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Abstract

Coordinationis a recurringthemein multiagentsystemsdesign.We consider
theproblemof achieving coordinationin a systemwheretheagentsmake au-
tonomousdecisionsbasedsolelyon local knowledge.An opentheoreticalis-
sueis whatgoesinto achieving effectivecoordination?Thereis somefolklore
aboutthe importanceof the knowledgeheld by the differentagents,but the
restof the rich agentlandscapehasnot beenexploredin depth.The present
paperseeksto delineatethe differentcomponentsof an abstractarchitecture
for agentsthat influencetheeffectivenessof coordination.Specifically, it pro-
posesthattheextentof thechoicesavailableto theagentsaswell astheextent
of theknowledgesharedby themareboth importantfor understandingcoor-
dinationin general.Theseleadto a richer view of coordinationthatsupports
a moreintuitive setof claims.This papersupportsits conceptualconclusions
with experimentalresultsbasedonsimulation.

1 Intr oduction

The coordinationof agentsis a crucial problemin the study of multiagentsystems.
Consequently, thechallengeof understandingthevariousbasesof coordinationis im-
portant.Althoughanumberof strategieshavebeenconsideredandappliedonavariety
of problems,thereis little domain-independentagreementon the phenomenathat af-
fect coordination.A particularly interestingclassof coordinationproblemsarisesin
multiagentsystemsin which thedecisionprocessesarefully decentralized.Eachagent
decidesits actionspurelylocally.

A numberof interestingresearchquestionsarisein this context. In particular, we
addressthe following questions,which emerge at the interfacebetweenagenttheory
andarchitecture.�
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– What arethe main conceptsinvolved in achieving coordinationin decentralized,
i.e., locally autonomous,multiagentsystems?

– Whatarethetrade-offs involvedin termsof theseconceptsfrom thestandpointof
achieving coordinationeffectively?

Theanswersto theabove questionsare,inevitably, interleaved.Also, sincemultiagent
systemsarea new areaof investigation,we follow Simon’s adviceto studycarefully
designedsimulationsto developaclearerunderstandingof thetheoreticalconcepts[11,
p. 15].

Knowledgeis akey componentof severalabstractagentarchitectures,e.g.,thefam-
ily of BDI architectures[5,13]. TheMAS folklore identifiestheimportanceof there-
lationshipof knowledgeandcoordination[3]. Previousstudiesindicateinformally that
knowledgehelps,but thenotionof knowledgeis not formalizedor quantifiedin anob-
viousmanner. Senetal. recentlyintroducedasimpleexperimentalsetupin whichcoor-
dinationarisesamongagents(optimally) exploiting sharedresources[10]. Theagents
decidelocally, andcoordinationcorrespondsto their achieving equilibrium.Senet al.
arguedthat,contraryto what onemight naively believe, giving the interactingagents
additionalknowledgecancausetheircoordination,i.e.,theachievementof equilibrium,
to slow down.

1.1 KeyConcepts

Thus,it appearsthat the traditionalanswersto our two researchquestionsare(a) only
knowledge—howsoever formalized—mattersfor coordination,and (b) the trade-offs
involving knowledgearenotuniversallyagreedupon.

We find both the above answersintuitively unsatisfactory. First, we believe that
knowledgeis not the only relevant conceptinfluencingcoordination.The following
conceptsarealsopotentiallyimportant.(We describethesetermstechnicallybelow.)

– Theinertiathattheagentsexhibit in updatingtheirdecisionsin responseto changes
in thestateof theworld broughtaboutby others’actions.A systemwhoseagents
haslow inertiamayexhibit chaoticbehavior, andneverachievecoordination.

– The choicesthat areavailableto the agents.Too many choicesmay also leadto
chaoticbehavior.

– The amountof sharedknowledgeamongthe agents.If the agentsfollow a ho-
mogeneousstrategy, sharedknowledgewould tendto leadto similar decisionsby
all. Similar decisionscould leadto moreor lesseffective coordinationdepending
on whetherthesettingrequiresthesameor complementarydecisions.In general,
complementarydecisionsaremoreinteresting,becausethey cannotbehardwired
in sometrivial mechanism.

– Theextentof theprecisionin thecoordinationrequired.Potentially, theabovefac-
torsmayhave a differentkind of influenceon effectivenessdependingon whether
wewereconsideringcoarse-grainedcoordination.

Whentheseconceptsarefactoredin, we obtaina richerunderstandingof theterrainof
coordination.
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1.2 Main Results

We developedanexperimentalframework thatgeneralizedover theoneusedby Senet
al. Whereasthey consideredonly knowledge(which we find is coupledin their setup
with choice),we consideredtheotherimportantconceptsmentionedabove.Whenthe
enhancementswereeliminated,wedid indeedachieveresultssimilar to thoseof Senet
al., but in light of ourmoreextensiveexploration,wereforcedto differentconclusions.

Whenwe increasedthe choicesavailableto an agentindependentlyof its knowl-
edge,we foundaswe hadsuspectedthat it took longerandlongerto converge.More
choicesleadtheagentsto coordinateslowly.

However, we found that holding theextentof thechoicesconstantandincreasing
theknowledgealsoledto increasedtimesfor convergence.Thiswasabig surprise!But
it wasstill goodnews,becausesurprisesarewhatmake empiricalresearch,especially
simulations,worthwhile[11, p. 14]! We conjecturedthattheinherentsymmetryin our
problemmight be causingthis. When we tried to breakit by offsetting the agents’
choicesandknowledge,however, it hadnosubstantialeffecton theabovebehavior. So
wediscardedthatconjecture.

We madeanotherinterestingobservation.Whenthelocal knowledgeof theagents
is increased,anotherhiddeneffect is obtained.This is theamountof sharingthat the
agenthaswith otheragents.Intuitively, astheagentssharemoreandmoreknowledge,
their decisionscanbecomemoreandmoresimilar, resultingin greaterinstability. We
attemptedto characterizethesharingof knowledgeamongtheagents.Whentheshar-
ing wasfactoredin, we foundthat it appearsto explain thedecreasedeffectivenessof
coordinationwhentheextentof choicesareheldconstant.

1.3 Organization

Section2 describesour experimentalsetup.Section3 describesthe main experimen-
tal resultswe obtained.Section4 discussessomerelevantconceptualissues,mentions
somerelatedliterature,andconcludeswith adescriptionof someopenproblems.

2 Experimental Setup

The setupconsistsof an array, eachof whoseelementsis thoughtof as a resource.
Figure1 shows thearray—accessedasa ring—thatcapturestheresourcesavailablein
theexperiment.A numberof agentsaregiven.Theagentsuseagivenresourceby being
in thearrayindex correspondingto thatresource.Therecanbemultiple agentsusinga
resource;eachagentusesexactly oneresource.It is tacitly assumedthatthequality of
aresourcereceivedby anagentvariesinverselyin somewaywith thenumberof agents
usingthat resource.Thus—althoughthe utility accruingto an agentis not explicitly
modeledin thepresentversionof theexperiments—eachagentwould like to beusing
a resourcethatis usedby asfew agentsaspossible.
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Fig.1. ResourcesandAgents

2.1 Knowledgeand Choice

As motivatedabove,it is crucialto distinguishbetweenknowledgeandchoice. Knowl-
edgerefersto a reductionin uncertaintyperceivedby theagent.Theamountof knowl-
edgeavailable to an agentis given by the numberof resourceswhoseoccupancy is
known to the agent.Thus,the knowledgeof an agentincreasesas the agentis given
informationaboutanincreasingnumberof resources.

Choicehasto do with the numberof actionsthat an agentis allowed to choose
among.In otherwords,by choice,we meanraw physicalchoice.Note that a rational
agentmayfind it hasfewerrealisticchoiceswhenit comesto know morefacts,but that
aspectis notdirectlymeasuredhere.

Fig.2. KnowledgeandChoiceWindows
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Intuitively, knowledgeandchoiceareorthogonalproperties.Figure2 illustratesthe
knowledgeandchoicewindows for an agentat location

�
. In the initial experiment,

theknowledgeandchoicewindowsof anagentweresymmetricallydistributedaround
its current location. In later experiments,we allowed for the knowledgeand choice
windowsto beskewedwith respectto eachotherandtheagent’scurrentlocation.This
hadnosignificantbearingonthetrendsobserved.For thisreason,wereportresultsfrom
thesimplestcase,wheretheknowledgeandchoicewindowsareplacedsymmetrically
aroundtheagent,justasshown in Figure2.

2.2 The Protocol

It is postulatedthat eachagenthasknowledgeof a limited numberof the available
resources.This knowledgeis in termsof theoccupancy at a givenresource.Usingthis
knowledge,eachagentfires a simple rule (the samefor all agents)to stochastically
decidewhetherto move to a new (lessoccupied)location,andif so,which one.In this
scheme,theagentsgraduallydispersefrom themorecrowdedlocationstowardtheless
crowdedones.Thesystemasa wholestabilizeswhenall of the resourcesareequally
occupied.This convergentsituationrepresentscoordination,becauseit correspondsto
the agentshaving achieveda sharingof resourcesthat maximizesthe performanceor
utility for eachof them.Typically, to facilitateconvergence,we setanintegral ratio of
agentsto resources.However, whentheconvergenceconditionis liberalized,sothatthe
systemsstopsevenwhenanexactmatchis not obtained,theintegral ratio requirement
canalsobesafelyrelaxed.

Theexpressionsusedby anagenttocomputetheprobabilityof moving fromcurrent
resource

�
to anotherresource� in its choicewindow aregivenasfollows.The �	��
 are

treatedasweights.

���

�� ��� ���� if
� ����

if
������ and � ��� � 
��� �� �"!$#&%('	) *,+.-/*10�-324 5 otherwise

where 6 , 7 and 8 arecontrolparameters,� � the numberof agentsat resource
�
, and� 
 thenumberof agentsat resource� . In our experiments,we set 69�;: , 7<�>= , and8?� � .Theweightsarenormalizedsothey areguaranteedto addto � , andarethentreated

asprobabilities.Thus,theprobabilityof moving from resource
�

to resource� is then
givenby @ ��
 � ���

A 
 � ��


Thevariables�B� and �C
 , whichreferto thenumberof agentsata resourcearebased
onwhatthegivenagentknowsabouttheenvironment.If location� is within theagent’s
knowledgewindow (thusit is in theintersectionof its knowledgeandchoicewindows),
then � 
 is theactualvalueof resourceoccupancy. If � is not in theagent’s knowledge
window, thenwe useanestimatedvaluefor it basedon thetotal numberof agentsand
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theoccupancy of theknown partof theworld. If locationD is not in thechoicewindow,
then E(F is notused.

ECFHGJI occupancy of D if D is in knowledgewindowK1LNMPOPQ�R�S
otherwise

where
L

is the total numberof agentsin the system,
O

is the numberof agentsin
theknowledgewindow,

S
is thenumberof locationsthatarenot known about.Thus,L

and
S

area form of globalknowledgein thesystem.Sinceeliminatingthemwould
complicatethepresentexperimentconsiderably, thataspectis deferredto futurework.

2.3 Inertia

Inertiarefersto thetendency of anagentto stayin its locationevenif preferablealter-
nativesareavailable.This is reflectedin theprobability T$UVU . It turnsout that theabove
protocolusedby theagentsin decidingtheir actionsmaximizestheagents’inertia for
problemsof smalldimensions.With smalldimensions,especiallywhenthechoicesare
limited, theagenttypically hasonly a few goodalternatives.Eachgoodalternativegets
asmallpositiveweight;eachundesirablealternativegetsaweightof W . Thus,thevalue
of T UXU comesout fairly high. As thedistribution of theagentsbecomesmoreuniform,
theinertiaof eachof themgoesup,resultingin aninertiaof Y atequilibrium.An inertia
of Y for all agentsdenotesconvergence,becausethennoneof themmove.

From our experiments,we cansafelystatethat inertia is crucial to coordination.
Withoutsubstantialinertia,thesystemcanbecomehighly unstableleadingto situations
in which convergenceneveroccurs.We revisit inertiabelow, but suffice it to statehere
thatweusedhigh inertiajust for our simulationsto terminate.

3 Analysis

Thehypotheseswewishedto testwerebasedontheideathatin theoriginalformulation
theknowledgeandchoicearetied togetherasa singlevariable,whereasthey couldbe
orthogonalin principle.Ourhypotheseswere

H1. Increasingthechoiceandtheknowledgesimultaneouslywouldincreasethetime
takento coordinate—inouropinion,this is essentiallySenetal.’smainresult.

H2. Increasingthechoicewhile holdingtheknowledgeconstantwould increasethe
time takento coordinate.

H3. Increasingtheknowledgewhile holdingthechoiceconstantwouldnot increase,
andmayevendecrease,thetime takento coordinate.

3.1 Err or Tolerance

Insteadof definingconvergenceaspreciseconvergence,we found it convenientto al-
low a smallbandof toleranceof error. Thus,a statewould bedeemedacceptable(and
the simulationwould halt) if the resourcesassignedto eachagentwerewithin a cer-
tain rangeof the optimal.By reducingthe time taken to converge,this enabledus to
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testconfigurationsinvolving a larger numberof agentsandresourcesthanotherwise
possible.

Wediscoveredthatincludingsometolerancefor errormadethesystemmorerobust
in thatthetrendsweremorereliablethanotherwise.Intuitively, thisisbecauseit reduces
thechancethatthesystemwouldbestuckin a suboptimalstatethatwasseveralmoves
away from theoptimal,e.g.,if almostall of the resourceswerebeingusedoptimally,
but oneof theresourceswasunder-usedandanother, farawayresourcewasover-used.

3.2 Results

Choice
3 5 7 9 11 13 15

3 7 9 20 45 59 100 180
5 9 20 50 102 117 246
7 37 65 144 237 335

Knowledge 9 151205 519 831
11 790 901 1563
13 29745023
15 7520

Table1. Summaryof Numberof Iterationsto ConvergenceZ&[C\	] ^_\	]�`a[b] \Bc_d

Choice
3 5 7 9

3 40 136749 2336
Knowledge5 194837 4622

7 977 4759
9 6766

Table2. Summaryof Numberof Iterationsto ConvergenceZfe/]�gbh�]�`ic/]j\kc_d
Someof our experimentalresultsaredisplayedin Tables1 and2. The tuple in each
captionindicates,respectively, thenumberof agents,thenumberof resources,theerror
tolerance,andthenumberof simulationrunsoverwhich theresultsareaveraged.

Wealwaysaveragetheresultsoverseveralruns,but it takesmorerunsfor theresults
to bereliably duplicatedif the toleranceis setlow. However, the interestingaspectof
the trendsis not theexactnumberof stepstaken to converge,but thequalitative rela-
tionshipsamongthem,suchaswhetherthenumberof stepsis increasingor decreasing
andif soatwhatpolynomialorder. For thisreason,Table1,whichhasmoredatapoints
anda largererror tolerance,is takenasthemoreimportantone.Table2, in which the
erroris limited to l , shouldbetreatedmostlyasa corroborationof Table1.
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We computethe tablesonly for theuppertriangularsubmatrix,becausethe lower
triangularsubmatrixis readilydeterminedfrom it. Thelower triangularsubmatrixcor-
respondsto theknowledgewindow beinga supersetof thechoicewindow. In our rea-
soningprotocol,thisextraknowledgeis uselessandharmless,becauseit doesnotaffect
theagent’s decisions.Thus,thevaluesareessentiallyconstantalongeachcolumnbe-
low theprincipaldiagonal.(In anactualsimulation,they wouldnotbeexactlyconstant
becauseof randomization,but they arereliablyapproximatelyequal.)

3.3 Initial Hypotheses

Tables1 and2 show thatwe hadmixedsuccessin establishingour initial hypotheses.
HypothesisH1 correspondsto theprincipaldiagonalsof Tables1 and2. This hypoth-
esisis clearlysupportedby theevidence.In this respect,by restrictingour system,we
wereableto reconstructthe numericaltrendsexhibited in [10]. However, becauseof
theabovecasecorrespondsto increasingknowledgeandchoicesimultaneously, we do
not supporttheconclusionthat increasingknowledgealonecausesa lossof theeffec-
tivenessof coordination.

HypothesisH2 correspondsto rowsof Tables1 and2.Readingto theright, thetime
to convergenceincreasesasthe choicesincreases,if the knowledgeis held constant.
Thusthishypothesisis supported.

HypothesisH3 correspondsto thecolumnsof Tables1 and2. Readingdownwards,
the time to convergenceincreasesas knowledgeincreases,even as choicesare held
constant.Thusthishypothesisis notsupported!We explainwhy next.

3.4 Sharing of Knowledge

We definea metric to estimatethe extentof sharingof knowledgeamongthe agents.
Thismetricestimatesthe“amount”of knowledgeof agivenagentthatis alsoavailable
to others.This metricobviouslydependson thesizeof theknowledgewindow. As the
windows for the agentsincrease,the windows overlapto a greaterdegreewith more
agents,resultingin highereffectivesharing.

To defineour metric, let the window sizeavailableto all agentsbe m . The given
agent’s window overlapsto the extent of n,mporqbs with agentsoneslot to the right or
left of it, n,mto�u/s with thosetwo slotsaway, andsoon. Thuseachagenthasa sharing
of vwn,myx_s . Thesharingin theentiresystemis vwn{z|m}xbs , for a total of z agents.Whenm is large,we cantreatthis as vwn1my~_s . In fact, the interestingresultsarethe rightmost
column(wherechoiceequalsz , andm increasestoward z ). Now wehavethefollowing
hypothesis.

H4. Increasingtheknowledgewhile holding thechoiceconstantincreasesthe time
proportionalto thesharingmetricdefinedabove.

Figure3 is basedon thelastcolumnof Table1. (We do not pursueTable2 further,
becauseit hastoo few datapoints.Suffice it to stateherethat the resultsareessential
alike.) Figure3 shows that the time to convergencehasthe sameorderasthe sharing
metric. To reduceclutter, we only show the graphsfor a cubic polynomial that was
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Fig.3. RelatingSharingof KnowledgeandTime to Coordinate�&�C�	� �������a�b�j�k�_�
fit to the data,anddatacorrespondingto the last column(constant,maximalchoice)
of Table1. This doesnot prove that the sharingof knowledgeis the real reasonfor
the delayin convergence.It does,however, give an indicationthat sharingmay have
a significantrole to play in the final understandingof coordinationin decentralized
systemswheretheagentsarehomogeneousandcoordinationcalls for complementary
decisions,ashere.

3.5 Inertia Revisited

Recallthatinertiarefersto thetendency (or probability)of anagentto stayin its present
locationevenin thefaceof availablealternativelocations.Fromtheprobabilitycalcula-
tionsof section2, it shouldbeclearthat,in general,asthenumberof choicesincrease,������� �

increases,andconsequentlythe inertia (i.e., � �V�
) decreases.This reason,espe-

cially whencoupledwith abandof � tolerance,canpreventconvergencefor moderately
largedimensions.

Weconsideredanalternativeformulationof inertia,in whichinertiais givendirectly
in termsof a constantprobability. An agentdecidesamongits choicesto move by
normalizingthe probabilitiesasbefore.The probability for moving to an undesirable
alternative is still set to � ; however, the sumof the probabilitiesof moving to good
alternativesare limited to � �w��� �X�& 

. We discoveredin preliminaryexperimentsthat
going from a high inertia ( �}¡ ¢ ) to a mediuminertia ( �£¡�¤ or �}¡�¥ ) cancausesignificant
variationsin thetrendsobserved.Thoseresultsarenotyet suitablefor reporting.

4 Discussion

Thispaperdevelopedsomeexperimentalresultsaboutcoordinationin a simplesetting
involving multiple, potentiallyconflicting,autonomousagents.Despiteits simplicity,
it led to nontrivial andsurprisingresults.By usingan experimentalframework more
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generalthanthat of Senet al., we wereable to reproducetheir numericresultsasa
specialcase,yetalsoshow how their conclusionswerenotsupported.

Therearesomelimitations of the presentexperimentalsetup.It focuseson cases
wherethe resourceconflictsaredirect and immediatelyperceived, the resourcesare
homogeneous,theagentsall usethesamedecision-makingprotocol,andtheagentsdo
not communicatedirectly. Further, therearewell-known limitations of reinforcement
learningin termsof time takento learnevensimpleconcepts.Thepresentexperiments
leaveopenthepossibilitythatmoresophisticatedagentsin moreflexible environments,
wheretheir learningis supervisedin certainwaysmight discover betterwaysof coor-
dination,which mayturn out to have differentcharacteristicsin termsof the influence
of knowledgeandchoice.

Ourcontribution,however, is notonly in developingtheresultswepresented,but in
identifying someof theseveralfactorsthatplay a role in determiningthecoordination
of autonomousagents.Wealsomadesomeprogressin delineatingthetrade-offsamong
thesefactors.In general,in makingclaimsaboutanintuitively interestingconcept,we
mustavoid therisk thatotherfactorsmayintrudeinto ourrepresentation,processing,or
measurementandcollation.This is a difficult taskwheretheoreticaldevelopmentmust
be interleavedwith controlledexperimentationor simulation.We have only taken the
initial stepsof sucha systematicstudy.

Althoughthepresentresultsshouldnotbetakenasfinal, it is essentialto reportand
discussthem.This is becauseof two major reasons.One,the problemof learningto
coordinateandits relationshipto otherconceptsis crucialto theoriesandarchitectures
of agentsandmultiagentsystems.Two, thepresentkindsof studiesareof thecategory
of exploratoryresearch, whichCohen[2] eloquentlyarguesis key to empiricalresearch
andmustoccurprior to the formulationof moreprecisequestionsandexperimental
protocolsthatareultimatelythecoreof experimentalscience.

4.1 Literatur e

In addition to the works mentionedabove, someinterestingrelevant approachesare
known in theliterature.For instance,Kuwabaraetal. presenta market-basedapproach
in whichagentscontrollingdifferentresourcessettheirpricesbasedonprevioususage,
andbuyeragentschoosewhichresourcesto use[7]. Thebuyeragentcanusemorethan
oneresourceconcurrently, andseeksto minimizeits total priceit hasto pay. As in our
approach,thebuyer’sdecision-makingis probabilistic.Althoughtheirmodelis similar
to ours,they donotstudythereasonsfor achieving effectivecoordination.

Resultsby Hogg & Hubermanindicatethe potentialbenefitsof introducinghet-
erogeneityof differentforms [4]. Theseagreewith the intuition that in homogeneous
settings,thesharingof knowledgemayhaveanundesirableeffectoncoordination.This
is especiallysowhentheagentsmustmake complementarydecisionssoasto coordi-
nate,i.e.,move to differentlocations.Thisproblemis closelyrelatedto theemergence
of conventionsfor resourcesharing[8].

4.2 Futur eWork

Althoughwe introducedsomeinterestingconsiderations,a lot remainsto bedone.
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Choicebearsan interestingrelationshipto the notion of commitments.It appears
thatthetwo arecomplementaryin thatthegreatertheagent’schoicethelower its com-
mitmentto a particulardecision.Previousexperimentalwork by Kinny & Georgeff [6]
andPollacket al. [9] appearsespeciallyrelevant.However, thereis morestructureto
commitmentsthatthepresentsetupdoesnotcapture;someof this is discussedin [12].

We mentionsomehigh-level openissuesthat would extend the experimentsde-
scribedabove.Althoughnotasdetailedashypotheses,they canbestudiedin variations
of thepresentexperiments.

I1. The improvementin speedwith a nonzerobandsuggestsa naturaltrade-off be-
tweenthe time takenandthequality of thesolution.We conjecturethat the time
requiredincreasesexponentiallyasthetoleranceis reducedto zero.

I2. In settingswheretheagentscoordinateby makingthesimilar, but noncomplemen-
tary, decisions,increasingthesharingof knowledgewill improvecoordination.

I3. A largeclassof strategiesleadingto adaptive behavior maybe approximatedby
varyingtheinertiaof theagentsdynamically.

Ourprogramsanddataareavailable(for educationalandresearchpurposes)from
http://www4.ncsu.edu/eos/info/dblab/agents/skrustog/data/.
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