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Abstract. We address the problem of constructing multiagent systems by coor-
dinating autonomous agents, whose internal designs may not be fully known. We
develop a customizable coordination service that (a) takes declarative specifica-
tions of the desired interactions, and (b) automatically enacts them. Our approach
is based on temporal logic, and has a rigorous semantics and a naturally distributed
implementation.

1 Introduction

Open information environments are heterogeneous, distributed, dynamic, large, and
frequently comprise autonomous components. For these reasons, they require solutions
that marry artificial intelligence (AI) and traditional techniques to yield extensibility
and flexibility. Agents are a result of this marriage. Currently, many agent approaches
are centralized in a single agent. However, centralization has obvious shortcomings in
accommodating the above properties of open environments. Consequently, there has
been increasing interest in multiagent systems [11, 19], which can yield the benefits of
intelligent agency while preserving openness and scalability.

What sets multiagent systems apart from single agents is that they require the agents
to behave in a coordinated manner—agents must follow some protocol even to com-
pete effectively. Therefore, the designer of a multiagent system must handle not only
the application-specific aspects of the various agents, but also their interactions with
one another. Current approaches to constructing multiagent systems offer no special
coordination support to the designer, who must manually ensure that the (potentially
autonomous) agents interact appropriately. This can lead to unnecessarily rigid or subop-
timal designs, wasted development effort, and sometimes to the autonomy of the agents
being violated. We believe it is the difficulty of constructing effective coordination that
has led many researchers and practitioners to the centralized approaches.

To alleviate this problem, we propose that coordination be separated into a distinct
service. The service would be responsible for delivering the desired coordination. This
presupposes that the service takes declarative specifications of the desired interactions,�
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and include the functionality to enact them. This service should be customizable, be-
cause each application has its own requirements for coordination. This service should
be minimally intrusive so as to preserve the autonomy of the participating agents. Such a
service would help improve designer productivity. It would also help improve system ef-
ficiency by optimizing and enacting the desired coordination in a changing environment,
potentially generating a different execution each time.

This is the kind of service we have developed. It mediates between the infrastructure
and the application-specific components. It includes functionality to specify the desired
coordination, translate them into low-level “events,” and schedule them through passing
appropriate messages among agents. The low-level events correspond to the agents’ sig-
nificant (external) transitions. Capturing the specifications of the coordination explicitly
enables us to flexibly execute them, thereby maintaining the key properties of interac-
tions across different situations. Thus a programmer can create a multiagent system by
defining (or reusing) agents, and setting them up to interact as desired. Managing the
coordination requires knowledge only of the agents’ external events that feature in the
interactions.

Our service enhances techniques from workflow and relaxed transaction scheduling
in databases. It is rigorous, being based on temporal logic. It includes abstractions for (a)
a semantics of events in a multiagent system and (b) message passing to implement con-
trol and data flow [9]. Our approach is distributed and requires only limited knowledge
of the agents’ behavior.

As we show in section 3, our formal language is quite simple. Simplicity and rigor are
both crucial: a service should be easy to use and highly reliable. Intuitively, this service
is analogous to truth maintenance systems (TMSs), which are immensely successful
because of their simplicity, and enable design of complex systems. Similarly, we do
not expect our service to replace more sophisticated approaches [6, 19], but to facilitate
their robust implementation.

Section 2 motivates and presents our conceptual approach. Section 3 describes our
algebra for specifying interactions and uses it to formalize an example from section 2,
as well as the contract net protocol (CNP). Section 4 shows how the service operates.
Section 5 reviews the pertinent literature.

2 A Coordination Service

Although our approach is generic, we consider information search applications for
concreteness. In such applications, agents cooperate to perform combinations of tasks
such as resource discovery, querying heterogeneous databases, and information retrieval,
filtering, and fusion. Our running example follows.

Example1. Consider a ship on the high seas. Suppose an engine spare-part, a valve,
runs low in the ship’s inventory. This can lead the maintenance engineer to a search for
information: Are such valves available at the next sea-port to be visited? Intuitively, she
must access the bridge to find the next sea-port, query a directory of suppliers, and call
up the suppliers at the next sea-port.

Consider a multiagent approach that uses information agents for each resource [11]:



Example2. The search of Example 1 involves querying the bridge agent for the next
port, querying a directory agent to find suppliers in the next port, and mapping over the
list of suppliers to ask each of their agents about the desired valve. One positive response
is enough, but additional responses improve reliability and help optimize other criteria,
e.g., the price.

Clearly, since the directory and suppliers are autonomous, so must their agents be.
However, the agents must be coordinated to carry out the search.

2.1 Agent Events and Skeletons

There are two aspects of the autonomy of agents that concern us. One, the agents are
designed autonomously, and their internal details may be unavailable. Two, the agents
act autonomously, and may unilaterally perform certain actions within their purview.
We assume that the designer has some limited knowledge of the agents’ designs. This
knowledge is in terms of their externally visible actions, which are potentially significant
for coordination. We call these the significant eventsof the agent. We consider four kinds
of events, which have different properties with respect to coordination. Events may be

– flexible, which the agent is willing to delay or omit
– inevitable, which the agent is willing only to delay
– immediate, which the agent is neither willing to delay nor omit
– triggerable, which the agent is willing to perform based on external request.

The first three categories are mutually exclusive; each can be conjoined with trigger-
ability. Intuitively, immediate events are those that the agent performs unilaterally. We
do not have a category where an agent will entertain omitting an event, but not delaying
it, because unless the agent performs the event unilaterally, there must be some delay in
receiving a response from the service.

It is useful to view the events as organized into a skeletonto provide a simple model
of an agent for coordination purposes. This model is typically a finite state automaton.
Although the automaton is not used explicitly by the coordination service during exe-
cution, it can be used to validate specified coordination requirements. The set of events,
their properties, and the skeleton of an agent depends on the agent, and is application-
specific. The coordination service is independent of the exact skeletons or events used
in a multiagent system. Although traditional database approaches, e.g., [4], are limited
to loop-free skeletons, which correspond to single-shot queries or transactions, we place
no such restrictions here. Example 3 discusses two common skeletons in information
search.

Example3. Figure 1 shows two skeletons that arise in information search. The left
skeleton is suited for agents who perform one-shot queries. Its significant events are
start (accept an input and begin), error, and respond (produce an answer and terminate).
The right skeleton is suited for agents who filter a stream or monitor a database. Its
significant events are start (accept an input, if necessary, and begin), error, end of
stream, accept (accept an input, if necessary), respond (produce an answer), more (loop
back to expecting more input). In both skeletons, the application-specific computation
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Fig. 1. Example Skeletons: (l) Simple querying agent; (r) Information filtering agent

takes place in the node labeled “Executing.” We must also specify the categories of the
different events. For instance, we may state that error, end of stream, and respond are
immediate, and all other events are flexible, and start is in addition triggerable.

2.2 Architecture of the Service
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Fig. 2. The coordination service, logically

Figure 2 shows how the service interacts with agents. The agents inform it of the
immediate events that have happened unilaterally and requestpermission for inevitable
and flexible events, which it may control; The service grants or deniespermissions,
notifiesthe agents, or triggersmore events. It can delay inevitable events; delay or deny
flexible events; and trigger triggerable events. Any necessary reasoning on intermediate
results for decision-making is carried out through application-specific subtasks.

Although we logically view the service as lying beneath each agent, it is not a
separate entity in the implementation! It is distributed across the significant events of
each agent. The following sections show how events exchange messages whose content
and direction are automatically compiled.



3 Formalizing Coordination

We formalize interactions in an event-based linear temporal logic. J , our specification
language, is propositional logic augmented with the before ( K ) temporal operator. The
literals denote event types, and canhave parameters.A literal with all constant parameters
denotes an event token. Before is formally a dual of the more conventional “until”
operator. Crucially, J can express a remarkable variety of interactions, yet be compiled
and executed in a distributed manner.

The syntax of J follows. L includes all event literals (with constant or variable
parameters); MONPL contains only constant literals. A dependencyis an expression inJ . A workflow, Q , is a set of dependencies.

Syntax 1. LONRJ
Syntax 2. S 1 T S 2 U JWVXS 1 Y S 2 T S 1 Z S 2 T S 1 K[S 2 U J

Like for many process algebras, our formal semantics is based on traces, i.e., se-
quences of events. Our universe is \^] , which contains all consistent traces involving
event tokens from M . Consistent traces are those in which an event token and its com-
plement do not occur, and in which event tokens are not repeated. _ _a` ` : JcbdfeBgh\^]:i
gives the denotation of each member of J . The specifications in J select the acceptable
traces—specifying S means that the service may accept any trace in _ _�Sj` ` .

Let constant parameters be written as k�l etc.; variables as m0l etc.; and either variety
as nol etc. p'_�k 1 q[q0q k�rs` means that p occurs appropriately instantiated.

Semantics 1. _ _�p,_�k 1 q0q[q k�r<`t` `:uwv	x U \^] : p,_�k 1 q0q[q k�ry` occurs on x z
p refers to the complement of p . Since _ _a` ` yields sets of traces, complementation is

stronger than negation in other temporal logics. Intuitively, p�_�k 1 q0q[q k�r<` is established
only when it is definite that p'_�k 1 q[q0q k�rs` will never occur. This is crucial in the correct
functioning of our service. Complemented literals are included in L and need no separate
syntax or semantics rule.S�g?m'i refers to an expression free in variable m . S�g?m :: uOk�i refers to the expression
obtained from S�g?m'i by substituting every occurrence of m by k . Variable parameters are
effectively universally quantified by:

Semantics 2. _ _�S{ghm'ih` `Iu}|�~��[��_ _�S�g?m :: u�k�i(` `
S 1 Y S 2 means that either S 1 or S 2 is satisfied. S 1 Z S 2 means that both S 1 and S 2 are

satisfied (in any interleaving). S 1 K[S 2 means that S 1 is satisfied before S 2 (thus both are
satisfied).

Semantics 3. _ _�S 1 Y S 2 ` ` uO_ _�S 1 ` `3��_ _�S 2 ` `
Semantics 4. _ _�S 1 Z S 2 ` ` uO_ _�S 1 ` `3��_ _�S 2 ` `
Semantics 5. _ _�S 1 K�S 2 ` ` u�vjx 1 x 2 U \^] : x 1 U _ _ S 1 ` ` and x 2 U _ _�S 2 ` `hz

Section 4.2 presents a set of equations, which enable symbolic reasoning on J to
determine when a certain event may be permitted, prevented, or triggered.



3.1 Specification

Our language allows a variety of relationships to be captured. We now consider some
common examples. These assume that we are given events � , � , and � in different agents.
The events all carry parameter tuples, but we don’t show them below to reduce clutter.
(We assume that � (before) has precedence over � and � , and � has precedence over � .)
Some of these relationships are then applied on our running example.

R1. � is required by � . If � occurs, � must occur before or after � : �/� �
R2. � disables � . If � occurs, then � must occur before � : �@� ���������
R3. � feeds � . � requires � to occur before: �<����� �
R4. � conditionally feeds � . If � occurs, it feeds � : �@���y�[��� �
R5. Guaranteeing � enables � . � can occur only if � has occurred or will occur:�@����� �/� �
R6. � initiates � . � occurs iff � precedes it: �B� �����y�[�
R7. � and � jointly require � . If � and � occur in any order, then � must also occur (in

any order): �@� �����
R8. � compensates for � if � doesn’t happen: � ���������3����� �=���0�#��� �=� ���

The above (and similar) relationships can capture different coordination require-
ments. For example, R3 suggests an enabling condition or a data flow from � to � . R8
captures requirements such as that if an agent does something ( � ), but another agent
does not match it with something else ( � ), then a third agent can perform � —which
might restore consistency by undoing � . Notice that R7 and R8 involve events of three
agents.

Example 4 formalizes Example 2. Here, � denotes the unique id of the information
search through which the various instantiations of the relevant computations in the
agents are tied together. ���,� is a variable bound to a tuple. �0�'� is a variable bound
to a supplier. � indicates the availability of the desired valve. Subscripts � ,   , and ¡
respectively denote start, respond, and accept events.

Example4. Assume five types of agents corresponding to different functions: ¢ to the
bridge, £ a directory lookup, ¤ the main queries (there is one agent for each supplier),¥

to map over the responses of £ , and ¦ to fuse the results.
¥

takes a single input at
start. Thus, ¢ , £ , and the ¤ s are information agents, and

¥
and ¦ are task agents [19].

Assume all agents except
¥

have skeletons as in Figure 1(l) with £ returning a
tuple response containing a list of suppliers and ¤ being invoked on each of its members.¥

has a skeleton as in Figure 1(r).
¥

is started with tuple ���,� of suppliers, and initiates
a query to each supplier agent. This yields:

D1. ¢s§3¨��<�:©	 E�?ª feeds £�«	¨��<�:©	 E�?ª
D2. £¬§3¨��<���,��ª feeds

¥ «A¨ ����,��ª
D3.

¥ § ¨��®�[�,��ª initiates ¤�¯(°�±« ¨���ª
D4.

¥³²(´2µ ¨ �{ª initiates ¦¶«0¨���ª
D5. ¤�¯(°�±§ ¨��®�0ª conditionally feeds ¦ « ¨��{ª .



3.2 Contract Net Protocol

Our approach applies well to higher-level coordination protocols, such as the CNP [5].
Briefly, the CNP begins when the manager sends out a request for proposals (RFP);
some potential contractors respond with bids; the manager accepts one of the bids and
awards the task. Much of the required reasoning is application-specific, e.g., who to
send the RFP to, whether to bid, and how to evaluate bids.

Example5. Since all agents can play the role of manager or contractor, we assume that
all have the same significant events. Any agent because of internal reasons can perform
the ·®¸�¹�º¼» ½¿¾yÀ�Á event. Here ½ is the manager id, ¾ is the task id, and À is a potential
contractor—there will be a separate event for each À . (Multicasts can also be captured.)
This involves the following dependencies:

D6. ·®¸�¹�º:»�½Â¾/À infoÁ initiates ·¬ÃtÄ�Å�Æ0Ç'»�À�¾È½ infoÁ
D7. ·�ÉaÅËÊ�»�À�¾È½ bidÁ conditionally feeds ·�ÌaÍ�Î�Ï�» ½P¾ÈÀ bidÁ
D8. ·�Î�Ð:Î�¸�Ê,» ½�¾ÈÀ taskÁ initiates ·®Ð:Ñ�¸?Ç'» ÀÈ¾È½ taskÁ .

D6 means that the receiving agents think about the RFP and autonomously decide to
bid or not bid. If not, they exit the protocol. If they continue, D7 kicks in. The manager
now autonomously evaluates bids, leading to an award on one of them, which triggers
the work, because of D8.

4 Scheduling

One of our requirements is that the coordination service be as distributed as possible,
which presupposes that the events take decisions based on local information. Our ap-
proach requires (a) determining the conditions, i.e., guards, on the events by which
decisions can be taken on their occurrence, (b) arranging for the relevant information to
flow from one event to another, and (c) providing an algorithm by which the different
messages can be assimilated.

4.1 Temporal Logic

Intuitively, the guard of an event is the weakest condition that guarantees correctness
if the event occurs. Guards must be temporal expressions so that decisions taken on
different events can be sensitive to the state of the system, particularly with regard
to which events have occurred, which have not occurred but are expected to occur,
and which will never occur. The guards are compiled from the stated dependencies; in
practice, they are quite succinct.Ò

, the language in which the guards are expressed, captures the above distinctions.
Intuitively, ÓyÔ means that Ô will always hold; Õ®Ô means that Ô will eventually hold
(thus Ó×Ö entails Õ®Ö ); and Ø/Ô means that Ô does not (yet) hold. Ô}Ù�Ú means that Ú has
occurred preceded by Ô . For simplicity, we assume the following binding precedence
(in decreasing order): Ø ; Ù ; Ó and Õ ; Û , Ü .

Syntax 3. ÝÂÞ Ò



Syntax 4. ß^à�á�â�ãwäåß³æ�á , ßèç�á , ß�é�á , êyß , ë®ß , ì/ßÂâ�ã
The semantics of ã is given with respect to a trace (as for í ) and an index into

that trace. This semantics characterizes progress along a given computation and uses it
to determine the decision on each event. Our semantics has important differences from
traditional linear temporal logics [7]. One, our traces are sequences of events, not of
states. Two, most of our semantic definitions are given in terms of a pair of indices, i.e.,
intervals, rather than a single index. For 0 î�ï¶î�ð , ñ�ò óõô(ö ÷øß means that ß is satisfied
over the subsequence of ñ between ï and ð . For ð�ù 0, ñúò óø÷=ß means that ß is satisfied
on ñ at index ð —implicitly, ï is set to 0. ûýü þ,ÿ is the empty trace.

A trace, ñ , is maximaliff for each event, either the event or its complement occurs
on ñ . ���wü the set of maximal traces. We assume ���ó�� ; hence, �	�ó
� . Semantics 6,
which involves just one index ï , invokes the semantics with the entire trace until ï . The
second index is interpreted as the present moment. Semantics 8, 9, 11, and 12 are as
in traditional formal semantics. Semantics 13 and 14 involve looking into the future.
Semantics 7 and 10 capture the dependence of an expression on the immediate past,
bounded by the first index of the semantic definition. Semantics 10 introduces a nonzero
first index.

Semantics 6. ñúò óõô¶ß iff ñúò ó 0 ö ô#ß
Semantics 7. ñúò óõô(ö ÷�� iff ���� : ï¶î���î ð and ñ��=ó���� , where ��â��
Semantics 8. ñúò ó ô(ö ÷ ß³æ�á iff ñ ò ó ô(ö ÷ ß or ñ ò ó ô(ö ÷ á
Semantics 9. ñúò ó ô(ö ÷ ß³ç�á iff ñ ò ó ô(ö ÷ ß and ñúò ó ô(ö ÷ á
Semantics 10. ñúò ó ô(ö ÷ ßÂé0á iff ���� : ïDî���î ð and ñ�ò ó ô�ö � ß and ñúò ó ��� 1 ö ÷ á��
Semantics 11. ñúò ó ô(ö ÷��
Semantics 12. ñúò ó ô(ö ÷ ìBß iff ñ��ò ó ô(ö ÷ ß
Semantics 13. ñúò ó<ô(ö ÷®êyß iff �� � : ð�î!�ä ñúò óõô(ö �øß��
Semantics 14. ñúò ó<ô(ö ÷=ë¬ß iff ���� : ð�î!� and ñúò ó<ô�ö �øß��
4.2 Calculating Guards

Since the guards must yield precisely the computations that are allowed by the given
dependencies, a natural intuition is that the guard of an event covers each computation
in the denotation of the specified dependency. For each computation, the guard captures
how far that computation ought to have progressed when the guarded event occurs,
and what obligations would remain to realize that computation. We term this reasoning
residuationand notate it by an operator " : í$#��&%' í , which is not in í or ã . Roughly,
given a dependency ( and event ) , (*"+) gives the residual or “remnant” of ( after )
occurs.



Interestingly, , can be computed symbolically. We propose a set of equations exists
using which the “residual” of any dependency with respect to an event can be computed.
These equations require that the expressions be in a form such that there is no - or .
in the scope of the / (CNF is one such form). Such a representation exists, because of
the distribution laws validated by the semantics of 0 . Because of this restriction, in the
equations below, 1 is a sequence expression, and 2 is a sequence expression or 3 (the
latter allows us to treat an atom as a sequence, using 4�5647/�3 ). 8:9<; =?> : > or >
occurs in 2A@ . (We define > as > .) We set the denotation of any sequence > 1 /�B�BCB?/�>ED in
which (for F�GHJI ) >LK H >NM or >LK H >OM to the empty set; we assume such sequences are
reduced to 0.

Equation 1. 0 ,�> H 0

Equation 2. 3P,�> H 3
Equation 3. Q�2 1 -$2 2 R ,�> H QNQ�2 1 ,�> R -$Q�2 2 ,+> RNR
Equation 4. Q�2 1 .$2 2 R ,�> H Q�2 1 ,+>S.$2 2 ,+> R
Equation 5. Q�>T/�2 R ,+> H 2 , if >*GU 8 9
Equation 6. 1*,+> H 1 , if >VGU 8XW
Equation 7. Q�>EY:/L2 R ,�> H 0, if > U 8:9
Equation 8. Q >T/�2 R ,+> H 0

We define guards as below. These cases cover all the syntactic possibilities of 0 . Im-
portantly, our definition distributes over - and . : using our normalization requirement,
each sequence subexpression can be treated separately. Thus the guards are succinct for
the common cases, such as the relationships of section 3.1.

Definition 1. The guards are given by the operator Z : 0\[^]`_acb :
(a) ZSQ�1 1 .$1 2 d > R ; ZeQ�1 1 d > R .�ZeQ�1 2 d > R ;
(b) ZeQ�1 1 -$1 2 d > R ; ZSQf1 1 d > R -7ZSQf1 2 d > R ;
(c) ZSQ�> 1 /�B�BCB�/C>LKg/?BCB�B?/C>LD d >EK R ; hi> 1 -�BCB�Bj-7hi>EKlk 1 -$mAQf>LK�n 1 /+BCB�B?/C>LD R ;
(d) ZeQ�> 1 /+BCBCB?/�>ED d > R ; mAQ�> 1 /?BCBCB?/�>ED R , if =o> d >p@�Gq =?> 1 d > 1 d BCB�B d >LD d >ED�@ ;
(e) ZSQ�> 1 /�B�BCB�/C>LKg/?BCB�B?/C>LD d >EK R ; 0;
(f) ZSQ 0 d > R ; 0;
(g) ZeQN3 d > R ; 3 .

Example6. We compute the guards for the events in R2 as follows:

– ZSQ R2 d > R H m 4A.7hi4 .
– ZSQ R2 d > R H 3 .
– ZSQ R2 d 4 R H 3 .
– ZSQ R2 d 4 R H Q�m >r.7Q�se>S-$m�> ROR , which equals sS> under the semantics of b .

Thus > and 4 can occur at any time. However, > can occur only if 4 has occurred or will
never occur. Similarly, 4 can occur only if > has not yet occurred (it may or may not
occur in the future).



4.3 Scheduling with Guards

Execution with guards is straightforward. When an event t is attempted, its guard is
evaluated. Since guards are updated whenever an event mentioned in them occurs,
evaluation usually means checking if the guard evaluates to u . If t ’s guard is satisfied,
t is executed; if it is 0, t is rejected; else t is made to wait. Whenever an event occurs, a
notification is sent to each pertinent event v , whose guards are updated accordingly. If
v ’s guard becomes u , v is allowed; if it becomes 0, v is rejected; otherwise, v is made
to wait some more. Example 7 illustrates this. The correct disablement interpretation of
R2 also requires setting the categories of the events appropriately, which we lack the
space to discuss.

Example7. Using the guards from Example 6, if v is attempted and t has not already
happened, v ’s guard evaluates to u . Consequently, v is allowed and a notification wiv is
sent to t (and t ). Upon receipt of this notification, t ’s guard is simplified from x vTy*wzv
to u . Now if t is attempted, it can happen immediately.

If t is attempted first, it must wait because its guard is x vey�wzv and not u . Sometime
later if v or v occurs, a notification of w v or wzv is received at t , which simplifies its
guard to u , thus enabling t . Events v and t have their guards equal to u , so they can
happen at any time.

Abstractly, given a workflow, our evaluation technique generatestraces as follows.
We sloppily write generation as {}|�~ and define it as ����� : �T��� ~g� ��{�|
�r~�� ,
where {�|�~ ��� ��� � : 1 �
�$�`�S��~�����p� 1 � ��{���~��?�N� . From this we obtain the
following correctness result, which states that precisely those traces are generated that
are in the denotation of the stated dependencies. A rigorous formalization is available
in [18].

Theorem 2. {<|}~ iff ��������{ : ~�� �
�*� .

Assimilating Messages The above result establishes correctness abstractly without re-
gard to how it is determined whether ~�� ���p� 1 � ��{��j~+�?� for a trace ~ and an index � . Our
approach computes � �r�p� 1 incrementally as much as possible. Events produce notifica-
tions, which are incrementally assimilated by the recipients, leading to simplification of
their guards. The operator � captures the assimilation process. This operator embodies
a set of “proof rules” to reduce guards when an event occurs or is promised.

When the dependencies involve sequence expressions, the guards can end up with
sequence expressions, which indicate ordering of the relevant events. In such cases,
the information that is assimilated into a guard must be new. This is because the
stability of events is in tension with ordering. If t 1 � t 2 is specified, we wish to refer
to the first occurrences of t 1 and t 2—otherwise, we would end up allowing ��t 2 t 1   ,
and thereby t 1 � t 2 would be violated. For this reason, the updates in those cases
involve ¡ expressions, which are not ordinarily sent as messages. These are discussed
as prohibitory relationships below.

Theorem 3 means that the operator � preserves the truth of the original guards. The
receipt of a message, no matter how delayed, cannot cause any violation. In other words,



Old Guard ¢ Message £ New Guard ¢�¤�£
¢ 1 ¥ ¢ 2 £ ¢ 1 ¤�£ ¥ ¢ 2 ¤�£
¢ 1 ¦ ¢ 2 £ ¢ 1 ¤�£ ¦ ¢ 2 ¤�£§©¨ §©¨ ª
§ ¨ §©¨

or « ¨ 0
« ¨ §©¨

or « ¨ ª
« ¨ §©¨

or « ¨ 0§S¬�¨
1  ¨ 2 ® §©¨

1 ¦°¯ ¨ 2
§g¨

2§S¬�¨
1  ¨ 2 ® §©¨

2 ¦°¯ ¨ 1 0§S¬�¨
1  ¨ 2 ® § ¨E±

or « ¨L± , ²�³$´ 1 µ 2 ¶ 0
« ¬�¨ 1  ¨ 2 ® §©¨

1 ¦°¯ ¨ 2 « ¨ 2« ¬�¨ 1  ¨ 2 ® §©¨
2 ¦°¯ ¨ 1 0

« ¬�¨ 1  ¨ 2 ® § ¨E±
, ²X³�´ 1 µ 2 ¶ 0

¯ ¨ §©¨
0

¯ ¨ §©¨
or « ¨ ª

¢ £ ¢ , otherwise

Table 1. Assimilating Messages

no spurious traces are generated by our assimilation process. We can also show that all
of the original traces are still generated.

Theorem 3. ·�¸ ¹»º!¼ : ½�¾ ¿PÀ�Á and ½�¾ ¿rÂ�Ã�Ä\Á&ÅgÆ<½�¾ ¿rÂ�Ã .

Mutual Constraints Among Events By the above, if the events send the appropriate
notifications, we can compute the semantics of Ç incrementally. But in some situations
potential race conditions and deadlocks can arise. To ensure that the necessary informa-
tion flows to an event when needed, the execution mechanism should be more astute in
terms of recognizing and resolving mutual constraints among events. This reasoning is
essentially encoded in terms of heuristic graph-based reasoning. Although we believe
we can handle the interesting cases, pathological cases can arise that cannot be easily
handled without assistance from a human designer.

Prohibitory RelationshipsDuring guard evaluation for an event È , subexpressions of
the form ÉSÊ may need to be treated carefully. We must allow for situations where the
message announcing Ê occurrence could be in transit when ÉSÊ is evaluated, leading to
an inconsistent evaluation. A message exchange with Ê ’s actor is essential to ensure that
Ê has not happened and is not happening—essentially to serialize the execution where
necessary.

Example8. Following Example 6, Ê should not occur unless we can be sure that È has
not occurred.



This is a prohibitory relationship between events, since Ë ’s occurrence can possibly
disable Ì (depending on the rest of the guard of Ì ). Prohibitory messages can be avoided
if the disabler is made responsible for preserving the correct order of execution—in our
approach this can always be done, except when the disabler is an immediate event.

PromissoryRelationshipsIf the guard on an event is neither Í nor 0, then the decision
on it can be deferred. The execution scheme must be enhanced to prevent mutual waits
in situations where progress can be consistently made.

Example9. Consider Î�ÏÑÐ R1 Ò R2 Ó . ÔSÕfÎ`ÒjËCÖSÏØ×ÙÌ°Ú$ÛSÌ and ÔSÕ�Î�Ò�Ì�ÖSÏÑÜiË�Ý$× Ë .
Roughly, this means that Ë waits for ×�Ì , while Ì waits for ÜiË .

The guards given in Example 9 do not reflect an inconsistency, since Ì is allowed to
occur after Ë . This relationship is recognized during preprocessing. The events are set
up so that when Ì is attempted, it promisesto happen if Ë occurs. Since Ë ’s guard only
requires that Ì occur sometimes, before or after Ë , Ë is then enabled and can happen as
soon as it is attempted. When news of Ë ’s occurrence reaches Ì , Ì discharges its promise
by occurring.

The correctness of these and other strategies for resolving mutual constraints can
be established by recourse to the formal semantics of Þ and ß , and an associated
formalization of the execution process.

5 Discussion

We presented a generic, customizable coordination service for building multiagent
systems. Our approach hones in on the structure of the coordinating computations by
avoiding low-level details. It can thus facilitate the design and enactment of coordinated
behavior. Our approach introduces traditional scheduling ideas into an environment
of autonomous agents without requiring unnecessary control over their actions, or
detailed knowledge of their designs. In our present approach, the specifications are
given when the multiagent system is constructed. If the specifications do not conflict
with the autonomy of the agents, then they can be executed in a distributed manner.
Determining the coordination requirements on the fly would be an important extension,
and would be necessary when the coordination requirements are based on the agents’
social commitments [17].

The relevant previous tools for developing multiagent systems are either not formal,
are centralized or violate the autonomy of agents. AgenTalk [13] gives a programming
environment, but no formal semantics. Kabanza [12] adapts a traditional temporal logic
for synchronizing agent plans; his approach has a centralized scheduler and violates
autonomy by requiring full knowledge of, and modifying, the agents’ plans. Traditional
temporal logic approaches do not apply here. Such approaches preclude encapsulation
of the component computations as agents; they do not accommodate the notion of admis-
sibility, which captures the knowledge of the scheduler; they (in the case of databases)
are limited to single-shot transactions and not applicable to arbitrary, nonterminating,
complex computations that characterize agents.



Sycara & Zeng [19] articulate many of the intuitions that we share, including the ul-
timate necessity of multiagent, versus single-agent, approaches. They show how agents
need to be coordinated to collectively search or manage information in open environ-
ments. Oates et al [14] propose an approach for planning searches. However, their
approach does not have an explicit representation of search patterns, and does not apply
generically. The search techniques are captured as different search patterns in our ap-
proach. Decker & Lesser [6] present coordination algorithms in the generalized partial
global planning framework. This work is both more and less ambitious than our work.
It includes heuristics to reason about deadlines and coordination problems in various
situations, but it does not provide a formal semantics. We believe that our approach can
help encode their intuitions in a rigorous setting. Our approach complements the above,
because they develop semantic representations, whereas our approach focuses on the
activity management infrastructure itself.

There is also work on the lower-level aspects of providing robust infrastructures for
implementing multiagent systems, e.g., [1]. We believe this work is important, and can
in principle be used to support the kind of approach developed here.

High-level abstractions for agents have been intensively studied, e.g., [15]. Formal
research on interactions among agents includes [8]. These approaches develop formal
semantics, but do not give as precise an operational characterization. The present work
has a formal semantics along with an operational interpretation. There has been much
work on social abstractions for agents, e.g., [3]. We believe that the present infrastructure
will facilitate the development of a computational treatment of the social constructs by
capturing the mechanics of possible interactions in a succinct manner. Including mental
and social abstractions into a generic executable system is an important open problem.

We prototyped our approach initially in an actor programming language. We are
now reimplementing it with enhancements in Java. One of the enhancements being
developed is being able to switch between TCP/IP and CORBA for the underlying
functionality.CORBA is important, because it is becoming a de facto standard for lower-
level functionality in distributed systems. It provides an event service with notifications
and triggers [16], but not a coordination service of the sort we described.
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