
agents for
process coherence

in VirtualEnterprises

Anuj K. Jain, Manuel Aparicio IV,

and Munindar P. Singh

The agent metaphor, long in study in artificial
intelligence, has recently become popular in main-
stream computing, largely due to its suitability for
open environments. Agents can be thought of as
active objects with some special properties tailored to
open environments. For our purposes, the key aspects
of agents are their autonomy and abilities to perceive,

reason, and act in their environments, as well as to
socially interact and communicate with other agents
[7]. When agents interact with one another they form
a multiagent system. As part of a multiagent system,
agents can capture and apply the semantic constraints
among heterogeneous components in order to enact
distributed workflows.

62 March 1999/Vol. 42, No. 3 COMMUNICATIONS OF THE ACM

At first glance, autonomy is a mixed blessing.

O
pen environments such as the Internet—and even

corporate intranets—enable a large number of interested par-

ties to use and enhance vast quantities of information.

These environments support modern applications, such

as manufacturing, virtual enterprises, and ubiquitous

information access, which involve a number of information

sources and component activities. However, without principled

techniques to coordinate the various activities, any implementation would yield disjointed and

error-prone behavior, while requiring excessive effort to build and maintain.

Autonomy is critical in open environments. Con-
sider a manufacturing scenario requiring supply-chain
coordination. It is natural to model independent com-
panies in a supply chain as represented by autonomous
agents. But, at first sight, autonomy is a mixed bless-
ing—if the companies behaved arbitrarily, the supply
chain would break. Consequently, our main technical
challenge is how to manage autonomy, that is, how to
maximize freedom without letting the system devolve
into chaos. We propose that the main basis for man-
aging autonomy lies in the notion of commitments. A
flexible formulation of commitments can provide a
natural means through which autonomous agents may
voluntarily constrain their behavior. By flexible, we
mean that it should be possi-
ble to cancel or otherwise
modify the commitments.
Consider a situation in which
a purchaser is trying to obtain
some parts from a vendor. We
would like the vendor to com-
mit to delivering the correct
parts of the right quality to the
purchaser. However, it is
important that the supply
chain be able to survive excep-
tions such as when the manu-
facturing plant goes down in
an earthquake, or when the
purchaser decides that it needs
the parts to be of a lower error
tolerance than initially
ordered.

Information cannot be
understood independently of
the processes that create or
consume it. Flexibility of
behavior and the ability to
recover from failures require an approach that is sen-
sitive to how those processes interact. We show that
when agents are associated with each independent
process, our flexible notion of commitments can cap-
ture the desired interactions among those processes.

Spheres of Commitment
A multiagent system can be viewed as a sphere of
commitment, which encapsulates the promises and
obligations the agents may have toward each other.
Spheres of commitment generalize the traditional
ideas of information management so as to overcome
their historical weaknesses. Information manage-
ment involves three main concerns, which must be
addressed by any approach for constructing infor-
mation-based solutions:

• Data Integrity and Flow: Correctness of data and
how it is conveyed from one party to another.

• Organizational Structure: How the various parties
relate to each other.

• Autonomy: How the autonomy of the different
parties is preserved.

Table 1 summarizes the major abstractions for pro-
gramming such composite activities. Database trans-
actions are the most rigorous, and require that only
correct data ever be visible [6]. This requirement
entails that outputs be released only when a transac-
tion is completed. Thus, the producer of the data is
restricted, but the consumer has full autonomy with

respect to that data—it may
use the data as it pleases.
Further, the fact that outputs
are released upon termina-
tion means that the transac-
tions must terminate and
may not exchange results
with other transactions.
Spheres of control release
their results early, but may
undo and redo the consum-
ing computations if the
results prove to be invalid—
thus, the consumers have no
autonomy [2]. Extended
transactions release results
liberally, but restrict the
autonomy of their compo-
nents by requiring compen-
sating subtransactions to
undo the effects of data that
are invalidated [3]. Work-
flows ignore the integrity
aspects, but capture the data

flow required by specific applications [4]. They allow
autonomy, but are not flexible. In general, workflow
tools can capture routine processes, but the specifica-
tions become unmanageably complex—thus use-
less—when too many contingencies and exception
conditions are specified. Further, workflow specifica-
tions are static; thus, defining workflows can be an
onerous task. By contrast, commitments—such as
those between manufacturers—are often dynamically
formed and enacted.

Our approach focuses on how the different com-
ponents achieve coherence in their interactions. The
word “coherence” means a systematic or logical inte-
gration of diverse elements. Data integrity is a require-
ment that must be met while pursuing integration of
heterogeneous systems. Otherwise, a multiagent-

COMMUNICATIONS OF THE ACM March 1999/Vol. 42, No. 3 63

64 March 1999/Vol. 42, No. 3 COMMUNICATIONS OF THE ACM

based information system will be nothing more than
a specialized workflow system, which focuses only on
control and data flow aspects and disregards integrity.
In many practical situations, correctness requirements
cannot be defined without reference to processes. The
same data state may correspond to multiple histories
of actions and interactions among the participants,
and only some of those histories may be deemed
acceptable. For example, a delayed order is undesir-
able in a supply chain, but not if the customer has
granted an extension to obtain a higher quality out-
come. We refer to the felicity of the (desired) interac-
tions as process coherence. Our solution is to use a
flexible formulation of commitments, which provides
a high-level approach to achieving coherence in the
processes executed by different agents. Control and
data flow are managed in an organizationally felicitous
manner to achieve coherence; the “right” kind of
integrity is merely a consequence of coherence.

A commitment is a relationship between a debtor, a
creditor, a context, and a proposition. The debtor
owes it to the creditor to make the proposition true;
the context serves as a witness and as the adjudicator
of disputes. As you would expect, there is a close rela-
tionship between commitments and legal reasoning;
this relationship is explored in [9]. A sphere of com-
mitment (SoCom) is viewed conceptually as a scope
within which a commitment applies; a SoCom is a
multiagent system that the agents constitute, and
which serves as the context for commitments among
those agents. A SoCom is typically associated with a
set of resources and authorities over them. A SoCom
is modeled using a representative agent, which
behaves as a group leader.

The agents can represent nonterminating compu-
tations. Their results, therefore, must be released pre-
maturely, even if only to be invalidated later. As
described here, recovery is effected by having the
agents possibly adjust, but always satisfy, their com-
mitments in the face of exception conditions. Typi-
cally, the agents communicate with other agents in
order to create or adjust their commitments. The
recipients autonomously process the communica-
tions. Consequently, by employing flexible commit-

ments, we can achieve recovery
without violating the autonomy
of the consumers. Our approach
applies recursively in that each
SoCom can itself be treated as an
agent and participate in larger
SoComs. However, we will not
emphasize the nesting of SoComs
in this article.

Because flexibility is critical to our approach, we
must allow the commitments to be manipulated in
various ways, or even canceled. Consequently, we
define the following major actions or operations on
commitments:

• Create: instantiate, performed by debtor or
context (by putting the debtor in a certain role).

• Discharge: satisfy, performed by the debtor (for
example, through either physical actions or
communication).

• Cancel: give up, performed by the debtor.
• Delegate: make another agent the debtor,

performed by debtor or context.
• Assign: make another agent the creditor,

performed by creditor or context.
• Release: eliminate entirely, performed by creditor

or context.

The preceding set of operations is complete in the
sense that it covers the possible manipulations to the
different components of a commitment. By contrast,
traditional commitments, once created, can only be
discharged; notably, the cancel operation is not
allowed. Obviously, these operations, especially cancel,
cannot be wantonly performed, because that would
undermine the very idea of a commitment. These
operations are, therefore, typically governed by meta-
commitments. The set of applicable metacommitments
effectively defines the structure of a multiagent system.

An abstract SoCom defines the structure of a
SoCom using roles, instead of actual agents. Each role
comes with a description of its requirements in terms
of resources, capabilities, and capacity. A resource is
instantiated with an information resource. A capabil-
ity is a functionality that any agent playing the role
may be expected to perform. The capacity corre-
sponds to the spare capacity an agent must have in
order to adopt the role. An abstract SoCom specifies
the commitments associated with a role—these are
commitments that agents playing that role are
expected to satisfy. An abstract SoCom may also spec-
ify some lower-level constraints on the interactions of
the agents, for example, whether an agent should ini-
tiate an interaction or wait for another agent to begin.

Traditional Transactions
Spheres of Control
Extended Transactions
Workflows
Spheres of Commitment

Fixed
Relaxed
Relaxed
None
Relaxed

Consumers
Producers
Both, limited
Both
Both, constrained

None
Rigid
Rigid
Relaxed
Flexible

Support Provided
(columns)

Technique (rows)

Integrity and
Data Flow Autonomy Organizational

Structure

Table 1. Computational abstractions summarized

A concrete SoCom is obtained by naming an abstract
SoCom, and binding agents to its roles. An agent may
adopt more than one role in an abstract SoCom, and
participate in more than one concrete SoCom con-
currently. In order to adopt a role, an agent must cer-
tify that it has the requisite resources and capabilities,
can spare the needed capacity, and that it is willing to
acquire all the commitments associated with that role.
Role adoption is the main way in which commit-
ments are created. The commitments associated with
a role are typically metacommitments. When the
agents interact, their metacommitments yield the
base-level commitments that the agents then attempt
to discharge. For example, a request for valves by an
agent may lead to the other agent committing to sup-
ply the requested number of valves. Each operation on
commitments may potentially engage one or more
metacommitments. For example, if the agreed-upon
model of valve is discontinued, and the vendor cannot
supply it, the vendor may commit to supplying a
superior model for the same price.

The SoCom manager holds the definitions of the
abstract SoComs, and supports their instantiation.
Agents must register with the SoCom manager to
inform it of their capabilities. They can browse the
abstract SoCom definitions and also inform the man-
ager of the roles (in specific abstract SoComs) that
they are willing to play. While carrying out some
application-specific task, such as creating a hose and
valve configuration, the agents may request the cre-
ation of a concrete SoCom. The SoCom manager
communicates with the other agents to determine
their suitability for a specified role. If an agent offers
or agrees to participate, the manager checks whether
it meets the requirements. When the concrete SoCom
is created, the agents in it can perform the capabilities
of their chosen roles. Upon binding to a role, an agent
adopts the commitments that go with that role. Thus,
an agent should not be given roles whose commit-
ments conflict. The agents then act according to the
commitments of all the roles they are playing.

Implementing our approach requires representing
and reasoning about commitments. Our approach
was prototyped using IBM’s Agent Builder Environ-
ment (ABE) [1], which provides an open architecture
in which additional functionalities can be easily
added. ABE includes a rule-based reasoning system;
knowledge is specified via sets of declarative rules and
facts. Our prototype enhances ABE with additional
functionality, so that copies of ABE, with suitable
knowledge, can function as different agents and com-
municate with each other (see sidebar). Our approach
also encapsulates spheres of commitments as well-
defined rules of behavior, and requires representing

commitments explicitly. However, in almost all cases
in which commitments are applied, there are already
corresponding manual routines in place and the spe-
cific commitments to be represented are stored any-
way, for example, in databases of pending orders or
bills that enterprises routinely maintain.

Applications in Manufacturing
Manufacturing is a touchstone application area for
any approach that deals with information manage-
ment in open environments. This is because modern
manufacturing is naturally distributed, involves a
large number of autonomous commercial entities
with a variety of heterogeneous information systems,
makes use of human decision making, faces the real-
ities of failure and exception in physical processes
and contractual arrangements, and yet requires that
the manufactured products meet design specifica-
tions and other quality requirements. Because they
were not sensitive to these constraints, previous
attempts at applying computing in manufacturing
have had only had limited success.

With recent advances in the computing and com-
munications infrastructure, there has been a resur-
gence of interest in manufacturing applications,
especially in those dealing with the coordination of
processes in different enterprises. Supply chains are
the materiel flows that are arranged among different
companies to accomplish a large manufacturing
process. Virtual enterprises are composed from several
companies, which enables them to make joint com-
mitments to their common customers. Although the
companies are involved in a tight relationship in order
to make joint commitments, they still retain their
autonomy. To address the application of advanced
computing in manufacturing, the Advanced Tech-
nologies Program of the U.S. National Institute of
Standards and Technology (NIST) is sponsoring is a
multiyear, multimillion dollar project called the
SMART project [11]. SMART is run by the National
Industrial Information Infrastructures Protocols
(NIIIP) consortium, which includes several comput-
ing and manufacturing companies. SMART’s contri-
butions include developing agent technology for
manufacturing execution systems (MES)—that is, the
“make-side” of supply chains [5]. Because the require-
ments for the control of proprietary processes and
other MES information correspond well with our
motivations, spheres of commitment apply naturally
in the SMART project.

Figure 1 shows a simplified supply chain from the
SMART project. Here Hot Air Bros. is an assembly
plant, which procures valves (from Valvano & Co.)
and hoses (from Hoosier Inc.), and assembles them

COMMUNICATIONS OF THE ACM March 1999/Vol. 42, No. 3 65

into parts for air conditioners. In order for the entire
system to operate efficiently, Hot Air must assemble
units according to a schedule, which dictates the

arrival of various parts from various vendors—these
are the commitments owed Hot Air—and dictate the
delivery of parts to others—these are the commit-

66 March 1999/Vol. 42, No. 3 COMMUNICATIONS OF THE ACM

Steel & Sons Brass Bros.

Hot Air Bros.

Company Item id Qu. Date Time
Valvano
Hoosier

valve a 20
40h12hose

Nov19
Nov19

11:00am
12:00pm

Company
AirCond

Unit# Doz Date Time
123 20 Nov29 5:00pm

Production

Input Quality

Quality
Assurance

Production

Input Quality

Quality
Assurance

In

Nov 5

Hoosier Inc.

Rubber Co.

Valvano & Co.

Production

Input Quality

Quality
Assurance

Send me 20
 valves of dia 21
 by Nov.19
 11:00am

 Send me 40
 hoses of dia 21
 by Nov.19
 12:00am

 Here
 they
are

 Here is the
payment

Here
 they
 are

You
 are
 late

Ok

Here is the
 payment minus
 a late fee

72

6

1

4
8

5
3

In

In
Company Material Qua Date Time
Brass Copper 1 ton Nov19 11:00am
Steel Steel 2 tons Nov 7 10:30am

Company v-id
20

Qua Date Time
Nov19 11:00amaHot Air

Company Material Qua Date Time
2:00pm8 tonsRubber Rubber

Company Qua Date Timeh-id
Hot Air H12 40 Nov19 12:00pm

Air Conditioning Co.

Figure 1. SoComs
in manufacturing

ments that Hot Air owes to its customers. For the
same reasons, the other participants are also creditors
and debtors of commitments. Each participant may
test the quality of the inputs, carry out a production
process, and assure the quality of its products. Further,
each participant monitors the events in its environ-
ment and communicates as necessary with its vendors
and customers about the commitments.

In the example given, each participant also has
some internal product information under its sole con-
trol. For instance, Valvano knows features of its valve
models, specifically, their input and output diameters;
Hoosier knows what diameter hoses it manufactures;
and, Hot Air knows what configurations of hoses and
valves it produces. For simplicity, we assume that the
different agents speak the same language with regard
to the products of their trade. This would be accom-
plished by using an ontology, that is, a representation
of knowledge about the chosen domain. We postulate
that Hot Air tracks how far the schedule has pro-
gressed in real time and in terms of tasks completed.
For each delivery received, Hot Air determines
whether it was on time, and evaluates whether it was
of acceptable quality. Whenever a delivery fails to

materialize on time and the delay causes some prob-
lems, Hot Air notifies the errant vendor and requests
their attention. For each exception, a human member
of the Hot Air organization may be notified—here,
for simplicity, the human is not shown. In general,
however, it is important to keep the human in the
loop, both for robustness and for the acceptance of the
technology in the manufacturing industry, which is
conservative in adoption of new technologies. If a
human is notified of a delay, then she is also notified
of any corrective actions taken.

In this example, Hot Air orders hoses and valves.
The hoses arrive, but the valves do not and Hot Air
sends a reminder to Valvano. Valvano delivers the
valves. Because the valves were late, Hot Air assesses a
late fee on the payment. However, Hot Air pays
Hoosier in full.

The example given presupposes the existence of the
appropriate SoComs between Hot Air and Valvano
and Hot Air and Hoosier. We now discuss how these
SoComs themselves came into existence. It all begins
with the SoCom manager, which records the abstract
SoComs that have been published with it. Figure 2
illustrates the interactions between Hot Air and Val-

COMMUNICATIONS OF THE ACM March 1999/Vol. 42, No. 3 67

Register me
as seller

Steel & Sons

Register me as buyer
and seller

Find me a
valve seller

2

3

5

Buyer Seller

Abstract SoCom #1
“on time”

Abstract SoCom #2
“cheap”

Buyer Seller

Abstract SoCom #3

Buyer Seller

SoCom Manager
Hoosier Inc.

Register me as
buyer and

seller

Register me as
buyer and

seller

Play Seller in

AbstractSoCom
#1?

Yes

Valvano & Co.Hot Air Bros.

8 9

Concrete
SoCom
created

4

6

7

“high quality”

= Roles

= Agents

Directory

Agent_id Role derived

1

Figure 2. Instantiation of a concrete SoCom

68 March 1999/Vol. 42, No. 3 COMMUNICATIONS OF THE ACM

Adopt role

Need to
initiate

Ask SoCom
manager

Participate

No

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Register

SoCom
manager suggests

a socom

Request
to create
SoCom

Process
request

Stop
Stop

(undefined)

Stop
(Failure)

Instantiate
and

announce

Receipt of a
request

Request to
register

Condition
evaluation

OK?

Find
candidates

Ask
candidates

All
say yes?

Agents decision making SoCom manager's decision making

Because our agents are autonomous, we must
ensure that the interactions among them do not vio-
late their independence. The most obvious autonomy-
preserving interactions are communications. Two
prominent agent communication languages (ACLs) are
the Knowledge Query and Manipulation Language
(KQML) [8] and the ACL of the Foundation for Intelli-
gent and Physical Agents (FIPA). The FIPA ACL is
rapidly spreading to replace KQML as the ACL of
choice, so we followed its syntax in our prototype.
Figure 4 shows an example message, with which the
assembler requests the vendor, in response to a
recent advertisement, to send it 20 valves of model
“a” at the unit price of $40. The air-conditioning
“ontology” is where the terms of the message content
are defined.

The messages among agents either explicitly refer
to a commitment—to create or manipulate it in some
way—or presuppose the existence of metacommit-
ments under which additional commitments are cre-
ated. For example, if Valvano had a metacommitment

(request
:sender
:receiver
:content
:ontology
:in-reply-to

)

Hot Air
Valvano
(send valves model-a 20 $40)
Air-Conditioning
Advertisement-37

Figure 4. Sample agent communication detailing a
message from Figure 1

Commitments and Communication

Figure 3. Interactions between agents and the SoCom manager

vano and the SoCom manager, leading up to the for-
mation of a concrete SoCom. Figure 2 shows three
abstract SoComs, all dealing with simple buying and
selling, but providing differing sets of commitments:
the delivery will be on time, the delivery will be of a
specified quality (as opposed to merely best effort), or
a guarantee of some configuration design constraints.
Agents register with the SoCom manager and can
browse the abstract SoComs. The SoCom manager
records the capabilities of the different agents and
their willingness to play specific roles. When
requested to form a concrete SoCom, the manager
requests likely agents to join. An agent can join a
SoCom either by requesting to do so (for example,
Hot Air), or because of another agent’s request relayed
to it (for example, Valvano) via the SoCom. After the
SoCom is instantiated, the agents communicate
directly. In general, the agents may communicate
directly even to form the SoCom. Figure 3 gives a
high-level description of the steps performed by an
agent and by the SoCom manager.

Conclusion
Traditional programming techniques are designed
for closed environments, in which the programmer
has (at least in principle) complete knowledge of the
meaning of the information and full control over the
disposition of the participating activities. By con-
trast, in open environments, a programmer has par-
tial knowledge of and virtually no control over the
behavior of the components created by other design-
ers and being executed by autonomous users.

Although preserving the autonomy of participating
components is crucial, unrestrained autonomy
would be risky, because it may easily lead to unde-
sirable consequences. Nowhere are these concerns
more urgent than in manufacturing. As manufactur-
ing becomes increasingly reliant on the dynamic for-
mation and management of extended and
overlapping virtual enterprises, agent-based, flexible
approaches will play an increasing role.

Our approach seeks not data consistency directly,
but a coherent state in the ongoing interactions of the
participating components. This shift in focus from
consistency to coherence not only facilitates automa-
tion, but is also more intuitive and closer to some
aspects of human social behavior. People cannot make
irrevocable promises when they do not fully control
their environments, but they can warn each other of
potential problems. For example, if an order is not
going to come through, a good service would at least
notify the others concerned. We believe the develop-
ment of spheres of commitment is the lasting contri-
bution of the present work.

References
1. Agent Builder Environment. http://www.networking.ibm.com/iag/

iagsoft.htm.
2. Davies, C.T. Data processing spheres of control. IBM Systems Journal

17, 2 (1978), 179–198.
3. Elmagarmid, A.K., Ed. Database Transaction Models for Advanced

Applications. Morgan Kaufmann, San Mateo, 1992.
4. Georgakopoulos, D., Hornick, M., and Sheth, A. An overview of work-

flow management: From process modeling to workflow automation infra-
structure. Distributed and Parallel Databases 3, 2 (Apr. 1995), 119–152.

5. Gilman C.R., Aparicio M., Barry J., Durniak T., Lam H., and Ram-
nath R. Integration of design and manufacturing in a virtual enterprise
using enterprise rules, intelligent agents, STEP, and work flow. In SPIE
Proceedings on Architectures, Networks, and Intelligent Systems for Manu-
facturing Integration, (1997), pp. 160–171.

6. Gray J. and Reuter A. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann, San Mateo, 1993.

7. Huhns, M.N. and Singh, M.P., Eds. Readings in Agents. Morgan Kauf-
mann, San Francisco, 1998.

8. Labrou Y., Finin T. Semantics and conversations for an agent com-
munication language. In M.N. Huhns and M.P. Singh, Eds. Readings
in Agents, Morgan Kaufmann, San Francisco, 1998, pp. 235–242.

9. Singh M.P. An ontology for commitments in multiagent systems:
Toward a unification of normative concepts. Artificial Intelligence and
Law, 1999. To appear.

10. Singh M.P. Agent communication languages: Rethinking the
principles. IEEE Computer 31, 12 (Dec. 1998), 40–47.

11. SMART. http://smart.npo.org/

Anuj K. Jain (anuj.jain@ericsson.com) is a software engineer with the
Ericsson New Concepts Group in Research Triangle Park, NC.
Manuel Aparico IV (aparicio@us.ibm.com) is with the IBM
Intelligent Agents and Knowledge Management Group in Research
Triangle Park, NC.
Munindar P. Singh (singh@ncsu.edu) is an assistant professor
with the Department of Computer Science at North Carolina State
University, Raleigh.

Research leading to the preparation of this article supported by the NCSU College
of Engineering, the National Science Foundation under grant IIS-9529179, the
NIST Advanced Technology Program, IBM, and Ericsson.

© 1999 ACM 0002-0782/99/0300 $5.00

c

COMMUNICATIONS OF THE ACM March 1999/Vol. 42, No. 3 69

to fulfill orders, the request shown in Figure 4 would
ordinarily lead it to commit to supplying the correct
number of valves. Other messages may be used to
cancel a commitment or to modify it some way. For
example, if the valve factory is destroyed, Valvano
would send a message canceling the commitment and
simultaneously creating a commitment to supply
alternative valves.

One of the benefits of a commitment-based
approach is that it yields a natural account of how
the participating agents may comply with the require-
ments of the roles they play. This idea can be used
to give a public basis for the meanings of communica-
tions, and to verify the compliance of agents [10].
Verifying compliance is critical, because in an open
environment, you cannot implicitly trust everyone.

