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Abstract. Intelligent agents, invented in artificial intelligence (Al), are finding
application in anumber of traditional areas. Classical Al notions such as know!-
edge and intentions can serve as natural primitives for the specification of agents.
However, in order for them to live up to their promise, these notions must be given
rigorousdefinitions. We proposeformal definitionsfor intentions, knowledge, and
know-how in a general model of actions and time. Our definitions are concep-
tually simple and are designed to be modular, in the sense of being orthogonal
to one another. Using these definitions, we are able to prove a success result for
agentsthat is akin to the notion of livenessin traditional computing. Others have
been able to prove similar results only with the support of rather strong additional
assumptions.

1 Introduction

Agents have garnered much research interest of late. Like many previous artificial
intelligence (Al) ideas, as agent technology matures, it is moving into more traditional
computing applications. These include old chestnuts such as information management,
enterprise integration over heterogeneous databases, concurrent engineering, and so
on. The rapidly advancing infrastructure for computing and communications has aso
opened up several new applications, for which also agents are a natural technology.
These include accessing and using open information systems, agile manufacturing,
electronic commerce, and so on. Lastly, certain applications that have been known for
several years are picking up steam and are again natural targets for agent technol ogy.
These include robotics, space and aeronautics systems, and control systemsin general.
What makes agents applicablein such varied applicationsisthat they are natural |oci
of autonomous activity. While numerous definitions of agents have been proposed. We
like to use the following operational definition that includes their essential properties:
agents are entities with a persistent identity that are the loci of perception and behavior
(actions and communications) [26]. The autonomy of agentsis captured in the fact that
they are the loci of actions. Agents can in addition be mobile [27], reflective [10], and
lightweight threads [28]. The above is a useful definition for agentsin general.
However, in many cases of interest, the agent metaphor isthe most applicable when
the agents are given high-level cognitive specifications. This is described as taking an



intentional stance toward agents[14] or viewing them at the knowledge level [17]. The
high-level cognitive specificationstake the form of concepts such as beliefs, knowledge,
desires, and intentions. They are high-level, because they enable usto define the current
state of an agent, what the agent might do, and how the agent might behave in different
situations without regard to how the agent is implemented. These are perhaps the most
significant of the Al contributions to agents is the notion of high-level specifications
derived from cognitive notions such as beliefs and intentions.

Such high-level specifications serve as natural scientific abstractions for agents.
They promiseto simplify the capture of requirements on agents and of their interactions
with one another. However, to be used effectively, cognitive notions must be given
rigorous definitions in general models of actions and time. Our contributions must meet
the standards of traditional disciplines such as distributed computing if they are to find
application there.

Our research has sought to address this challenge. First, we give the simplest pos-
sible formal definitions that capture the key pretheoretic intuitions behind the various
primitives. Second, our definitions are conceptually mutually “orthogonal” in that the
various primitives are kept independent of each other as far as possible. This enables a
greater variety of situations to be perspicuously modeled. Third, our underlying model
of time and action is more general than in previous research. This not only extends the
applicability of our theories, but also yields greater accuracy, since irrelevant properties
of the underlying models do not affect the conceptually significant properties of our
primitives. There is a well-known tension in assigning cognitive properties to physical
systems. By assuming our modelsto be weakly deter ministic, we can capture the notion
of statejust asintraditional logicsof program approaches[5], and yet give anonvacuous
semantics for our primitives.

Like previous approaches, we make knowledge a primitive of our approach. But,
whereas traditional approaches consider know-that or the knowledge of facts solely, we
also formalize know-how or the knowledge of actions to achieve different conditions.
Our third primitiveisthat of intentions, also studied before, but to asmaller extent than
knowledge. Our work seeks to enhance both traditional and Al approaches.

Our enhancements to the traditional distributed computing approaches are chiefly
in adding the concepts of know-how and intentions, because know-that and time are
well-studied there [2, 5]. Know-How and intentions prove crucial because they enable
the separation of what an agent might perform from what the agent will perform given
certain intentions, knowledge, and abilities. Temporal logic has been used for several
years in reasoning about distributed systems [5]. It enables us to distinguish between
the conditions that are or are not attained in the computations of a distributed system.
Linear time temporal logic considers specific computations; branching time temporal
logic considers all possible computations. Although temporal logic has been used for
traditional distributed systems, it has certain weaknesses when dealing with agents that
are understood as acting autonomously. Temporal logic does not distinguish between
the conditions the agent is trying and failing to achieve and the conditions that fail to
hold for any other reason; similarly, it does not distinguish between conditionsthat hold
accidentally and those that the agent intends. These distinctions are important when
intelligent agents are involved, because they may be required to choose their actions



appropriately given their intentions and abilities. Indeed, the intentions adopted by
different agents can be a part of the specification of correct behavior. For example, we
might require our agents to intend to keep their promises even if they cannot guarantee
success—this is a reasonable communication constraint in the sense of [22]. Under
temporal logic, intended and unintended failures are equally unacceptable.

Our enhancements to past Al approaches, notably, [15, 4, 20] are chiefly in (a)
formalizing know-how, which has typically been ignored and (b) obtaining results
similar to the liveness and safety properties in a framework based on intentions and
know-how. We have pursued thisprogram of research for several years. A moreleisurely
description of our greater motivationsis presented in [24]. The technical framework of
branching time and the formalization of know-how are shared with our previous work.
The present paper has a new formalization of intentions, of the constraints on models,
and of the key results.

Informalizing variouscognitiveconcepts, theinferencesthat areinvalidated areoften
asimportant astheinferencesthat are validated. By carefully separating intentionsfrom
know-how and know-that, our approach prevents various spurious inferences, e.g., that
intenti ons presuppose know-how or that intentions presuppose absence of know-how to
the contrary.

Examplel. Consider a simplistic automatic teller machine (ATM). Traditionally, afor-
malization of its behavior involves specifying the conditions under which it produces
money for a customer. One way to capture this requirement would be to state that when
acustomer insertsacard, the card isfound valid, and the ATM has enough money, then
the ATM gives out money (the desired amount).

The above kind of a constraint is naturally captured in temporal logic [8, 18].
However, it conflates the issues of whether the ATM intends to give the money and
whether it can given the money. If avalid card is found, the ATM may intend to give
money below some limit, but may not be able to do so, because of various reasons—
e.g., it is out of money, the rollers are jammed, or whatever. If an ATM may have
multiple ways of satisfying an intention, then it would be inappropriate to specify each
of them—it should be l&ft to the implementer to decide those.

High-level specifications also enable negotiation. For example, if the ATM infers
the customer’s intention to obtain money and is unable to fulfill the specific amount
requested, it can offer to disbursea smaller amount. I

Example2. Consider a simple household helper robot that can perform some typical
chores. How can we specify the behavior of this robot? How can we arrange to give
commands to this robot without having to program in some procedural or low-level
language? The robot is naturally thought of as having beliefs and intentions, being
able to perform actions, and so on. With these primitives, we can specify the expected
behavior of the robot whileleaving the detail sof how to buildit opento the implementer.
Further, we can tell the robot to perform certain high-level tasks. I

Section 2 presents our formal framework, highlighting our core temporal language
and its semantics. Section 3 formalizes intentions in the above framework and shows
some useful properties of this formalization. Section 4 presents a formal semantics for



know-how. Section 5 relates know-how and intentions to derive the key success result
of this paper.

2 Technical Framework

The proposed formal model is based on a set of moments with a strict partial order,
which denotestemporal precedence. Each moment is associated with a possible state of
the world, which isidentified by the atomic conditions or propositionsthat hold at that
moment. A scenario at a moment is any maximal set of moments containing the given
moment, and all momentsinits future along some particular branch. Thusascenarioisa
possible course of events, i.e., aspecific, possible computation of the system. It isuseful
for capturing many of our intuitions about the choices and abilities of agentsto identify
one of the scenarios beginning at a moment as the real one. This is the scenario on
which the world progresses, assuming it was in the state denoted by the given moment.
Constraints on what should or will happen can naturally be formulated in terms of the
real scenario.

... reality

ta

Fig. 1. An Example Formal Model

Figure 1 has a schematic picture of the formal model. Each point in the pictureisa
moment. Each moment isassociated with apossible state of theworld, whichisidentified
by the atomic conditions or propositions that hold at that moment (atomic propositions
are explained in section 2.1). With each moment are al so associated the knowledge and
intentions of the different agents. A condition p is said to be achieved when a state is
attained in which p holds. There is a partial order on moments that denotes temporal
precedence. In general, time may branch into the future—in any interesting application,



it does. Sincethe past isdetermined at each moment, the temporal precedencerelationis
taken to be linear in the past. The ignorance that some agent may have about the past is
captured by the general mechanism of beliefs. A scenario at amoment is any maximal
set of moments containing the given moment, and all momentsin its future along some
particular branch.

Example3. Figure 1 is labeled with the actions of two agents. Each agent influences
the future by acting, but the outcome also depends on other events. For example, in
Figure 1, thefirst agent can constrain the future to some extent by choosing to do action
a or action b. If he does action a, then the world progresses along one of the top two
branches out of ¢o; if he does action b, then it progresses along one of the bottom two
branches. I

The important intuition about actions is that they correspond to the granularity at
which an agent can make his choices. The agent cannot control what exactly transpires,
but he can influence it to some extent through his actions.

Example4. In Figure 1, the first agent can choose between ¢; and ¢, on the one hand,
and between t3 and ¢4, on the other hand. However, he can choose neither between ¢1
and t,, nor between ¢5 and 4. 1

Example5. Weformalize part of Example 2. Referringto Figure 1 again, let usinterpret
proposition ¢ to mean “the room is warm” and r to mean “the room has a breeze” Let
us interpret actions a, b, ¢, and d as“turn on high heat,” “turn on medium heat,” “open
window,” and “turn on light,” respectively. If our robot turns on high heat, then the room
becomeswarm irrespective of the other agent’s actions, whereasif he turns on medium
heat, it becomes warm quickly only if the window is not opened. I

” o

2.1 TheFormal Language

We use a qualitative temporal language, £, based on CTL* [5]. This captures the
essential properties of actions and time that are of interest in specifying intelligent
agents. Formally, £ istheminimal set closed under therulesgiven below. Here £ isthe
set of “scenario-formulas,” which isused as an auxiliary definition. @ is a set of atomic
propositional symbols, .4 is a set of agent symbols, 53 is a set of basic action symbols,
and X is aset of variables. We give intuitive meanings of the constructs of our formal
language after the following syntactic definitions.

L1. ¢ € @ impliesthat ¢ € £

L2. p,q€e Landz € Aimpliesthat p A q, -p, Pp, (\/ a : p), (zKip) € £

L3. L CL;

L4 p,q€ Ly, z € A, anda € Bimpliesthat p A q, —p, pUgq, z[a]p, z(a)p € L,
L5. p € L, impliesthat Ap,Rp e L

L6. pe (L; — L)anda € X impliesthat (\/a : p) € L,

L7. p€ L, andz € Aimpliesthat (zlp), (zKp) € £



Theformulasin £ refer to momentsin the model, which describe states or snapshots
of the system. The formulas in £, refer to scenarios in the model, i.e., to specific
computations of the system. Notethat £ C £,. However, our formal semantics, givenin
section 2.2, ensuresthat theformulasin £ are given aunique meaning even if interpreted
asbeingin L.

The atomic propositions and boolean combinations of them are used to describe
states of the system. They do not consider how the system may evolve or has been evol v-
ing. Two useful abbreviations are false = (p A —p), for any p € @, and true = —false.
The temporal and action formulas explicitly consider the evolution of the system—the
scenario-formulas along a specific scenario and the other formulasalong all or some of
the possible scenarios. pUq istrue at a moment ¢ on a scenario, iff ¢ holds at a future
moment on the given scenario and p holds on all moments between ¢ and the selected
occurrence of ¢q. Fp meansthat p holds sometimesin the future on the given scenario and
abbreviates trueUp. Gp means that p always holds in the future on the given scenario;
it abbreviates -F—p. Pq¢ meansthat ¢ held in a past moment (we assume alinear past).
The branching-time operator, A, denotes “in all scenarios at the present moment.” Here
“the present moment” refers to the moment at which a given formula is evaluated. A
useful abbreviation is E, which denotes “in some scenario at the present moment.” In
other words, Ep = —A-p.

Example6. InFigure 1, EFr and AF(q V r) hold at o, since r holds on some moment
on some scenario at to and ¢ holds on some moment on each scenario. |

The reality operator, R, denotes “in the real scenario at the present moment.” R is
novel to our approach and helps tie together intuitions about what may and what will

happen.

Example?. In Figure 1, RFq holds at #q, since ¢ holds on some moment on the real
scenario identified at #o. 1

L also contains operators on actions. These are adapted and generalized from dy-
namic logic [13], in which the action operators behave essentialy like state-formulas.
Our operators can capture the traditional operators. For an action symbol a, an agent
symbol z, andaformulap, z[a]p holdson agiven scenario S and amoment ¢ on it, iff, if
z performsa on S starting at ¢, then p holds at some moment whilea isbeing performed.
The formula z{a)p holds on a given scenario S and a moment ¢ on it, iff, = performs
a on S starting at ¢ and p holds at some moment while a is being performed. These
definitions require p to hold at any moment in the (left-open and right-closed) period
in which the given action is being performed. These definitions generalize naturally to
variable length actions, although we restrict our attention in this paper to unitlength
actions over discretetime.

Example8. InFigure 1, E(b)r and A[a]q hold at ¢, since r holds at the end of b on one
scenario, and ¢ holds at the end of a on each scenario. Similarly, A[d](¢ Vv r) aso holds
at to. Also, Ale]true holds at o, because action e does not occur at . I

The construct (\/ a : p) meansthat there is an action under which p becomes true.
The action symbol a typically occursin p and is replaced by the specific action which
makes p true.



Example9. In Figure 1, (\/ e : Ex{e)true A Az[e]q) holds at ¢o. This means there is
an action, namely, a, such that = performs it on some scenario starting at ¢ and on
all scenarios on which it is performed, it resultsin ¢ being true. In other words, some
action is possible that alwaysleadsto ¢. This paradigm is used in our formalization of
know-how. I

The formula zKp means that the agent = knows that p. The two other important
constructs are zlp and zK,p. zlp is interpreted to mean that agent = intends to bring
about p (‘I' isasans sexif ‘I’). zK,p isinterpreted to mean that agent = knows how to
achieve p. The formal definition of these operatorsis the subject of this paper.

2.2 TheFormal Model

Let M = (T, <,[],R,B,I)beaforma model. T isthe set of moments. Each moment
is associated with a possible state of the system—this includes the physical state as
identified by the atomic propositions that hold there, as well as the states of the agents
described through their beliefs and intentions. < is a partial order over T, which is
interpreted as the tempora order among the moments of T. Therefore, < must be
transitive and asymmetric; it typically branches into the future; we assume it is linear
in the past. [ ] gives the denotation of the various atomic propositions and of the action
symbols. For an atomic proposition, p, [p] isthe set of moments where p is interpreted
as holding; for an action a and an agent z, [a]” is the set of periods over which a is
performed by z. These periods are notated as [S; ¢, ¢'] such that « begins at ¢ and ends
att', wheret,t' € S.

R. picksout at each moment the real scenario at that moment. Thisis the notion of
relativized reality that we alluded to above, and which is highlighted by a bold line in
Figure 1. B assignsto each agent at each moment the momentsthat the agent implicitly
considers as equivalent to the given moment. Thisis used in the formal semantics for
know-that in the traditional manner. For simplicity, we assume that B is an equivalence
relation, resulting in Ky being an S5 modal 1ogic operator [3], which grants both positive
and negative introspection. For most purposes, an $4 operator would suffice, which only
has positive introspection [15]. T assigns to each agent at each moment the scenarios
that the agent prefers. Thisis explained further in section 3, where it is used to give a
formal meaning to intentions.

Forp € £, M =, p expresses“ M satisfiespatt” Forp € £, M [=s; p expresses
“M sdtisfies p at moment ¢ on scenario S” (werequiret € S). We say p is satisfiable
iff for some M and ¢, M =, p. The satisfaction conditions for the temporal operators
are adapted from those in [5]. For simplicity, we assume that each action symbol is
quantified over at most once in any formula. Below, p|¢ is the formula resulting from
the substitution of all occurrencesof a in p by 5. We also assume that agent symbols are
mapped to unique agents throughout the model. Formally, we have:

SEM-1. M | o iff ¢ € [¢], wherey € &
SEM-2. M =y pAqiff M =y pand M =4 g
SEM-3. M IZt -p iff M %t P

Sem-4. M =, Apiff (VS :S € S;= M [=s p)



SeM-5. M = Rpiff M ':R(t),t p

SEM-6. M = Ppiff (3t 1t/ <tand M =4 p)

SEM-7. M = xKyp iff (V@ (¢,1) € Bz, t)=> M =4 p)

Sem-8. M =, (\Va:p)iff (3b:b € Band M =, p|f), wherep € £

SEM-9. M =5 (Va:p)iff (3b:be Band M =5, p|?), wherep € (L, — L)

Sem-10. M |=s; pUq iff (3" ¢t < ¢/ and M =54 q and (Yt @t < " <
t'= M s p))

SEM-11. M [=s ¢ zlalpiff (Vi € S : [S;t,¢] € [a]” impliesthat (3" : ¢ <t < ¢/
and M s, 7))

SEM-12. M g4 z{a)p iff (3’ € S : [S;t,¢'] € [a]” and (Ft" : t < ¢ < ' and
M s p))

SEM-13. M =g pAqiff M Esypand M s g

SEm-14. M ':S,t -p iff M %S,t P

SeEm-15. M ':S,t p iff M ':t P, Wherep eL

The above semantic definitions may be viewed asfairly standard or at least noncon-
troversial. The main contribution of this paper isin operations such asintentions(l) and
know-how (zK},). These are discussed at some length in the sections below, wherein
their formal definitions are developed and shown to have certain desirable technical
properties.

Various coherence constraints may be stated on the above models. One especially
useful constraint is weak determinism, which roughly means that the range of possible
futures at a moment depends on the atomic propositionsthat hold there. The knowledge
and intentions of agents could, of course, be different at moments that have the same
range of possible futures. This constraint can be understood as stating that the physical
state of asystemisgiven by theatomic propositionsand that the physical state determines
all that might happen. What actually happens depends on the agents' intentions. Thus
there is a close dependence between R. on the one hand, and the agents’ intentions,
know-how, and actions on the other. This is highlighted in section 5. Suffice it to state
here that we achieve a clean separation of all that ispossible and what is possible given
the agents' intentions and how they act on them.

3 Intentions

What doesit mean to intend? This question has been studied for centuriesin philosophy
and psychology, and recently in Al. Some of the literature is reviewed in [24, chap. 3].
However, existing approaches do not validate some of the properties that are crucial to
the kinds of reasoning that we must perform about agentsin general. One, they preclude
a useful characterization of liveness, because they explicitly assume that agents can
succeed in achieving some intended condition by fiat. They assume that all intentions
are always dropped—areasonabl e constraint on how agents modify their intentions. But
they also add a constraint that agents will succeed before their intentions are dropped.
This assumption is invalid, because it makes no reference to whether the given agent
has the know-how required to succeed and whether the agent acts on his intentions.
Consequently, successis achieved trivially for any intention—thisis clearly unintuitive



and reducesthe concept of intentionsto something quite meaninglessfor real-lifeagents.
Details of thisargument were presented in [21].

Further, traditional theories do not provide any means to capture the distinction
between what an agent will do given his intentions and what he might have done. The
formal models are unconstrained, so that certain inferencesthat are clearly valid are not
captured by these theories. We will show how these problems can be avoided here.

At each moment in the model, the model component I assigns to each agent a
set of scenarios that the agent is interpreted as having selected or preferred. Roughly,
our definition of intentions is that intentions are the conditions that inevitably hold on
each of the selected scenarios. Here we consider achievement intentions in that these
intentions are about achieving various conditions. However, intentions can be defined
for themaintenance of conditionsaswell. Whereas achievement intentionsare useful for
liveness reasoning, maintenance intentions are useful for safety reasoning. For reasons
of space, wewill not discussthe latter in this paper.

.S

Fig. 2. Intentions

Example10. Consider Figure 2. Assumethat —r and —¢ hold everywhere other than as
shown. Let the agent = (whose actions are written first in the figure) at moment ¢ prefer
the scenarios S; and S,. Then, by the informal definition given above, we have that x
intends ¢ (because it occurs eventually on both the preferred scenarios) and does not
intend » (because it never occurs on S,). Thus, to follow up on Example 5, our robot
intends to warm the room, but not to create a breeze. I

We now turn to the fairly simple formal definition of achievement intentions:

SEM-16. M =, zlp iff (VS : S € I(z,t)= M =5+ Fp)



The above definition validates several useful properties of intentions. We discuss some
of these next. Some of these were obtained with an entirely different formal structure
in [24]—the present devel opment uses fewer conceptual primitives but ignores certain
abstraction issues.

IC1.

1C2.

I1C3.

Satisfiability:

xzlp— EFp

This saysthat if p isintended by some agent, then it occurs eventually on some
scenario. That is, the given intention is satisfiable on some future. This does not
hold in general, since the sets of scenarios assigned by T may be empty. Formally,
we must additionally constrain our models as follows:

Lz, t)#0

Temporal Consistency:

(zlp A zlg)— zI(Fp A Fq)

This says that if an agent intends p and intends ¢, then he (implicitly) intends
achieving them in some undetermined temporal order: p before ¢, ¢ before p,
or both ssimultaneously. This holds because the function I assigns exactly one
set of scenarios to each agent at each moment. Thus if both p and ¢, which
are scenario-formulas, occur on al selected scenarios, then they occur in some
temporal order on each of those scenarios. The formula (Fp A Fq) istrue at a
moment on ascenario precisely when p and q aretrue at (possibly distinct) future
moments on the given scenario.

Per sistence does not entail success:

EG((zlp) A —p) issdtisfiable

Thisisquite obvious intuitively: just because an agent persists with an intention
does not mean that he will succeed. Technically, two main ingredients are miss-
ing. The agent must know-how to achieve the intended condition and must act
on hisintentions. We include this here to point out that in the theory of [4], per-
sistence is sufficient for success (p. 233). Thisis amajor conceptual weakness,
since it violates the usual understanding that intentions do not entail know-how
[21]. The need to state the conditions under which an agent can succeed with his
intentions is one of the motivationsfor the concept of know-how.

Per sist while succeeding:

This constraint is a possible restriction on the architectures of agents. It requires
that agents desist fromrevising their intentionsaslong asthey are ableto proceed
properly. Asstated, thisisstronger than necessary, but we avoid getting into more
appropriate weaker versions for reasons of space. The formal constraint below
states that if an agent selects some scenarios, then at future moments on those
scenarios, he selects from among the future components of those scenarios:

(S € I(z,t) and [S;t,t] € [a]")= (VS € I(z,t)= (35" € I(z,t) and
S/ C S“))

Other important constraints on intentions validated by our approach include (a) the
absence of closure of intentions under beliefs, (b) the consistency of intentions with
beliefs about reality, and (c) the non-entailment of beliefsabout reality. Of these, (a) and



(b) are jointly termed the asymmetry thesis by Bratman [1, p. 38]. He argues that they
are among the more basic constraints on the intentions and beliefs of rational agents.

Intentions have an obvious connection with actions—agents act to satisfy their
intentions. However, intentions do not ensure success.

Example1l. Consider Figure 2. At to, 2 may do either action a or action b, since both
can potentially lead to one of the preferred scenarios being realized. However, if the
other agent does action d, then no matter which action = chooses, he will not succeed
with hisintentions, because none of his preferred scenarios will be realized. I

4 Know-How

It is intuitively obvious that the mere fact of having an intention does not guarantee
an agent’s success; item 1C3 above showed that even persistence is not sufficient for
success. A key ingredient is know-how. An agent can succeed with his intentions only
if he has the requisite know-how. We discuss the other prerequisitesin section 5. Here
we concentrate on formalizing know-how.

We propose that an agent, =, knows how to achieve p, if he is able to bring about
p through his actions, i.e., force p to occur. The agent’s beliefs or knowledge must be
explicitly considered, since these influence his decision. For example, if an agent isable
to dial all possible combinations of a safe, then he is able to open that safe: for, surely,
the correct combination is among those that he can dial. On the other hand, for an agent
to really know how to open a safe, he must not only have the basic skillsto dial different
combinations on it, but also know which combination to dial.

A tree of actionsconsistsof an action, called itsradix, and aset of subtrees. Theidea
isthat the agent does the radix action initially and, then, picks out one of the available
subtreesto pursue further. In other words, atree of actionsfor an agent isaprojectionto
the agent’s actions of afragment of T. Thusatree includes some of the possible actions
of the given agent, chosen to force a given condition.

Let 7" be the set of trees. §) isthe empty tree. Then 7" is defined as follows.

TL0e?

T2. a € Bimpliesthata € T

T3 {m,...,7m} CT, m,..., 7 havedifferent radices, and a € B impliesthat
(a;71,...,Tm) ET

Now we extend the formal language with an auxiliary construct. This extension is
only meant to simplify our definitions.

L8&. reY,z € A andp € L impliesthat z[(r)p € £

z[7)p denotesthat agent = knows how to achieve p relativeto tree 7. Asusud, the
agent symbol can be omitted when it is obvious from the context. To simplify notation,
we extend \/ to apply to a given range of trees. Since distinct trees in each such range
have distinct radix actions, the extension of \/ from actions to treesis not amajor step.

SEM-17. M = [0)p iff M |=; Kip



SEM-18. M =, [a)p iff M |=; Ki(E(a)true A Ala]Kip)
SEM-19. M =, [({a; 71, ..o, T ) )0 iff
M ¢ Ki(E{a)true A A[a](\/lgigm i 2 ((7i)lp)))

Thus an agent knows how to achieve p by following the empty tree, i.e., by doing
nothing, if he knowsthat p already holds. Asaconsequence of hisknowledge, the agent
will undertake no specific action to achieve p. The nontrivial base case iswhen the agent
knows how to achieve p by doing a single action: this would be the last action that the
agent performs to achieve p. In this case, the agent has to know that he will know p
immediately after the given action.

It isimportant to require knowledge in the state in which the agent finally achieves
the given condition, because it helps limit the actions selected by the agent. If p holds,
but the agent does not know this, then he might select till more actions in order to
achieve p.

Lastly, an agent knows how to achieve p by following a nested tree if he knowsthat
he must choose theradix of thistreefirst and, when it is done, that he would know how
to achieve p by following one of its subtrees. Thus know-how presupposes knowledge
to choose the next action and confidence that one would know what to do when that
action has been performed.

SEM-20. M | 2Ky piff (37 M |=; z[7)p)

Fig. 3. Know-How

Example12. Consider Figure 3. Let  be the agent whose actions are written first there.
Assume for simplicity that each moment is its own unique aternative for z (this is



tantamount to assuming that = has perfect knowledge—our formal definitions do not
make this assumption). Then, by the above definitions, zKtq holds at ¢35 and ¢4. Also,
zK},q holdsat t; (using atree with the single action @) and at ¢, (using the empty tree).
As a result, at moment ¢,  knows that if he performs a, then he will know how to
achieve ¢ at each moment where a ends. In other words, we can define atree, (a; a, ),
such that = can achieve ¢ by properly executing that tree. Therefore, 2 knows how to
achieve q at to. In terms of Example 5, our robot knows how to warm the room in the
situation described by Figure 3.1

5 Success

Now that we have formalized our primitives, what can we use them for? Although
we kept the primitivesindependent of each other, they can—and should—naturally be
pulled together to reason about intelligent agents. One of the results we can obtain has
to do with success conditions for agents. But first we mention some technically simple,
but conceptually significant, results:

Lemmal. zlp doesnot entail zKyp.
Consider Figure 3 and the assumptions of Example 12. If S; isthe sole preferred
scenario at tg, then z1r holds at ¢o. However, zKpr clearly does not hold at #o. B

Lemma2. zKnp does not entail zlp.
Thisalso followsdirectly from Figure 3, where zKpq holds at ¢, but not z1q. R

Suppose the agent both intends and know how to achieve something. Then would
the intended condition eventually be realized? (Thisis akin to aliveness property from
traditional computing when adapted to intelligent agents.) The obvious answer with the
above assumptionsis no! A ot more is required for success. The agent must not only
intend a condition and knows how to achieve it, the agent must also act on hisintention
inamanner that expl oits hisknow-how. Since agents act on their intentions, thisrequires
that the agent persist with hisintention long enough.

We have formalized most of the key premises of the above liveness result. We now
formalize the remaining premise, which is that an agent acts on his intentions. Instead
of attempting to formalize this in general, we consider the case where there is at least
one action that would not lead the agent astray from hisintentions. If the agent performs
one such action, he can stay on one of theintended scenarios. By repeatedly performing
such actions, the agent would eventually arrive at a state where the intended condition
holds. Would such actions be available in all cases? Clearly, not. However, if the agent
has the requisite know-how, then such actions are available.

IC5. Perform sure action, if one is available: If there is an action that guarantees
that the agent stays on course with the intended scenarios, then the agent should
perform that (or another such) action. Formally,

(Fa : VS, : [S;t,t] € [a]*= S € I(z,1)))= (Fa : (VS,¥' : [S;t,1] €
[a]"= S € I(z,1)) and [R(z,t);t,t'] € [a]”)



Theorem 3. Under IC5and I1C4, (zlp A zKnp)— RFp I
This theorem gives us the key success property we require. It precisely formalizes
the intuition that an agent who

— intends a condition,

— dticksto hisintention long enough,

— has the necessary know-how, and

— actsrationally given hisintentions and know-how

will succeed in realizing the intended condition.

Example13. Consider Figure 3 interpreted as in Example 5, where the robot prefers
scenarios S, and S3. Then, the robot intends and knows how to make the room warm.
If he acts according to the above postul ate, either S, or Sz will berealized (i.e., become
the real scenario). Thus, the room will becomewarm! I

6 Other Approaches

Some of the primitives discussed above have attracted a fair amount of attention from
researchers in Al and traditional computer science. Knowledge, understood as know-
that, was extensively studied in the Al and distributed computing literatures. Threemain
classes of approaches can beidentified. Thesimplest arethe modal approaches, on which
our present framework isbased[2, 9, 6, 15]. These approachesare simple, but incorrectly
predict that agents know the logical consequences of their knowledge. Another class
of approaches are the sentential ones [11], which avoid the above problem, but do
not facilitate many positive inferences involving knowledge. The third kind are hybrid
approaches, which seek to avoid both extremes but at the price of a greater technical
and conceptual complexity [7, 25]. In our present work, we have not taken advantage of
our previous research [25] primarily because we wish to highlight orthogonal issuesin
the simplest possible framework.

Theabove classes of research would extend naturally into intentions. However, most
work on intentions has been on modal approaches—thefew exceptionsinclude[12, 25].
The formal literature on intentions includes reference to time and beliefs or know-that
[4, 20]. However, know-how is not considered. The above approaches consequently
cannot prove success results such as we exhibited here. They require additional and,
in our view spurious assumptions [21]. A common assumption is that agents will
necessarily drop their intentions. Since agents are additionally assumed to do so only
upon success, success is guaranteed. Many approaches also end up constraining the
formal models so that the various primitives are extraneously tied to each other. [20]
have shown how to remove some of these restrictions; we believe we have additional
results, but lack the space to elaborate here.

Curiously, there has been little work on know-how, athough knowledge precondi-
tions for actions and plans were studied in [15, 16]. The recent STIT (for “seeing to it
that”) approaches [29] appear to embody similar intuitions, although they also mingle
intentions and know-how, as we have identified those concepts.



We believe that the primitives developed herein will pay off when they begin to
be incorporated into tools for reasoning about agents. Some useful results have been
obtained by [19, 23, 29]. Complexity issues remain a challenge. This research area has
been focused on conceptual issuesintermsof the expressivenessto capturevarious cases,
to obtain useful and avoid perniciousinferences. Asthese aspects are better understood,
it will become appropriate to look for restricted sublanguages that have more efficient
decision procedures or model checking algorithms. We expect that techniques such as
the above when enhanced and applied to carefully engineered tractableformal languages
will lead to sophisticated systems for designing, implementing, and validating powerful
intelligent agents.

7 Conclusions

Al supplies a number of cognitive concepts for specifying intelligent agents. Although
such anthropomorphic terms are attractive in various respects, they must be given a
rigorous formal meaning in order to be technically useful in computer science. The
concepts of knowledge and belief have been formalized in the computing literature.
Whereas they admit certain forms of reasoning about computational systems, they
do not allow other, equally essential, forms. We showed how a more powerful set
of cognitive primitives can be formalized, in such as way as to capture more of the
relevant Al and distributed computing intuitions. Further, by focusing on agents as
computational entities, we can simplify our task somewhat. Indeed, certain technical
properties such as consequential closure, which are weaknessesif one wishesto model
human cognition, are quite acceptable in computing at large. Our approach naturally
captureskey computing concepts, such as liveness, in an Al-like approach. Thiskind of
synthesis between Al and traditional intuitionsis crucial to the further expansion of the
agent metaphor.
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