore, we expect
these agents to be rendered interoperable.

Example 7.The customer sends payment only upon receipt of goods (as in Figure 3)
from a merchant. Even though, the customer and merchant are individually conformant
with their respective roles, they exists the possibility of a deadlock: the customer waits
for the merchant to send goods first, and the merchant waits for the customer to send
payment first.

Because of the possibility of a deadlock, we expect the agents in Example 7 to be
rendered noninteroperable.

Example 8.The customer agent asks for warranty according to the run shown in Fig-
ure 6. The merchant cannot fulfill the customer’s warranty information request: the
merchant simply ignores the request. And the customer would not send payment until
it receives the warranty information.

We expect the agents in Example 8 to be rendered noninteroperable. In this example,
noninteroperability causes a violation of a customer’s commitment to pay.

5.1 Verifying Interoperability

The interoperability of two agents depends upon the computations that they can jointly
generate. The agents may act one by one or in true concurrency. Definition 9 captures
the above intuitions for a product transition system of a pair of agents.

Definition 9. Given two agentsα1 := 〈σfl
1 , σact

1 , S1, s01 , F1, δ1〉 and
α2 := 〈σfl

2 , σact
2 , S2, s02 , F2, δ2〉, the product transition systemα× = α1×α2 is given

by α× := 〈σfl
× , σact

× , S×, s0× , F×, δ×〉 where,



– σfl
× = σfl

1 ∪ σfl
2

– σact
× = σact

1 ∪ σact
2

– S× = S1 × S2

– s0× = (s01 , s02)
– F× = F1 × F2

– δ× ⊆ S××E××S× whereE ⊆ 2σact
× such that〈s, e, s′〉 ∈ δ×, wheres = s1×s2

ands′ = s′1 × s′2, (s1, s
′
1 ∈ S1), (s2, s

′
2 ∈ S2), if and only if

• 〈s1, e, s
′
1〉 ∈ δ1, or

• 〈s2, e, s
′
2〉 ∈ δ2, or

• e = (e1, e2) and〈s1, e1, s
′
1〉 ∈ δ1 and〈s2, e2, s

′
2〉 ∈ δ2.

The technical motivation behind Definition 9 is that it accommodates the transitions
that would globally result as the agents enact the given protocol. When the agents act
one by one, the transitions are labeled with an action from their respectiveσact. When
the agents act concurrently, the transitions are labeled by a pair of actions, one from
each agent.

Interoperability can become challenging in light of the fact that communication
between agents is asynchronous. The essence of these challenges is that an agent might
block indefinitely upon doing a receive. We verify the interoperability of agents by
analyzing their product transition system for the absence of such problems.

The sending of a messagem by an agentα is represented bysend(α,m). Similarly,
receiving a message is represented byrecv(α,m). When the identity of the agent does
not matter, we write onlysend(m) andrecv(m) instead. Belowx, y, . . . range over
messagesm1,m2, . . ., andα, β, . . . are agents.

Definition 10. An action a strictly precedes an actionb on a pathρ in the product
transition system, denoted bya ≺ρ b, if and only if a ∈ ei and b ∈ ej such that
ei, ej ∈ ρ andi < k. If we change the index condition toi ≤ k, we saya ¹ρ b.

Next, we identify all the pathological paths in the product, i.e., those that can be
never be realized during execution. A kind of pathological path is one whose execution
is impossible under considerations of asynchrony, for instance, a path where the receipt
of a message happens precedes its sending. Another kind of pathological path can be
identified when we associate angelic determinism with attempted receipts of messages.
The idea is that if an actionsend(α, x) happens, and it it is possible to execute one of
eitherrecv(β, x) or recv(β, y) (x 6= y), thenrecv(β, x) is executed. Definition 11 al-
lows for angelic nondeterminism on receives; specifically, it identifies paths that appear
“bad” as they appear to block on a receive, but are “saved” by angelic nondeterminism.

Definition 11. A pathρ = 〈. . . , si, ei, sj , . . .〉 is said to be locally matched by a path
ρ′ = 〈. . . , si, e

′
i, sk, . . .〉 in the product transition system if and only if

– recv(α, x) ∈ ei andsend(β, x) never occurs onρ, and
– recv(α, y) ∈ e′i andsend(β, y) occurs onρ′.

Definition 12 defines a product transition system that contains only paths that can
be realized (paths which block are considered realizable).



Definition 12. A causal product transition system based on two agents is a transition
system whose set of paths is a subset of the paths of the product transition system of the
two agents such that it contains no pathρ = 〈. . . , si, ei, si+1, . . .〉 that satisfies one of
the conditions below:

– for somei, ei = recv(x) or ei = (recv(x), send(y)), such thatrecv(x) ≺ρ

send(x), or
– it is locally matched.

Definition 13. A pathρ = 〈. . . , si, ei, si+1, . . .〉 in the product transition system is a
deadlock path if and only ifei = (recv(x), recv(y)) andrecv(x) ≺ρ send(x) and
recv(y) ≺ρ send(y).

Note that Definition 12 does not considerei = (recv(x), recv(y)) as they might be
the indication of deadlocks. However, it might remove other paths that are an indica-
tion of deadlocks, for example,ρ whererecv(α, x) ≺ρ recv(β, y) andrecv(α, x) ≺ρ

send(β, x) andrecv(β, y) ≺ρ send(α, y). However, from the construction of the prod-
uct, if there is such a pathρ in the product, there must be a corresponding deadlock path
ρ′. Hence,ρ may be removed without compromising our ability to detect deadlocks.

Definition 14. A pathρ = 〈. . . , si, ei, si+1, . . .〉 is a blocking path if and only if for
somerecv(x) ∈ ei, there occurs nosend(x) on the path.

Definition 15. A pathρ = 〈. . . , si, ei, si+1, . . .〉 is an out-of-order path if and only if
recv(α, x) ¹ρ recv(α, y) andsend(β, y) ¹ρ send(β, x).

Definition 16. Two agents are interoperable if and only if in the causal product of their
transition systems

– there exists no deadlock path, and
– there exists no blocking path, and
– there exists no out-of-order path.

As expected, Definition 16 renders the agents in Example 6 interoperable. Also as
expected, it renders the agents in Examples 7 and 8 as noninteroperable; it also renders
the customer in Example 4 noninteroperable with a merchant that follows protocol. In
fact, if the customer and merchant each follows their roles, they will be rendered nonin-
teroperable (and rightly so) because of the nonlocal choice between sending goods and
sending payment. It may be argued that a protocol with nonlocal choice is inherently
incomplete and, therefore, may be considered as an abstract protocol. For such pro-
tocols further negotiation is necessary between the agents or their designers to ensure
interoperability.

6 Discussion

We have defined conformance and coverage in a way that respects the semantics of
the protocol. Although we have used a commitment-based semantics, the semantics
primarily depend on the state-similarity function. Our definitions of conformance and



coverage allow agents flexibility in their interactions, which is crucial in open settings.
By contrast, interoperability is strictly about an agent receiving a message it expects to
receive. In that manner, interoperability is less semantic, and imposes strict restrictions
on agents to interoperate.

6.1 Proving Orthogonality

We prove the orthogonality of conformance, coverage, and interoperability with the
help of examples. We have already seen that agents that follow the customer and mer-
chant roles respectively in the purchase protocol of Figure 1 are not interoperable. Now
we consider a variant of the purchase protocol which does not have the pay-before-
goods path. Specifically, let’s consider the protocol of Figure 1, but without the run
〈s0, s1, s2, s3, s5, s6〉. Let this variant beP ′. Figure 3 would then depict the customer
role skeleton; the merchant’s role skeleton would be symmetric except that the sends
and receives would be swapped. Table 2 considers the conformance and coverage of
different merchant agents with respect toP ′, and the agents’ interoperability with a
customer that follows the customer role. (Figure 7 shows the paths that the table refers
to.) It is clear from the table that the conformance, coverage, and interoperability are
orthogonal concerns, because examples of all possible combinations of their truth and
falsity exist.

S

S0

12

sendGoods(cus,an_item,a_price)

S0

S
13

sendGoods(cus,an_item, a_price)

S
14

recvPayment(cus,an_item,a_price)

S4

S
6

recvPayment(cus,an_item, a_price)

S
15

recvFeedback(cus,an_item,a_price)

"Free goods" path "Expecting payment for unordered goods" path

"Feedback" path

Fig. 7. Some runs used in Table 2

6.2 Literature

Baldoni et al. [2] and Endrisset al. [4] present alternative formalizations of confor-
mance and interoperability. Both formalizations, however, violate the orthogonality of



Merchant agents C V X

Only has path expecting payment for unordered goods × × ×
Has additional free goods path and no reject path × × X
Has additional path expecting payment for unordered goods× X ×
Has additional free goods path × X X
Has the goods-pay path gated on feedback and no reject pathX × ×
Has no reject path X × X
Has the goods-pay path gated on feedback X X ×
Follows role X X X

Table 2.Orthogonality of conformance (C), coverage (V), and interoperability (X)

conformance and interoperability with the result that many agents that should be consid-
ered conformant in a practical setting—and are determined to be conformant according
to our formalization—are rendered nonconformant in theirs. For example, they would
both determine the customer who sends reminders to be nonconformant. Agents that are
conformant by our definition, but gate on some message not in the role they are playing,
seem to present a problem. Such agents would not be interoperable with agents that are
conformant but do not send the message being gated upon. Importantly, such agents
could potentially violate their commitments because of the gating; in other words, they
could potentially produce noncompliant executions. For example, the customer in Ex-
ample 5 would violate its commitment to pay if it fails to receive the warranty informa-
tion.

Deeming such an agent nonconformant would, however, be unduly restrictive. The
noninteroperability of such an agent with other agents could be detected, and special
measures taken to ensure that an agent does not blindly enter such interactions. Specif-
ically, such measures include developing agents who can negotiate with others about
the possibilities of deviating from their chosen roles. Even if the agents involved can-
not negotiate—then the agents are effectively noninteroperable—this situation is more
acceptable than potentially violating a commitment. Our formalization of conformance
and interoperability supports such scenarios.

Approaches based on verifying compliance at runtime [1, 7] are important in the
context of open systems since agents may behave in unpredictable ways; also it is neces-
sary to have independent arbiters in case of disputes involving agents. Such approaches
are complementary to this work.

6.3 Directions

A possible direction is to extend this work to more general protocols and agents: specif-
ically, multiparty protocols and agents with infinite runs. Also, this work may be tied
together with work on protocol transformations [3]: it would be interesting to be able
to determine which transformers, when applied to a protocol, would preserve confor-
mance, coverage, and interoperability.



References

1. M. Alberti, D. Daolio, P. Torroni, M. Gavanelli, E. Lamma, and P. Mello. Specification and
verification of agent interaction protocols in a logic-based system. InProceedings of the 19th
ACM Symposium on Applied Computing (SAC 2004), pages 72–78, 2004.

2. M. Baldoni, C. Baroglio, A. Martelli, and V. Patti. Verification of protocol conformance and
agent interoperability. In6th International Workshop on Computational Logic in Multi-Agent
Systems (CLIMA VI), pages 265–283, 2005.

3. A. K. Chopra and M. P. Singh. Contextualization of commitment protocols. InProceedings
of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems,
2006.

4. U. Endriss, N. Maudet, F. Sadri, and F. Toni. Protocol conformance for logic-based agents.
In Proceedings of the 18th International Joint Conference on Artificial Intelligence, pages
679–684, 2003.

5. E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner. Nonmonotonic causal theories.
Artificial Intelligence, 153(1-2):49–104, 2004.

6. A. U. Mallya and M. P. Singh. An algebra for commitment protocols.Journal of Autonomous
Agents and Multiagent Systems special issue on Agent Communication (JAAMAS), Apr 2006.

7. M. Venkatraman and M. P. Singh. Verifying compliance with commitment protocols: En-
abling open Web-based multiagent systems.Journal of Autonomous Agents and Multi-Agent
Systems, 2(3):217–236, Sept. 1999.


