The Basesof Effective Coordination in Decentralized
Multiagent Systems

SudhirK. RustogiandMunindarP. Singh*

Departmenbf ComputerScience
North CarolinaStateUniversity
Raleigh,NC 27695-7534JSA

skrust og@os. ncsu. edu, si ngh@csu. edu

Abstract

Coordinationis a recurringthemein multiagentsystemsdesign.We consider
the problemof achiezing coordinationin a systemwherethe agentamake au-
tonomousdecisionshasedsolely on local knowledge.An opentheoreticalis-
sueis whatgoesinto achieving effective coordination?T hereis somefolklore
aboutthe importanceof the knowledgeheld by the differentagents but the
restof the rich agentlandscapéiasnot beenexploredin depth.The present
paperseeksto delineatethe differentcomponent®of an abstractarchitecture
for agentghatinfluencethe effectivenesf coordination Specifically it pro-
poseghatthe extentof the choicesavailableto theagentsaswell asthe extent
of the knowledgesharedby themare both importantfor understandingoor
dinationin general.Theseleadto a richerview of coordinationthat supports
a moreintuitive setof claims. This papersupportsts conceptuatonclusions
with experimentakesultsbasedn simulation.

1 Intr oduction

The coordinationof agentsis a crucial problemin the study of multiagentsystems.
Consequentlythe challengeof understandinghe variousbasesf coordinationis im-
portant.Althoughanumberof stratgieshave beenconsidere@ndappliedon avariety
of problemsthereis little domain-independeraigreemenbn the phenomendhat af-
fect coordination.A particularly interestingclassof coordinationproblemsarisesin
multiagentsystemsn which the decisionprocessearefully decentralizedEachagent
decidests actionspurelylocally.

A numberof interestingresearchjuestionsarisein this contet. In particular we
addresghe following questionswhich emege at the interfacebetweenagenttheory
andarchitecture.
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— Whatarethe main conceptsnvolvedin achiezing coordinationin decentralized,
i.e.,locally autonomousnultiagentsystems?

— Whatarethetrade-ofs involvedin termsof theseconceptdrom the standpoinof
achieving coordinatioreffectively?

Theanswergo the above questionsare,inevitably, interleaved. Also, sincemultiagent
systemsare a new areaof investigationwe follow Simon’s adviceto study carefully
designedimulationgo developaclearerunderstandingf thetheoreticatonceptg11,
p. 15].

Knowledgeis akey componenbf severalabstracagentarchitecturess.g.,thefam-
ily of BDI architecture$b, 13]. The MAS folklore identifiestheimportanceof there-
lationshipof knowledgeandcoordination3]. Previous studiesndicateinformally that
knowledgehelps,but the notion of knowledgeis not formalizedor quantifiedin anob-
viousmannerSenetal. recentlyintroduceda simpleexperimentaketupin which coor
dinationarisesamongagentgoptimally) exploiting sharedresource$10]. The agents
decidelocally, andcoordinationcorrespondso their achieving equilibrium. Senet al.
arguedthat, contraryto what one might naively believe, giving the interactingagents
additionalknowledgecancauseheircoordinationj.e.,theachiezementof equilibrium,
to slow down.

1.1 KeyConcepts

Thus,it appearghatthetraditionalanswergo our two researchljuestionsare(a) only
knowledge—havsoever formalized—mattergor coordination,and (b) the trade-ofs
involving knowledgearenot universallyagreedupon.

We find both the above answersintuitively unsatishctory First, we believe that
knowledgeis not the only relevant conceptinfluencing coordination.The following
conceptsarealsopotentiallyimportant.(\We describehesetermstechnicallybelow.)

— Theinertiathattheagentsxhibit in updatingtheir decisionsn responséo changes
in the stateof the world broughtaboutby others’actions.A systemwhoseagents
haslow inertiamayexhibit chaoticbhehaior, andnever achieve coordination.

— The choicesthat are available to the agents.Too mary choicesmay alsoleadto
chaoticbehaior.

— The amountof sharedknowledgeamongthe agents.f the agentsfollow a ho-
mogeneoustratgy, sharedknowledgewould tendto leadto similar decisionsy
all. Similar decisionscould leadto moreor lesseffective coordinationdepending
on whetherthe settingrequiresthe sameor complementarylecisionsln general,
complementarylecisionsare moreinteresting becausahey cannotbe hardwired
in sometrivial mechanism.

— Theextentof theprecisionin the coordinatiorrequired.Potentially theabove fac-
torsmay have a differentkind of influenceon effectivenesslependingon whether
we wereconsideringcoarse-grainedoordination.

Whentheseconceptsarefactoredn, we obtainaricherunderstandingf theterrainof
coordination.



1.2 Main Results

We developedan experimentaframavork thatgeneralizeaver the oneusedby Senet
al. Whereaghey considerednly knowledge(which we find is coupledin their setup
with choice),we consideredhe otherimportantconceptsmentionedabove. Whenthe
enhancementsereeliminated we did indeedachieve resultssimilar to thoseof Senet
al., butin light of our moreextensve exploration,wereforcedto differentconclusions.

Whenwe increasedhe choicesavailableto an agentindependentlyof its knowl-
edge,we found aswe hadsuspectedhatit took longerandlongerto corverge.More
choicedeadtheagentso coordinateslowly.

However, we found that holding the extent of the choicesconstantandincreasing
theknowledgealsoledto increasedimesfor convergenceThiswasabig surprise!But
it wasstill goodnews, becausesurprisearewhatmake empiricalresearchespecially
simulationsworthwhile[11, p. 14]! We conjecturedhattheinherentsymmetryin our
problemmight be causingthis. When we tried to breakit by offsetting the agents’
choicesandknowledge however, it hadno substantiaéffectontheabove behaior. So
we discardedhatconjecture.

We madeanotherinterestingobsenation. Whenthe local knowledgeof the agents
is increasedanotheriddeneffect is obtained.This is the amountof sharingthatthe
agenthaswith otheragentsintuitively, astheagentsharemoreandmoreknowledge,
their decisionscanbecomemoreandmore similar, resultingin greaterinstability. We
attemptedo characterizéhe sharingof knowledgeamongthe agentsWhenthe shar
ing wasfactoredin, we foundthatit appeardo explain the decreaseéffectivenessof
coordinationwhenthe extentof choicesareheld constant.

1.3 Organization

Section2 describesour experimentalsetup.Section3 describeghe main experimen-
tal resultswe obtained Section4 discussesomerelevantconceptualssuesmentions
somerelatedliterature ,andconcludesith adescriptionof someopenproblems.

2 Experimental Setup

The setupconsistsof an array eachof whoseelementss thoughtof asa resource.
Figurel showvs the array—accessealsa ring—thatcapturegheresourcesvailablein
theexperimentA numberof agentsaregiven. Theagentsisea givenresourcey being
in thearrayindex correspondingdo thatresourceTherecanbe multiple agentausinga
resourcepachagentusesexactly oneresourcelt is tacitly assumedhatthe quality of
aresourceecevedby anagentvariesinverselyin someway with thenumberof agents
usingthat resource Thus—althougtthe utility accruingto an agentis not explicitly
modeledin the presentversionof the experiments—eachgentwould like to be using
aresourcehatis usedby asfew agentsaspossible.
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Fig. 1. ResourceandAgents

2.1 Knowledgeand Choice

As motivatedabove, it is crucialto distinguishbetweerknowledg@ andchoice Knowl-
edgerefersto areductionin uncertaintypercevedby the agent.The amountof knowl-
edgeavailableto an agentis given by the numberof resourcesvhoseoccupanyg is
known to the agent.Thus,the knowledgeof an agentincreasessthe agentis given
informationaboutanincreasinghumberof resources.

Choicehasto do with the numberof actionsthat an agentis allowed to choose
among.In otherwords,by choice,we meanraw physicalchoice.Note thata rational
agentmayfind it hasfewerrealisticchoicesvhenit comesto know morefacts but that
aspects notdirectly measuredhere.
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Fig. 2. KnowledgeandChoiceWindows



Intuitively, knowledgeandchoiceareorthogonapropertiesFigure?2 illustratesthe
knowledgeand choicewindows for an agentat locations. In the initial experiment,
theknowledgeandchoicewindows of anagentweresymmetricallydistributedaround
its currentlocation. In later experiments we allowed for the knowledgeand choice
windows to be skewedwith respecto eachotherandthe agents currentlocation. This
hadnosignificantbearingonthetrendsobsened.For thisreasonwereportresultsfrom
the simplestcasewherethe knowledgeandchoicewindows areplacedsymmetrically
aroundtheagentjustasshovnin Figure2.

2.2 The Protocol

It is postulatecthat eachagenthasknowledgeof a limited numberof the available
resourcesThis knowledgeis in termsof the occupanyg at a givenresourcelJsingthis
knowledge,eachagentfires a simplerule (the samefor all agents)to stochastically
decidewhetherto move to a new (lessoccupied)ocation,andif so,which one.In this
schemetheagentgraduallydispersdrom the morecrowdedlocationstowardtheless
crowdedones.The systemasa whole stabilizeswhenall of the resourcesreequally
occupied.This corvergentsituationrepresentsoordination becausét correspond$o
the agentshaving achieved a sharingof resourceghat maximizesthe performanceor
utility for eachof them.Typically, to facilitatecorvergencewe setanintegral ratio of
agentdo resourcesHowever, whenthe cornvergenceconditionis liberalized sothatthe
systemsstopsevenwhenan exactmatchis not obtainedtheintegral ratio requirement
canalsobesafelyrelaxed.

Theexpressionsisedby anagento computetheprobabilityof moving from current
resource to anothemresourcej in its choicewindow aregivenasfollows. The f;; are
treatedasweights.

1 if i =j
fij —-J0 if 4 ;é] andr; < T
1- —21—— otherwise

147 exp( EJ

wherea , 8 andr arecontrol parametersy; the numberof agentsat resource;, and
r; the numberof agentsat resourcej. In our experimentswe seta = 5, § = 2, and
T=1.

Theweightsarenormalizedsothey areguaranteetb addto 1, andarethentreated
asprobabilities.Thus,the probability of moving from resource to resourcej is then
givenby

fij
bij =
VY fi

Thevariablesr; andr;, whichreferto the numberof agentsataresourcearebased
onwhatthegivenagentknowsabouttheervironment.f locationj is within theagents
knowledgewindow (thusit is in theintersectiorof its knowledgeandchoicewindows),
thenr; is the actualvalueof resourceoccupany. If j is notin the agents knowledge
window, thenwe usean estimatedraluefor it basedon thetotal numberof agentsand




theoccupang of theknown partof theworld. If locationj is notin the choicewindow,
thenr; is notused.

~_ J occupangof j if j isin knowledgewindow
= (N—-K)/u otherwise

where N is the total numberof agentsin the system,K is the numberof agentsin
the knowledgewindow, « is the numberof locationsthat are not known about.Thus,
N andu areaform of globalknowledgein the system Sinceeliminatingthemwould
complicatethe presenexperimentconsiderablythataspecis deferredo futurework.

2.3 Inertia

Inertiarefersto thetendeng of anagentto stayin its locationevenif preferablealter
natvesareavailable.This is reflectedin the probability p;;. It turnsout thatthe above
protocolusedby the agentsn decidingtheir actionsmaximizesthe agents'inertiafor
problemsof smalldimensionsWith smalldimensionsespeciallywhenthechoicesare
limited, theagenttypically hasonly afew goodalternatves.Eachgoodalternative gets
asmallpositve weight; eachundesirablalternatve getsaweightof 0. Thus,thevalue
of p;; comesout fairly high. As the distribution of the agentsbecomesnoreuniform,
theinertiaof eachof themgoesup, resultingin aninertiaof 1 atequilibrium.An inertia
of 1 for all agentdenotesorvergencepecaus¢hennoneof themmove.

From our experimentswe can safely statethat inertia is crucial to coordination.
Withoutsubstantiainertia,the systemcanbecomehighly unstabldeadingto situations
in which corvergencenever occurs.We revisit inertiabelow, but sufiiceit to statehere
thatwe usedhighinertiajustfor our simulationgto terminate.

3 Analysis

Thehypothesewe wishedto testwerebasedntheideathatin theoriginal formulation
theknowledgeandchoicearetied togetherasa singlevariable whereaghey could be
orthogonaln principle.Our hypothesesvere

H1. Increasinghechoiceandtheknowledgesimultaneouslyvouldincreasahetime
takento coordinate—irour opinion,thisis essentiallySenetal.’s mainresult.

H2. Increasinghe choicewhile holdingthe knowledgeconstantvould increasehe
time takento coordinate.

H3. Increasingheknowledgewhile holdingthe choiceconstanivould notincrease,
andmayevendecreasehetime takento coordinate.

3.1 Error Tolerance

Insteadof definingcorvergenceasprecisecorvergencewe foundit corvenientto al-
low a smallbandof toleranceof error. Thus,a statewould be deemedacceptabléand
the simulationwould halt) if the resourcesssignedo eachagentwerewithin a cer
tain rangeof the optimal. By reducingthe time takento corverge, this enabledus to



testconfigurationdgnvolving a larger numberof agentsandresourceghan otherwise
possible.

We discoveredthatincludingsometolerancdor errormadethe systemmorerobust
in thatthetrendsweremorereliablethanotherwiselntuitively, thisis becausé reduces
thechanceahatthe systemwould be stuckin a suboptimaktatethatwasseveralmoves
away from the optimal, e.g.,if almostall of the resourcesverebeingusedoptimally,
but oneof theresourcesvasunderusedandanotheyfaravay resourcavasover-used.

3.2 Results

Choice
3|57 9 (11| 13| 15
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Table 1. Summaryof Numberof Iterationsto Corvergence(15, 45, +1, 50)
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Table 2. Summaryof Numberof Iterationsto Corvergence(9, 27, +0, 50)
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Someof our experimentalresultsare displayedin Tables1 and2. The tuplein each
captionindicatesyespectiely, thenumberof agentsthenumberof resourcesheerror
toleranceandthe numberof simulationrunsover whichtheresultsareaveraged.

We alwaysaveragetheresultsoverseveralruns,butit takesmorerunsfor theresults
to bereliably duplicatedif the tolerances setlow. However, the interestingaspeciof
the trendsis not the exact numberof stepstakento corverge, but the qualitative rela-
tionshipsamongthem,suchaswhetherthe numberof stepss increasingor decreasing
andif soatwhatpolynomialorder For thisreasonTablel, which hasmoredatapoints
andalargererrortolerancejs taken asthe moreimportantone.Table2, in which the
erroris limited to 0, shouldbetreatedmostlyasa corroboratiorof Tablel.



We computethe tablesonly for the uppertriangularsubmatrix,becausehe lower
triangularsubmatrixis readilydeterminedrom it. The lower triangularsubmatrixcor-
respondgo the knowledgewindow beinga supersebf the choicewindow. In our rea-
soningprotocol,this extraknowledgeis uselesandharmlessbecausé doesnotaffect
the agents decisions.Thus,the valuesare essentiallyconstantlongeachcolumnbe-
low theprincipaldiagonal(In anactualsimulation,they would not be exactly constant
becausef randomizationbut they arereliably approximatelyequal.)

3.3 Initial Hypotheses

Tablesl and2 shav thatwe hadmixed succes$n establishingour initial hypotheses.
HypothesisH1 correspondso the principal diagonalsof Tablesl and2. This hypoth-
esisis clearly supportedy the evidence.In this respecthy restrictingour systemwe
were ableto reconstructhe numericaltrendsexhibited in [10]. However, becauseof
theabove casecorrespondso increasingknowledgeandchoicesimultaneouslywe do
not supportthe conclusionthatincreasingknowledgealonecauses lossof the effec-
tivenesof coordination.

HypothesidH2 correspondso rows of Tablesl and2. Readingo theright, thetime
to cornvergenceincreasesasthe choicesincreasesif the knowledgeis held constant.
Thusthis hypothesiss supported.

HypothesisH3 correspond$o the columnsof Tablesl and2. Readingdownwards,
the time to convergenceincreasesas knowledgeincreaseseven as choicesare held
constantThusthis hypothesiss not supportedWe explain why next.

3.4 Sharing of Knowledge

We definea metric to estimatethe extent of sharingof knowledgeamongthe agents.
This metricestimateshe“amount” of knowledgeof a givenagentthatis alsoavailable
to others.This metricobviously depend®n the sizeof theknowledgewindow. As the
windows for the agentsincreasethe windows overlapto a greaterdegreewith more
agentsresultingin highereffective sharing.

To defineour metric, let the window size availableto all agentsbe k. The given
agents window overlapsto the extentof (k — 1) with agentsoneslot to the right or
left of it, (k — 2) with thosetwo slotsaway, andsoon. Thuseachagenthasa sharing
of ©(k?). The sharingin the entiresystemis ©@(Nk?), for atotal of N agentsWhen
k is large, we cantreatthis as@(k?). In fact, the interestingresultsare the rightmost
column(wherechoiceequalsV, andk increasesoward V). Now we havethefollowing
hypothesis.

H4. Increasinghe knowledgewhile holding the choiceconstantincreaseshe time
proportionalto the sharingmetricdefinedabove.

Figure3 is basednthelastcolumnof Tablel. (We do not pursueTable2 further,
becausét hastoo few datapoints.Suffice it to stateherethatthe resultsare essential
alike.) Figure 3 shaws thatthe time to corvergencehasthe sameorderasthe sharing
metric. To reduceclutter, we only shaw the graphsfor a cubic polynomialthat was
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fit to the data,and datacorrespondindo the last column (constantmaximal choice)
of Table 1. This doesnot prove that the sharingof knowledgeis the real reasonfor
the delayin corvergencelt does,however, give anindicationthat sharingmay have
a significantrole to play in the final understandingf coordinationin decentralized
systemswvherethe agentsarehomogeneouandcoordinationcalls for complementary
decisionsashere.

3.5 Inertia Revisited

Recallthatinertiarefersto thetendenyg (or probability)of anagento stayin its present
locationevenin thefaceof availablealternatve locations Fromthe probabilitycalcula-
tionsof section2, it shouldbeclearthat,in generalasthenumberof choicesincrease,
Z]. fi; increasesandconsequentlgheinertia (i.e., p;) decreasesThis reasongspe-
cially whencoupledwith abandof 0 tolerancecanpreventconvergencgor moderately
largedimensions.

We considerednalternatveformulationof inertia,in whichinertiais givendirectly
in termsof a constantprobability An agentdecidesamongits choicesto move by
normalizingthe probabilitiesasbefore.The probability for moving to an undesirable
alternatve is still setto 0; however, the sum of the probabilitiesof moving to good
alternatves are limited to (1 — p;;). We discoveredin preliminary experimentsthat
going from a high inertia (0.9) to a mediuminertia (0.7 or 0.5) cancausesignificant
variationsin thetrendsobsenred. Thoseresultsarenotyet suitablefor reporting.

4 Discussion

This paperdevelopedsomeexperimentakesultsaboutcoordinationn a simplesetting
involving multiple, potentially conflicting, autonomousgents Despiteits simplicity,
it led to nontrivial and surprisingresults.By using an experimentalframenork more



generalthanthat of Senet al., we were ableto reproduceheir numericresultsasa
specialcase yetalsoshav how their conclusionsverenot supported.

Thereare somelimitations of the presentexperimentalsetup.lt focuseson cases
wherethe resourceconflicts are direct andimmediatelyperceved, the resourcesare
homogeneousheagentsall usethe samedecision-makingprotocol,andthe agentsdo
not communicatedirectly. Further therearewell-known limitations of reinforcement
learningin termsof time takento learnevensimpleconceptsThe presenexperiments
leave openthepossibilitythatmoresophisticate@dgentsn moreflexible ervironments,
wheretheir learningis supervisedn certainwaysmight discover betterwaysof coor
dination,which mayturn out to have differentcharacteristicén termsof theinfluence
of knowledgeandchoice.

Ourcontribution,however, is notonly in developingtheresultswe presentedyut in
identifying someof the severalfactorsthatplay arole in determiningthe coordination
of autonomousigentsWe alsomadesomeprogressn delineatinghetrade-ofsamong
thesefactors.In generaljn makingclaimsaboutanintuitively interestingconceptwe
mustavoid therisk thatotherfactorsmayintrudeinto our representatiomrocessingor
measuremerdndcollation. Thisis a difficult taskwheretheoreticaldevelopmenmust
be interleared with controlledexperimentatioror simulation.We have only takenthe
initial stepsof sucha systematistudy

Althoughthepresentesultsshouldnot betakenasfinal, it is essentiato reportand
discussthem. This is becausef two major reasonsOne, the problemof learningto
coordinateandits relationshipto otherconceptss crucialto theoriesandarchitectures
of agentandmultiagentsystemsTwo, the presenkinds of studiesareof the cateyory
of exploratoryreseach, which Cohen[2] eloquentlyarguess key to empiricalresearch
and mustoccur prior to the formulation of more precisequestionsand experimental
protocolsthatareultimatelythe coreof experimentakcience.

4.1 Literatur e

In additionto the works mentionedabore, someinterestingrelevant approachesre
known in theliterature.For instanceKuwabaraet al. presenta market-basedpproach
in whichagentsontrollingdifferentresourcesettheir pricesbasedn previoususage,
andbuyeragenthooseavhich resource$o use[7]. Thebuyeragentcanusemorethan
oneresourceoncurrentlyandseekgo minimizeits total priceit hasto pay. As in our
approachthebuyer’s decision-makings probabilistic.Althoughtheir modelis similar
to ours,they do not studythereasondor achieving effective coordination.

Resultsby Hogg & Hubermanindicatethe potentialbenefitsof introducinghet-
erogeneityof differentforms[4]. Theseagreewith theintuition thatin homogeneous
settingsthesharingof knowledgemayhave anundesirableffecton coordinationThis
is especiallysowhenthe agentsnustmake complementarylecisionsso asto coordi-
nate,i.e., moveto differentlocations.This problemis closelyrelatedto theemegence
of corventionsfor resourcesharing[8].

4.2 FutureWork

Althoughwe introducedsomeinterestingconsiderationsa lot remaingo bedone.
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Choicebearsan interestingrelationshipto the notion of commitmentslt appears
thatthetwo arecomplementaryn thatthegreatetthe agents choicethelower its com-
mitmentto a particulardecision Previous experimentalwork by Kinny & Geogeff [6]
andPollacket al. [9] appearespeciallyrelevant. However, thereis more structureto
commitmentghatthe presensetupdoesnot capture someof thisis discussedh [12].

We mentionsomehigh-level openissuesthat would extend the experimentsde-
scribedabove. Althoughnot asdetailedashypotheseghey canbestudiedin variations
of the presenexperiments.

1. Theimprovementin speedwith a nonzerobandsuggestsa naturaltrade-of be-
tweenthe time taken andthe quality of the solution.We conjecturethatthe time
requiredincreasegxponentiallyasthetolerancds reducedo zero.

12. In settingswheretheagentoordinateby makingthesimilar, but noncomplemen-
tary, decisionsjncreasinghesharingof knowledgewill improve coordination.

I3. A large classof stratgjiesleadingto adaptve behaior may be approximatedy
varyingtheinertiaof the agentddynamically

Our programsanddataareavailable(for educationabndresearchpurposesjrom
http://ww4. ncsu. edu/ eos/ i nf o/ dbl ab/ agent s/ skrust og/ dat a/ .
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