Information Sharing among Autonomous Agents in
Referral Networks*

Yathiraj B. Udupi and Munindar P. Singh

Department of Computer Science
North Carolina State University
Raleigh, NC 27695-8206, USA

{ybudupi , si ngh}@ocsu. edu

Abstract. Referral networks are a kind of P2P system consisting ofreutmus
agents who seek and provide services, or refer other sgkae@ers. Key appli-
cations include service discovery and selection, and kexgé sharing. An agent
seeking a service contacts other agents to discover stigablice providers. An
agent who is contacted may autonomously ignore the requesspond by pro-
viding the desired service or giving a referral. This useeadférrals is inspired
by human interactions, where referrals are a key basis fifng the trustwor-
thiness of a given service. The use of referrals differéegiauch networks from
traditional P2P information sharing systems, which arebam request flood-
ing. Not only does the use of referrals enable an agent toadmw its request
is processed, it also provides an architectural basis far Kmds of interaction
policies.InterPol is a language and framework supporting such policies.
InterPol provides an ability to specify requests with handl &oft constraints
as well as a vocabulary of application-independent ternsedban interaction
concepts. Using these, InterPol enables agents to revigatgpmformation and
accept others’ information based on subtle relationshipgis manner, InterPol
goes beyond traditional referral and other P2P systemsppasting practical
applications. InterPol has been implemented using a Dadadeed policy engine
for each agent. It has been applied on scenarios from a ¢ratitinal) health care
project. The contribution of this paper is in a general igfisrbased architecture
for information sharing among autonomous agents, whichasva to effectively
capture a variety of privacy and trust requirements of aartmous users.

1 Introduction

In an open distributed system, (discovering and) sele@mgng service providers is
a key challenge. Traditional peer-to-peer systems suchase@a and Kazaa focus on
file sharing among peers. In traditional P2P systems, a gegnda search by sending a
request for a file to some of its peers, who either providedlheested file or, if a count
is not exceeded, forward the request to other peers. Wheergppevides the requested
file, the file is propagated back to the request initiatordifranal P2P systems have
certain drawbacks. First, their free flooding mechanismaaurse a large number of
message transmissions and be inefficient in their use ofadiid Second, and more

* We thank National Science Foundation (grant ITR-00817d@}Heir partial support.

importantly, from the perspective of this paper, tradiibapproaches complicate trust
and privacy management. A request that is forwarded by aYearbehalf of a peer X
has the effect of being executed by the receiving peer Z agifdquest originated with
Y. In other words, Z may respond or not because the request ram Y, whereas any
information Z provides would be viewed by X.

Referral systems are a less well-known but powerful kind of P2P system [1, 2].
Briefly, referral systems are multiagent systems whose neewadpents follow a (gener-
ally, but not necessarily) cooperative protocol by issuiefgrrals to one another, thus
sharing their knowledge about service providers and engliinproved service selec-
tion. An agent seeking a service requests a satighbors (who can be thought as its
favorite peers) for services. The requested agents autouslyndecide on providing the
service, a referral, or neither. The request initiator aaon@omously decide whether to
follow any of the referrals received. Traditional refemattworks are difficult to engi-
neer since they lack a declarative characterization of hewagents interact.

This paper describdsiterPol, an implemented framework and a specification lan-
guage for interaction policies in multiagent service nekgoPolicies capture require-
ments perspicuously and are used in many practical setthugh as for business or
security. InterPol enables each agent to set its policidatarally. InterPol supports
easy administration based on a flexible and yet practicalcagh for agents to de-
cide with whom to interact and how. It provides an applicatiodependent vocabulary
geared toward interaction policies in service networkieriPol’s novel features include
capturing social primitives to capture relationships agagents; an ability to model
trust among agents; an ability to specify requests via hatdsaft constraints; and,
support for privacy-preserving information sharing amaggnts.

Our work is motivated by the needs of emerging P2P informatistems. An im-
portant and natural class of such systems arise in heakhm@rmation management.
Our examples are inspired by those studied in the EU projettmis [3], which is
developing an approach to enable the sharing of health wBreriation across organi-
zational and sometimes national boundaries.

Health care is a natural fit for P2P service networks, esfhgciae supporting rich
interaction policies. For example, a patient may have aghteirs his primary care
physician and his close friends, and would contact themduaest services or referrals.
A physician would have knowledge of the credentials of ss&vapecialists and would
refer his patients to them. Social relationships apply radiuhere. A patient would
stop seeing a physician with whom his interactions were ffettive. And he would
form additional relationships based on his evolving neBds.example, someone who
ends up with clogged arteries is likely to begin seeing aiokordist on a regular basis.

Privacy is an important concern in health care and policieshatural for privacy
management. For example, a specialist’'s policy might deteaspecialist’s observa-
tions only to the patient’s primary care physician or to &ieotspecialist.

Consider a scenario when a person from North Carolina fiakso her visit to Cal-
ifornia. To find a good physician, she contacts her primarg gdysician back home,
who returns a referral to a friend in California. As the patiis not aware of the quality
of this newly referred physician, she would apply her retjnggolicies and verify that
this physician has board certification from the ABMS, e.g.checking on a suitable

web-site. The selected physician now requires the pasiemtdical records, for which
the patient’s primary care physician’s answering polidiek in. InterPol was evalu-
ated on the above kinds of scenarios. Agents request eaeghfotinames of physicians
meeting various criteria. Here, an answer typically ineslmames of physicians, some-
times with additional information about them. And, a refétypically is to an agent
who might be able to provide the names of some physiciansingettie specified cri-
teria.

Contributions. To develop a policy-based approach for interactions reguhat we
construct a suitable conceptual model in which we can esphesdesired interactions.
In essence, the conceptual model should support social lkdge cleanly separated
from domain knowledge. This paper addresses this challeteyeloping a conceptual
model and vocabulary geared toward policy-driven multiaggstems, and implement-
ing it using a logic programming engine.

Organization. Section 2 introduces the basic functioning of InterPolpitticies and
representations of messages. Section 3 shows the applicdtpolicies and tacks and
illustrates important scenarios considering trust, pyyatility of interactions, and so-
cial relationships among agents. Section 4 offers a studglated work with a com-
parative evaluation of the present approach. Section 5ledes with a discussion of
contributions and future work.

2 InterPol Framework

The InterPol architecture consistsaglents, representingrincipalswho remain behind
the scenes. The agents are heterogeneous and differ inptiiiies and needs. For
simplicity, we assume they share a communication language.

2.1 Agent Interactions

As explained above, traditional P2P systems employ a rédloesling mechanism
where a request initiated from a peer is forwarded until #guested file is found.
In practical settings of such networks, flooding is limiteddpecifying either a maxi-
mum depth of request path or a time-to-live (TTL) for eachuesi. Consequently, not
every request may result in a hit, either because of the maitahility of the requested
resource, or because of the early death of the request. gieaior must decide these
limits ahead of time, which is nontrivial. If it decides toaseh a little deeper, it would
have to repeat the search already completed by the network.

InterPol employs a multiagent referral architecture whreegyent interactions are
based on the following mechanism. An agent seeking a serg@gpaests some agents
from among itsneighbors. A requested agent may ignore a request, perform the speci-
fied service, or give referrals to other agents.alawer is a response based on perform-
ing the requested servicereferral is a response consisting of names of other agents
(or referands) who might provide the requested service.

Figure 1 shows a simple scenario (ignore
Alice ‘ ‘ Bob ‘ ‘M‘ ‘M‘ policies for now), where Alice queries Bob and
Request Charlie for a service. Bob returns an answer,
iy while Charlie refers Gabriel. Alice then queries
. Gabiriel. This contrasts with request flooding in
6__@_%_ Gnutella, by making the querying agent directly
L_____Referaliocabrier _ MMAYLE] responsible for how the computation proceeds.
‘Rpsplyt] InterPol goes beyond traditional referral ap-
e proaches by providing a sophisticated means for
LM specifying interaction policies among the partic-
ipants. The following examples give a flavor of
Fig. 1. Example referrals scenario the kinds of policies that might be constructed.
A user may specify that his personal informa-
tion can be shared only with a physician P who
has credentials from a local hospital to which the user hasated personal informa-
tion and if P is given a referral by the user’s current primeaye physician. A user
may select a surgeon for an outpatient procedure basedemmaisffrom friends as well
as board certification in the specialty of interest. A usey mat want to reveal any
private information to any one but his friend. InterPol sorip the following kinds of
policies. It is important how inserting these policies le&mla much richer treatment of
interactions than in traditional P2P systems.

InterPol supports four kinds of policies namegguest formulation (RF), response
incorporation (RI), answering andreferring policies. An agent applies itequest for-
mulation policies to decide on what to request and whom to ask. An agpplies
its response incorporation policies to evaluate the responses and decide on further ac-
tion. An agent, when requested, appliesaitswering andreferring policies to decide
whether and how to provide an answer or a referral.

Figure 1 illustrates these policies. Alice applies its egjuformulation policy to
decide on requesting Bob and Charlie. Bob checks with itsvariag policy before
returning an answer. Charlie, not being able to answerjepjts referring policy and
returns a referral to Gabriel. Alice now applies its resgoimgorporation policy and
accepts Bob’s answer and Charlie’s referral and forwarelsefjuest to Gabriel.

2.2 Enactment

We have implementethterPol to demonstrate the effect that the above approach has
on modeling and reasoning about the interactions among®gen service network.
Each agent is implemented around a reasoner (built usingiBrelog interpreter [4])
that handles policies and tacks. Each agent has a knowledgg KB): storing domain
knowledge related to the agent’s domains of interest anéréisp, social knowledge
about neighbors, agent models, and social relationshipggp@vacy related knowledge.
There is a policy base for the policies introduced earlier. &ents follow the architec-
ture typical in referral systems, e.g., [2]. The algorithimrsrequesting and responding
are described below.

Algorithm 1: Ask-Request Requests. Algorithm 1 implements
1: for Each neighbor to ask based on Rihe Ask-Request() method. An agent

policiesdo who is looking for a service finds the
2. Sendrequestincluding a predicate anteighbors selected based on the RF
any constraints policies. For each such neighbor se-
3: if (response.type == referrahen lected according to the RF policy, a re-
4: Send request to referred agentguest for the service is created and it
based on RI policies may include any constraints (hard or
5. endif soft “tacks”). This request is sent to all
6: end for the matching neighbors in stepand
7. for Each response that is an answer an answer is awaited. The response re-
8: Evaluate and incorporate the answereived can be a referral or an answer.
based on RI policies RI policies evaluate the response re-
9: Update models of responding agents ceived. If the received response is a re-
10: end for ferral and if the RI policies are satisfied,
the query is forwarded to the referred
Algorithm 2: Respond-Request agents, again using Ask-Request(); oth-
1: if Answering policies allowthen erwise, answers are evaluated and in-
2. Solve for the request predicate with it§orporated in ste@. Finally, in step
arguments 9, the agent models of the responding
3: return answers after marking up thedgents are updated with an improved
requested tacks rating in the case of a good answer or a
4: end if good referral, and with a decreased rat-
5: if Neighbors match and referring policiedd for a bad answer or a bad referral.
allow then This step is the essence of how referral
6: return referrals systems evolve.
7: end if Responses. Algorithm 2 implements

the method Respond-Request(), which

is invoked when an agent receives a re-
quest. If the requested agent is willing to answer, the Rdereasoner solves for the
request predicates with its arguments in £eyalid answers generated by the reasoner
are returned after marking up if they satisfy the requestells (if any) in steg3. In
step5 if the referring policies of the agent allow, it respondstwieferrals having its
matching neighbors as referands in siep

2.3 Conceptual Model and Representation

InterPol incorporates a conceptual model for specifyirgféttts and policies of agents.
Figure 2 illustrates a part of this conceptual model. The &mycepts are explained
below.

Facts and Policies. In InterPol an agent’s knowledge base comprises sets of &act
rules. The knowledge base (KB) is dynamic: facts and ruleg lmeacontinually added
or retracted. InterPol us&onstraint Datalog [5] to express policies and facts. Policies
are logic rules. Facts are special cases of rules whoseh@id sides are empty. A fact
forms the head of a rule, and a set of facts appear in the body k. Facts include

IFbody<{
Rul
Fact Fhead<{ e
’_Tm‘ il
Predicate Argument Social Fact Privacy Fact Domain Fact
T 9
is isa is
|_ | [—
Action Social Privacy Domain
! Predicate Predicate Predicate

about
instance of instance ofT instance ofT A .
Agent I—provides>| Service
for

- o o = =} o =49 <
g 3 B ¥ 3 %o za 7 ' who| [whom
g £ ¥ ¢ g 3243 g values—{pUb"c' <« for |
3 g L d
3 Es 8 3 = privileged likes
g L bout
3 5 about:
H &evalues—lo 1
& <——values—— '
/]\ about

Fig. 2. Part of the conceptual model of the vocabulary

domain facts, social facts, and privacy facts. Variable esuvegin with an uppercase
letter and constant names with a lowercase letter. A factpeiz@s a predicate and
a set of arguments. Predicates include domain, socialagyj\and action predicates.
Figure 2 shows example predicates in bold. The argumerttgedatts may be constants
or simple variables. A nested domain fact can appear as amaig in the case of the
visibility predicate (illustrated in Listing 1.1). For example, Ligtil.1 shows facts
and policies in Alice’s KB. These indicate that: Dave is a gbian specializing in
cardiology, Alice likes Charlie for théndPhysiciarservice, and a fact (illustrating the
use of a nested predicate) that the first fact is public. Aioeferring policy allows her
to refer any agent” for a serviceP if she likes that agent.
Listing 1.1. Facts and policies in Alice’s KB (part 1)

/% facts x/

physician (dave, cardio).

likes (alice , charlie, findPhysician).

visibility (alice , physician(dave, cardio), public).
I« policies x/

refer(alice, Y, P) + likes(alice, Y, P).

Requests: Queries and Tacks. Let’s first consider a simple form of a request, which
consists of @uery rule whose head is the predicaaskapplied to some variables. The
variables free in the head are used along with other vasahl¢éhe body of the rule.
ask(X;,...): —Pi(Xj;,...,l;,...),...isageneric query, where tif& are predicates,
the X; are variables, and thg are constants. Listing 1.2 shows a simple request con-
sisting of a query.

Listing 1.2. Alice’s simple request

[ask(X) :— physician(X, cardio), medicalSchool (X, duke), certifiBg (X, abms),
experience (X, Y), Y> 10]

To improve the effectiveness and efficiency of interactidngerPol supports re-
quests that consist of a query rule and a listanks. Each tack is a conjunction of
one or more clauses. A tack having a predid@tevith variablesX;, and so on is rep-
resented a) (X, X,n,...). In other words, a tack is syntactically like the body of a
query rule. However, whereas a query body expresses a hasttaint, a tack expresses
a preference of the requester. In simple terms, a requettinorg a tack can be inter-
preted as two requests: one consisting of the query ruleeabimd another consisting
of the query rule augmented with the tack “tacked on” to theybaf the rule. When an
agent responding to a request is able to accommodate a spéaifk, it facilitates the
requester pruning the search space and reducing the corationioverhead.

Listing 1.3 shows a request sent out by Alice for a physicjaecglizing in car-
diology. She has preferences expressed in tacks such asthbghysician’s medical
school, ABMS certification, and experience.

Listing 1.3. Alice’s request with tacks

[ask(X) :— physician(X, cardio),{medicalSchool(X, duke), certifiedBy (X, abms),
experience (X, Y), Y> 10 }]

Responses: Answers and Referrals. A response returned by an agent is either an
answer or a referral. Aanswer is a set of solutions. For a simple request, each solution
is a vector of bindings of the variables in thsk of the given query to constants that
satisfy the query rule. Aeferral is a set of facts describing the agents referred. These
facts are generated by the reasoner to find the matchingaksféor the stated request.

Listing 1.4. Answers and referrals

/« Bob’s answer (response to Alice) x/

{ [ask(watson)] }

/+ Charlie’s referral (response to Alice) =x/
{ refer(charlie, gabriel, physician)

Listing 1.4 shows Bob’s answer (one cardiologist who matdhe body of the query
rule) and Charlie’s referral (a singleton set) in respongiice’s request of Listing 1.2.

For a request with tacks, each solution has two parts: (1x®@wef bindings of the
variables in theask of the given query to constants that satisfy the query rute(@h
a list ofremarks in the same order as the tacks in the given request. Eachkemax
variable binding merely states whether the corresponaicigis true) or not (F) for
that binding.

Listing 1.5. Answers and referrals

/+ Bob’s answer (response to Alice) x/
{ [ask(watson),{T, T, T}],
[ask(dave),{F, T, F}] }

Listing 1.5 shows Bob’s answer to Alice’s request of Listibg. Bob’s answer lists
two physicians specializing in cardiology. Watson satisé# the tacks, whereas Dave
satisfies only the tack about certification.

In general, a request that places some clauses in the tatkadhof the query would
produce more results, but some of them might be superfluousgiest that placed
more clauses in the query rule would produce fewer, but maese results. However,
in some cases, it might produce no results at all.

3 Applying InterPol

InterPol incorporates a conceptual model and predicatemteractions, social rela-
tionships, trust evaluations, and privacy and utility ngeraent. The following form
the major scenarios, which motivate the development offavizabulary for the pol-
icy specification language in InterPol.

3.1 Accommodating Privacy

Policy-based approaches are natural for privacy. Tradillg, privacy is treated via
access control policies, often based on credentials os.rélenultiagent approach can
better model subtle social and organizational relatiggshmong agents, which govern
the agents’ interactions in any practical setting. Thesdetslead to policies that are
more appropriate and acceptable. And, multiagent appesggtovide an architecture
where the resolution of the policies is carried out in a coafiee manner, wherein
agents can naturally share information that might helprstivdom they trust.

For example, an agent may not want to reveal his medical dedoranyone but his
primary care physician. InterPol provides two low-levehmtives for handling privacy.
First, it allows a fact or a rule in the KB to be marked withvtsibility (public or privi-
leged. Second, InterPol supports a notion of privacy measurtsnespect to services
and agents. These concepts enable formulating precisesangvwpolicies that restrict
revealing private information to certain agents. InterPaoldels these concepts using
the privacy predicategisibility, servicePrivacyNee@ndagentPrivacy Trudjvalues in
the rangd0, 1]) to specify the visibility and the privacy measures of a e@nand an
agent, respectively. Here a privacy measure @f) means highly private (public).

To demonstrate elementary privacy, consider a scenariarided in Listings 1.6
and 1.7, which are Alice and Bob's initial KBs, respectively

Knowledge. Here, Alice is a neighbor of Bob and Alice has no neighbore Bés
expertise in the domain of medicine, and an answering ptitiay expects the privacy
trust measure of the requesting agent to be higher than itz service privacy need.
Alice’s KB has a public fact that Dave is a physician speziafj in cardiology. She has
a domain policy that means thahysiciannames and specialties can be revealed only
if they arepublic. Other facts capture thagentPrivacyTrust of Bob and theservicePri-
vacyNeed of the predicat@hysician

Listing 1.6. Initial KB of Alice (part 2)

answer (alice , X, P) =+ agentPrivacyTrust (X, V), servicePrivacyNeed(P, 2\j, Vi > Va.
visibility (alice , physician(dave, cardio), public).

physician (X, Field) = visibility (alice, physician(X, Field), public).
agentPrivacyTrust (bob, 0.75).

servicePrivacyNeed(physician, 0.5).

Listing 1.7. Initial KB of Bob

neighbor (bob, alice).

query(bob, X, P) + neighbor(bob, X).
hasDirectExperience(bob, X, P)-: likes(bob, X, P).
refer(bob, X, P) + hasDirectExperience(bob, X, P).

Bob has a request formulation policy under which he can retgary neighbor.
Bob's referring policy requires him to hadéect experiencewith a prospective referand.
Bob’s policy definesiasDirectExperiendeased orlikes.

Interactions. Bob is looking for a physician specializing in cardiologydahence
generates a query with boghhysiciar{X, cardio). He applies his request formulation
policy by solving forquerybob, Y, physiciar). Alice qualifies for this policy, being a
neighbor. Thus Bob sends the request to Alice. Now Aliceswaaring policy is sat-
isfied and she returns the answsysiciar{dave cardio) to Bob. Upon receiving the
answer, Bob asserts the fdites(bob, alice, physicianto indicate that Alice gave a
good answer.

3.2 Strategies for Requests

InterPol provides tacks as a facility for expressing soéf@rences. How tacks are con-
structed can have consequences on the efficiency of seal@sisn and on the privacy
of the agents involved.

Privacy preservation. An agent’s requests can potentially reveal too much inferma
tion, e.g., about the agent’s true needs. A public requesifiae a true, private request
so as to hide some of the private information. To formulategoly preserving queries,
an agent must infer public requests from its private needdsrd are two main ways of
accomplishing this. Iigeneralization, a weaker request is revealed. In Listing 1.8, a pri-
vate request specifies a physician for skin allergy. Howdkieragent's request instead
specifies a physician who treats any allergy.

Listing 1.8. Using the generalization approach

I+ private need x/
physician (X, skinAllergy).
/% public request x/
physician (X, allergy).

In theassociationapproach, a request that is a sibling of the actual (privegedl is used.
In Listing 1.9, the agent requests a dermatologist, baséideoassociation between skin
allergy and dermatology.

Listing 1.9. Using the association approach

I+ private need x/
physician (X, skinAllergy).
/% public request x/
physician (X, dermatology).

Iterative exploration. For reasons of privacy, an agent may generate not one but a
series of requests. For simplicity, let's consider thalydatks are varied across such
requests. Successive requests may make the tacks weakardtestraining) or stronger
(more constraining). We can think of the tacks as formingeaarchy, where lower tacks
are stronger than upper tacks.

Listing 1.10. Example tack hierarchy

experience(X, Y), Y> 10
certifiedBy (X, abms)

4
medicalSchool(X, duke).

Listing 1.10 shows three tacks in order for a query predipaiesiciar{ X, cardid). The

top tack allows a physician with at least 10 years of expesgend is the weakest. The
middle tack requires a certification by ABMS, whereas thediottack requires the
physician to be from Duke. In thaottom up strategy, if a specified tack yields no valid
answers, the agent weakens the tack in a subsequent refjnissiicreases potential
space of answers. In thiep down strategy, the agent begins at the top and refines its
tack until an acceptable answer is found.

Conflict management. Tacks can conflict. To accommodate handling conflicts be-
tween tacks, InterPol supports assigning priorities tanthBor example, consider a
scenario where a request for a physician is composed of twiicting tacks, specify-
ing that the physician should be from Harvard and Duke respdyg. The tack with the
higher priority is preferred.

3.3 Trust and Social Relationships

We modeltrust in relational terms: #&rustor trusts atrustee with respect to a particular
service. For example, we may trust a cardiologist for alrtieglated problems but not
for other ailments. Because of different bodies of evidenrcdifferent evaluations of
the same evidence, two trustors can have different assatswofarust for a particular
trustee.Social trust is based on the relationships among the agents and is widbsui
for P2P information systems.

InterPol supports social relationships sucheaighborhood, competition, collabo-
ration, friendship, enmity, andservice dependency. These relationships lead to succinct
policies that govern agent interactions well. For reasdnsrevity, they are not pre-
sented here. Instead we describe an example of a genericsrieamaluate relation-
ships, which provides the heart of evidence-based reago8rcial network analysis
models trust in the presence of social relationships basetauating the participants’
experiences [6]. The knowledge of these relationshipsraawsstrength levels can fea-
ture in an agent’s policies to evaluate trust among agemtex;Rol captures the strength
I (values in the intervdD, 1]) of a relationshipR via a measureStrength(R, I).

4 Related Work

Policies are widely used for access control and trust managgein distributed systems.
InterPol differs from traditional policy approaches, besa it focuses on a multiagent
service network, and provides a set of primitives that asggieed for expressing natural
policies in it. These policies can be thought of as supporsinbtle kinds of access
control where each agent determines how much of its domasocial knowledge to
share, when, and with whom.

Reputation-based access control. Reputation-based trust mechanisms are becom-
ing common for the management of decentralized peer-to4pet®vorks because of
the threat of malicious peers. Xiong and Liu propose an adaptust model using
community-based reputations to predict the trustwortsrod peers in P2P e-commerce
communities [7]. Boella et al. discuss authorization anehgsion in policies for vir-
tual communities consisting of resource consumers andges; and authorities [8].

Each community includes an authority, which keeps track efroership and fine-
grained access control policies.

A common feature of current reputation and access contsikrys is that they
employ centralized mechanisms to store reputation valugs provide fine-grained
access control policies. By contrast, InterPol is decéiméid and thus maximizes the
agents’ autonomy. Further, its use of policies simplifiesttanagement of P2P systems
by placing control in the hands of the individual peers.

Policy languages. Of the several policy specification languages, two are @aetily
important.Rei is a policy language implemented in Prolog for pervasiveérenvnents
[9]. PeerTrust has an expressive policy and trust negotiation languagedbasfirst or-
der Horn rules which form the basis for logic programs [1@eFrust establishes trust
using a dynamic exchange of certificates. Rei does not mbéeptivacy preserving
policies like in InterPol and PeerTrust. Like in PeerTrirstst between entities in Inter-
Pol is built over time, but unlike the dynamic exchange ofifieates in PeerTrust, trust
in InterPol depends on the quality of the answers or refepedvided by the entities,
and the trust models generated by the policy framework.

Role-based trust management. Role-based trust management languages emphasize
the properties of roles such as their hierarchy. They speci¢ delegation, and support
credential chain discovery and trust negotiation. LiketRol, RT [11] and Cassandra
[12] are based on Datalog with constraints. InterPol modeéper social relationships
and considerations of privacy. Via tacks and policies,rd supports a more flexible
kind of trust negotiation.

Privacy preserving systems. Several trust negotiation systems have introduced mech-
anisms to safeguard the privacy of the entities and theicigslinvolved in a negotia-
tion by using privacy preserving policies. PeerTrust [188s1a protection scheme that
uses named policies, so that policies can have their owgipslilnterPol can support
named policies, because it can support nested policies, KierPol supports sophisti-
cated privacy preserving mechanisms by supporting pslibiat use agent relationships
to evaluate agent privacy levels.

5 Conclusion

Referral systems provide an alternative approach to iegligervice networks than
traditional P2P systems. They place control of the comjmrtah the hands of the
requesting agent (even as it relies upon cooperation froers}, because it is involved
in all interactions. Thus it can better control the inforioatit reveals to other or the
information it receives and incorporates from others.

The referrals approach supports four types of policies téobmulated for each
agent. As a result, a far richer variety of interactions angperted than in traditional
P2P systems. This richer variety of interactions is esakfur the engineering and
management of practical P2P information systems.

InterPol shows how its algorithms can be realized over a eotiwnal Prolog en-
gine. It provides a rich vocabulary to enable to proper ession of policies, and sup-
ports various heuristics by which agents can interact wattheother. Future work will

consider enhancing the algorithms for evaluating politbesupport better exchange of
information among the agents to perform cooperative seércéferral system evolves

as agents unilaterally can change their neighbor sets sthein“better” peers become
their neighbors. Interesting properties emerge and aa¢ectto how individual agents
act [2,13]. It would be interesting to study such properiiethe context of the policies

discussed above.

References

10.

11.

12.

13.

. Bonnell, R., Huhns, M., Stephens, L., Mukhopadhyay, U.INBIS: Multiple intelligent

node document servers. In: Proceedings of the 1st IEEEnktienal Conference on Office
Automation. (1984) 125-136

. Singh, M.P., Yu, B., Venkatraman, M.: Community-basadise location. Communications

of the ACM 44(4) (April 2001) 49-54

. Dogac, A., Laleci, G., Kirbas, S., Kabak, Y., Sinir, S.|d¥z, A.: Deploying semantically

enriched web services in the healthcare domain. Informafigstems Journal (Elsevier
Science) (2005)

. Denti, E., Omicini, A., Ricci, A.: tuProlog: A light-welg Prolog for Internet applications

and infrastructures. In: Proceedings of 3rd Internati@yahposium on Practical Aspects of
Declarative Languages. Volume 1990 of LNCS., Springetage(January 2001) 184-198

. Li, N., Mitchell, J.C.: Datalog with constraints: A fouation for trust management lan-

guages. In: Proceedings of 5th International Symposiumraatieal Aspects of Declarative
Languages. (January 2003)

. Sabater, J., Sierra, C.: Reputation and social netwaalkysis in multi-agent systems. In:

Proceedings of 1st International Joint Conference on Aartmus Agents and Multiagent
Systems. (2002) 475-482

. Xiong, L., Liu, L.: A reputation-based trust model for p¢e-peer ecommerce communities.

In: Proceedings of IEEE Conference on E-Commerce (CEC)e(2003)

. Boella, G., van der Torre, L.: Permission and authomsith policies for virtual communi-

ties of agents. In: Proceedings of Third International V8bdp on Agents and Peer-to-Peer
Computing (AP2PC). (2004)

. Kagal, L., Finin, T., Joshi, A.: A policy language for a p&sive computing environment.

In: Proceedings of 4th International IEEE Workshop on Redi¢or Distributed Systems and
Networks (POLICY). (June 2003) 63-74

Nejdl, W., Olmedilla, D., Winslett, M.: PeerTrust: Autated trust negotiation for peers on
the semantic web. In: VLDB Workshop on Secure Data Manage(&®M). Volume 3178
of LNCS., Springer-Verlag (August 2004) 118-132

Li, N., Mitchell, J.C.: RT: A role-based trust-managemnfamework. In: Proceedings of
3rd DARPA Information Survivability Conference and Expasi (DISCEX), Washington
(April 2003)

Becker, M.Y., Sewell, P.: Cassandra: Distributed axcestrol policies with tunable expres-
siveness. In: Proceedings of 5th International IEEE Warksbn Policies for Distributed
Systems and Networks (POLICY). (June 2004)

Yolum, P., Singh, M.P.: Engineering self-organizinigreal networks for trustworthy service
selection. IEEE Transactions on System, Man, and Cybemd®iart A35(3) (May 2005)
396-407

