
Information Sharing among Autonomous Agents in
Referral Networks?

Yathiraj B. Udupi and Munindar P. Singh

Department of Computer Science
North Carolina State University
Raleigh, NC 27695-8206, USA

{ybudupi,singh}@ncsu.edu

Abstract. Referral networks are a kind of P2P system consisting of autonomous
agents who seek and provide services, or refer other serviceproviders. Key appli-
cations include service discovery and selection, and knowledge sharing. An agent
seeking a service contacts other agents to discover suitable service providers. An
agent who is contacted may autonomously ignore the request or respond by pro-
viding the desired service or giving a referral. This use of referrals is inspired
by human interactions, where referrals are a key basis for judging the trustwor-
thiness of a given service. The use of referrals differentiates such networks from
traditional P2P information sharing systems, which are based on request flood-
ing. Not only does the use of referrals enable an agent to control how its request
is processed, it also provides an architectural basis for four kinds of interaction
policies.InterPol is a language and framework supporting such policies.
InterPol provides an ability to specify requests with hard and soft constraints
as well as a vocabulary of application-independent terms based on interaction
concepts. Using these, InterPol enables agents to reveal private information and
accept others’ information based on subtle relationships.In this manner, InterPol
goes beyond traditional referral and other P2P systems in supporting practical
applications. InterPol has been implemented using a Datalog-based policy engine
for each agent. It has been applied on scenarios from a (multinational) health care
project. The contribution of this paper is in a general referrals-based architecture
for information sharing among autonomous agents, which is shown to effectively
capture a variety of privacy and trust requirements of autonomous users.

1 Introduction

In an open distributed system, (discovering and) selectingamong service providers is
a key challenge. Traditional peer-to-peer systems such as Gnutella and Kazaa focus on
file sharing among peers. In traditional P2P systems, a peer begins a search by sending a
request for a file to some of its peers, who either provide the requested file or, if a count
is not exceeded, forward the request to other peers. When a peer provides the requested
file, the file is propagated back to the request initiator. Traditional P2P systems have
certain drawbacks. First, their free flooding mechanism cancause a large number of
message transmissions and be inefficient in their use of bandwidth. Second, and more

? We thank National Science Foundation (grant ITR-0081742) for their partial support.

importantly, from the perspective of this paper, traditional approaches complicate trust
and privacy management. A request that is forwarded by a peerY on behalf of a peer X
has the effect of being executed by the receiving peer Z as if the request originated with
Y. In other words, Z may respond or not because the request came from Y, whereas any
information Z provides would be viewed by X.

Referral systems are a less well-known but powerful kind of P2P system [1, 2].
Briefly, referral systems are multiagent systems whose member agents follow a (gener-
ally, but not necessarily) cooperative protocol by issuingreferrals to one another, thus
sharing their knowledge about service providers and enabling improved service selec-
tion. An agent seeking a service requests a set ofneighbors (who can be thought as its
favorite peers) for services. The requested agents autonomously decide on providing the
service, a referral, or neither. The request initiator can autonomously decide whether to
follow any of the referrals received. Traditional referralnetworks are difficult to engi-
neer since they lack a declarative characterization of how the agents interact.

This paper describesInterPol, an implemented framework and a specification lan-
guage for interaction policies in multiagent service networks. Policies capture require-
ments perspicuously and are used in many practical settings, such as for business or
security. InterPol enables each agent to set its policies unilaterally. InterPol supports
easy administration based on a flexible and yet practical approach for agents to de-
cide with whom to interact and how. It provides an application-independent vocabulary
geared toward interaction policies in service networks. InterPol’s novel features include
capturing social primitives to capture relationships among agents; an ability to model
trust among agents; an ability to specify requests via hard and soft constraints; and,
support for privacy-preserving information sharing amongagents.

Our work is motivated by the needs of emerging P2P information systems. An im-
portant and natural class of such systems arise in health care information management.
Our examples are inspired by those studied in the EU project Artemis [3], which is
developing an approach to enable the sharing of health care information across organi-
zational and sometimes national boundaries.

Health care is a natural fit for P2P service networks, especially one supporting rich
interaction policies. For example, a patient may have as neighbors his primary care
physician and his close friends, and would contact them to request services or referrals.
A physician would have knowledge of the credentials of several specialists and would
refer his patients to them. Social relationships apply naturally here. A patient would
stop seeing a physician with whom his interactions were not effective. And he would
form additional relationships based on his evolving needs.For example, someone who
ends up with clogged arteries is likely to begin seeing a cardiologist on a regular basis.

Privacy is an important concern in health care and policies are natural for privacy
management. For example, a specialist’s policy might reveal the specialist’s observa-
tions only to the patient’s primary care physician or to another specialist.

Consider a scenario when a person from North Carolina falls sick on her visit to Cal-
ifornia. To find a good physician, she contacts her primary care physician back home,
who returns a referral to a friend in California. As the patient is not aware of the quality
of this newly referred physician, she would apply her requesting policies and verify that
this physician has board certification from the ABMS, e.g., by checking on a suitable

web-site. The selected physician now requires the patient’s medical records, for which
the patient’s primary care physician’s answering policieskick in. InterPol was evalu-
ated on the above kinds of scenarios. Agents request each other for names of physicians
meeting various criteria. Here, an answer typically involves names of physicians, some-
times with additional information about them. And, a referral typically is to an agent
who might be able to provide the names of some physicians meeting the specified cri-
teria.

Contributions. To develop a policy-based approach for interactions requires that we
construct a suitable conceptual model in which we can express the desired interactions.
In essence, the conceptual model should support social knowledge cleanly separated
from domain knowledge. This paper addresses this challenge, developing a conceptual
model and vocabulary geared toward policy-driven multiagent systems, and implement-
ing it using a logic programming engine.

Organization. Section 2 introduces the basic functioning of InterPol: itspolicies and
representations of messages. Section 3 shows the application of policies and tacks and
illustrates important scenarios considering trust, privacy, utility of interactions, and so-
cial relationships among agents. Section 4 offers a study ofrelated work with a com-
parative evaluation of the present approach. Section 5 concludes with a discussion of
contributions and future work.

2 InterPol Framework

The InterPol architecture consists ofagents, representingprincipals who remain behind
the scenes. The agents are heterogeneous and differ in theirpolicies and needs. For
simplicity, we assume they share a communication language.

2.1 Agent Interactions

As explained above, traditional P2P systems employ a request flooding mechanism
where a request initiated from a peer is forwarded until the requested file is found.
In practical settings of such networks, flooding is limited by specifying either a maxi-
mum depth of request path or a time-to-live (TTL) for each request. Consequently, not
every request may result in a hit, either because of the non-availability of the requested
resource, or because of the early death of the request. The originator must decide these
limits ahead of time, which is nontrivial. If it decides to search a little deeper, it would
have to repeat the search already completed by the network.

InterPol employs a multiagent referral architecture wherein agent interactions are
based on the following mechanism. An agent seeking a servicerequests some agents
from among itsneighbors. A requested agent may ignore a request, perform the speci-
fied service, or give referrals to other agents. Ananswer is a response based on perform-
ing the requested service; areferral is a response consisting of names of other agents
(or referands) who might provide the requested service.

Alice Bob Charlie Gabriel

Answering
policy

Request
Formulation

policy

Referring
policy

Answering
policy

Response
Incorporation

policy

Request

Answer

Referral to Gabriel

Request

Request

Fig. 1.Example referrals scenario

Figure 1 shows a simple scenario (ignore
policies for now), where Alice queries Bob and
Charlie for a service. Bob returns an answer,
while Charlie refers Gabriel. Alice then queries
Gabriel. This contrasts with request flooding in
Gnutella, by making the querying agent directly
responsible for how the computation proceeds.

InterPol goes beyond traditional referral ap-
proaches by providing a sophisticated means for
specifying interaction policies among the partic-
ipants. The following examples give a flavor of
the kinds of policies that might be constructed.
A user may specify that his personal informa-
tion can be shared only with a physician P who

has credentials from a local hospital to which the user has revealed personal informa-
tion and if P is given a referral by the user’s current primarycare physician. A user
may select a surgeon for an outpatient procedure based on referrals from friends as well
as board certification in the specialty of interest. A user may not want to reveal any
private information to any one but his friend. InterPol supports the following kinds of
policies. It is important how inserting these policies leads to a much richer treatment of
interactions than in traditional P2P systems.

InterPol supports four kinds of policies namelyrequest formulation (RF), response
incorporation (RI), answering andreferring policies. An agent applies itsrequest for-
mulation policies to decide on what to request and whom to ask. An agentapplies
its response incorporation policies to evaluate the responses and decide on further ac-
tion. An agent, when requested, applies itsanswering andreferring policies to decide
whether and how to provide an answer or a referral.

Figure 1 illustrates these policies. Alice applies its request formulation policy to
decide on requesting Bob and Charlie. Bob checks with its answering policy before
returning an answer. Charlie, not being able to answer, applies its referring policy and
returns a referral to Gabriel. Alice now applies its response incorporation policy and
accepts Bob’s answer and Charlie’s referral and forwards the request to Gabriel.

2.2 Enactment

We have implementedInterPol to demonstrate the effect that the above approach has
on modeling and reasoning about the interactions among agents in a service network.
Each agent is implemented around a reasoner (built using thetuProlog interpreter [4])
that handles policies and tacks. Each agent has a knowledge base (KB): storing domain
knowledge related to the agent’s domains of interest and expertise, social knowledge
about neighbors, agent models, and social relationships, and privacy related knowledge.
There is a policy base for the policies introduced earlier. Our agents follow the architec-
ture typical in referral systems, e.g., [2]. The algorithmsfor requesting and responding
are described below.

Algorithm 1: Ask-Request
1: for Each neighbor to ask based on RF

policiesdo
2: Send request including a predicate and

any constraints
3: if (response.type == referral)then
4: Send request to referred agents

based on RI policies
5: end if
6: end for
7: for Each response that is an answerdo
8: Evaluate and incorporate the answer

based on RI policies
9: Update models of responding agents

10: end for

Algorithm 2: Respond-Request
1: if Answering policies allowthen
2: Solve for the request predicate with its

arguments
3: return answers after marking up the

requested tacks
4: end if
5: if Neighbors match and referring policies

allow then
6: return referrals
7: end if

Requests. Algorithm 1 implements
the Ask-Request() method. An agent
who is looking for a service finds the
neighbors selected based on the RF
policies. For each such neighbor se-
lected according to the RF policy, a re-
quest for the service is created and it
may include any constraints (hard or
soft “tacks”). This request is sent to all
the matching neighbors in step2 and
an answer is awaited. The response re-
ceived can be a referral or an answer.
RI policies evaluate the response re-
ceived. If the received response is a re-
ferral and if the RI policies are satisfied,
the query is forwarded to the referred
agents, again using Ask-Request(); oth-
erwise, answers are evaluated and in-
corporated in step8. Finally, in step
9, the agent models of the responding
agents are updated with an improved
rating in the case of a good answer or a
good referral, and with a decreased rat-
ing for a bad answer or a bad referral.
This step is the essence of how referral
systems evolve.

Responses. Algorithm 2 implements
the method Respond-Request(), which
is invoked when an agent receives a re-

quest. If the requested agent is willing to answer, the InterPol reasoner solves for the
request predicates with its arguments in step2. Valid answers generated by the reasoner
are returned after marking up if they satisfy the requested tacks (if any) in step3. In
step5 if the referring policies of the agent allow, it responds with referrals having its
matching neighbors as referands in step6.

2.3 Conceptual Model and Representation

InterPol incorporates a conceptual model for specifying the facts and policies of agents.
Figure 2 illustrates a part of this conceptual model. The keyconcepts are explained
below.

Facts and Policies. In InterPol an agent’s knowledge base comprises sets of facts and
rules. The knowledge base (KB) is dynamic: facts and rules may be continually added
or retracted. InterPol usesConstraint Datalog [5] to express policies and facts. Policies
are logic rules. Facts are special cases of rules whose right-hand sides are empty. A fact
forms the head of a rule, and a set of facts appear in the body ofa rule. Facts include

Fact

ArgumentPredicate

Rule

Action

body

head

a
s
k

a
n
s
w
e
r

re
fe
r

instance of

is ais a

Social

Predicate
Privacy

Predicate

is a

n
e
ig
h
b
o
r

lik
e
s

instance of

v
is
ib
ility

a
g
e
n
tP
riv
a
c
y

T
ru
s
t

s
e
rv
ic
e
P
riv
a
c
y

N
e
e
d

instance of

Social Fact

is a

Privacy Fact

is a

Domain Fact

is a

Agent Service

values

for

provides

likes

who whom

for

about

about

values
values [0,1]

Domain

Predicate

is a

about

{public,privileged}

Fig. 2. Part of the conceptual model of the vocabulary

domain facts, social facts, and privacy facts. Variable names begin with an uppercase
letter and constant names with a lowercase letter. A fact comprises a predicate and
a set of arguments. Predicates include domain, social, privacy, and action predicates.
Figure 2 shows example predicates in bold. The arguments of the facts may be constants
or simple variables. A nested domain fact can appear as an argument in the case of the
visibility predicate (illustrated in Listing 1.1). For example, Listing 1.1 shows facts
and policies in Alice’s KB. These indicate that: Dave is a physician specializing in
cardiology, Alice likes Charlie for thefindPhysicianservice, and a fact (illustrating the
use of a nested predicate) that the first fact is public. Alice’s referring policy allows her
to refer any agentY for a serviceP if she likes that agent.

Listing 1.1. Facts and policies in Alice’s KB (part 1)� �
/∗ f a c t s ∗ /
p h y s i c i a n (dave , c a r d i o) .
l i k e s (a l i c e , c h a r l i e , f i n d P h y s i c i a n) .
v i s i b i l i t y (a l i c e , p h y s i c i a n (dave , c a r d i o) , p u b l i c) .
/∗ p o l i c i e s ∗ /
r e f e r (a l i c e , Y, P) :− l i k e s (a l i c e , Y, P) .

� �

Requests: Queries and Tacks.Let’s first consider a simple form of a request, which
consists of aquery rule whose head is the predicateask applied to some variables. The
variables free in the head are used along with other variables in the body of the rule.
ask(Xi, . . .) : −P1(Xj , . . . , li, . . .), . . . is a generic query, where thePk are predicates,
theXi are variables, and theli are constants. Listing 1.2 shows a simple request con-
sisting of a query.

Listing 1.2. Alice’s simple request� �
[ask (X) :− p h y s i c i a n (X, c a r d i o) , me d i c a lSc hoo l (X, duke) , c e r t i f i e dB y (X, abms) ,

e x p e r i e n c e (X, Y) , Y> 10]
� �

To improve the effectiveness and efficiency of interactions, InterPol supports re-
quests that consist of a query rule and a list oftacks. Each tack is a conjunction of
one or more clauses. A tack having a predicateTk with variablesXi, and so on is rep-
resented asT1(Xl, Xm, . . .). In other words, a tack is syntactically like the body of a
query rule. However, whereas a query body expresses a hard constraint, a tack expresses
a preference of the requester. In simple terms, a request containing a tack can be inter-
preted as two requests: one consisting of the query rule alone, and another consisting
of the query rule augmented with the tack “tacked on” to the body of the rule. When an
agent responding to a request is able to accommodate a specified tack, it facilitates the
requester pruning the search space and reducing the communication overhead.

Listing 1.3 shows a request sent out by Alice for a physician specializing in car-
diology. She has preferences expressed in tacks such as about the physician’s medical
school, ABMS certification, and experience.

Listing 1.3. Alice’s request with tacks
� �

[ask (X) :− p h y s i c i a n (X, c a r d i o) , {me d ic a lSc hoo l (X, duke) , c e r t i f i e d B y (X, abms) ,
e x p e r i e n c e (X, Y) , Y> 10 }]

� �

Responses: Answers and Referrals. A response returned by an agent is either an
answer or a referral. Ananswer is a set of solutions. For a simple request, each solution
is a vector of bindings of the variables in theask of the given query to constants that
satisfy the query rule. Areferral is a set of facts describing the agents referred. These
facts are generated by the reasoner to find the matching referrals for the stated request.

Listing 1.4. Answers and referrals
� �

/∗ Bob ’ s answer (r e s p o n s e t o A l i c e) ∗ /
{ [ask (watson)] }
/∗ Char l i e ’ s r e f e r r a l (r e s p o n s e t o A l i c e) ∗ /
{ r e f e r (c h a r l i e , g a b r i e l , p h y s i c i a n)}

� �

Listing 1.4 shows Bob’s answer (one cardiologist who matches the body of the query
rule) and Charlie’s referral (a singleton set) in response to Alice’s request of Listing 1.2.

For a request with tacks, each solution has two parts: (1) a vector of bindings of the
variables in theask of the given query to constants that satisfy the query rule and (2)
a list of remarks in the same order as the tacks in the given request. Each remark on a
variable binding merely states whether the corresponding tack is true (T) or not (F) for
that binding.

Listing 1.5. Answers and referrals
� �

/∗ Bob ’ s answer (r e s p o n s e t o A l i c e) ∗ /
{ [ask (watson) , {T , T , T}] ,

[ask (dave) , {F , T , F}] }
� �

Listing 1.5 shows Bob’s answer to Alice’s request of Listing1.3. Bob’s answer lists
two physicians specializing in cardiology. Watson satisfies all the tacks, whereas Dave
satisfies only the tack about certification.

In general, a request that places some clauses in the tacks instead of the query would
produce more results, but some of them might be superfluous. Arequest that placed
more clauses in the query rule would produce fewer, but more precise results. However,
in some cases, it might produce no results at all.

3 Applying InterPol

InterPol incorporates a conceptual model and predicates for interactions, social rela-
tionships, trust evaluations, and privacy and utility management. The following form
the major scenarios, which motivate the development of a rich vocabulary for the pol-
icy specification language in InterPol.

3.1 Accommodating Privacy

Policy-based approaches are natural for privacy. Traditionally, privacy is treated via
access control policies, often based on credentials or roles. A multiagent approach can
better model subtle social and organizational relationships among agents, which govern
the agents’ interactions in any practical setting. These models lead to policies that are
more appropriate and acceptable. And, multiagent approaches provide an architecture
where the resolution of the policies is carried out in a cooperative manner, wherein
agents can naturally share information that might help others whom they trust.

For example, an agent may not want to reveal his medical records to anyone but his
primary care physician. InterPol provides two low-level primitives for handling privacy.
First, it allows a fact or a rule in the KB to be marked with itsvisibility (public or privi-
leged). Second, InterPol supports a notion of privacy measures with respect to services
and agents. These concepts enable formulating precise answering policies that restrict
revealing private information to certain agents. InterPolmodels these concepts using
the privacy predicatesvisibility , servicePrivacyNeed, andagentPrivacyTrust(values in
the range[0, 1]) to specify the visibility and the privacy measures of a service and an
agent, respectively. Here a privacy measure of0 (1) means highly private (public).

To demonstrate elementary privacy, consider a scenario described in Listings 1.6
and 1.7, which are Alice and Bob’s initial KBs, respectively.

Knowledge. Here, Alice is a neighbor of Bob and Alice has no neighbors. She has
expertise in the domain of medicine, and an answering policythat expects the privacy
trust measure of the requesting agent to be higher than that of the service privacy need.
Alice’s KB has a public fact that Dave is a physician specializing in cardiology. She has
a domain policy that means thatphysiciannames and specialties can be revealed only
if they arepublic. Other facts capture theagentPrivacyTrust of Bob and theservicePri-
vacyNeed of the predicatephysician.

Listing 1.6. Initial KB of Alice (part 2)
� �

answer (a l i c e , X, P) :− a g e n t P r i v a c y T r u s t (X, V1) , s e r v i c e P r i v a c y Ne e d (P , V2) , V1 > V2 .
v i s i b i l i t y (a l i c e , p h y s i c i a n (dave , c a r d i o) , p u b l i c) .
p h y s i c i a n (X, F i e l d) :− v i s i b i l i t y (a l i c e , p h y s i c i a n (X, F i e l d) , p u b l i c) .
a g e n t P r i v a c y T r u s t (bob , 0 . 7 5) .
s e r v i c e P r i v a c y Ne e d (phys i c i a n , 0 . 5) .

� �

Listing 1.7. Initial KB of Bob
� �

ne ighbo r (bob , a l i c e) .
query (bob , X, P) :− ne ighbo r (bob , X) .
h a s D i r e c t E x p e r i e n c e (bob , X, P) :− l i k e s (bob , X, P) .
r e f e r (bob , X, P) :− h a s D i r e c t E x p e r i e n c e (bob , X, P) .

� �

Bob has a request formulation policy under which he can request any neighbor.
Bob’s referring policy requires him to havedirect experience with a prospective referand.
Bob’s policy defineshasDirectExperiencebased onlikes.

Interactions. Bob is looking for a physician specializing in cardiology and hence
generates a query with bodyphysician(X, cardio). He applies his request formulation
policy by solving forquery(bob, Y, physician). Alice qualifies for this policy, being a
neighbor. Thus Bob sends the request to Alice. Now Alice’s answering policy is sat-
isfied and she returns the answerphysician(dave, cardio) to Bob. Upon receiving the
answer, Bob asserts the factlikes(bob, alice, physician) to indicate that Alice gave a
good answer.

3.2 Strategies for Requests

InterPol provides tacks as a facility for expressing soft preferences. How tacks are con-
structed can have consequences on the efficiency of service selection and on the privacy
of the agents involved.

Privacy preservation. An agent’s requests can potentially reveal too much informa-
tion, e.g., about the agent’s true needs. A public request modifies a true, private request
so as to hide some of the private information. To formulate privacy preserving queries,
an agent must infer public requests from its private needs. There are two main ways of
accomplishing this. Ingeneralization, a weaker request is revealed. In Listing 1.8, a pri-
vate request specifies a physician for skin allergy. However, the agent’s request instead
specifies a physician who treats any allergy.

Listing 1.8. Using the generalization approach
� �

/∗ p r i v a t e need ∗ /
p h y s i c i a n (X, s k i n A l l e r g y) .
/∗ p u b l i c r e q u e s t ∗ /
p h y s i c i a n (X, a l l e r g y) .

� �

In theassociation approach, a request that is a sibling of the actual (private)need is used.
In Listing 1.9, the agent requests a dermatologist, based onthe association between skin
allergy and dermatology.

Listing 1.9. Using the association approach
� �

/∗ p r i v a t e need ∗ /
p h y s i c i a n (X, s k i n A l l e r g y) .
/∗ p u b l i c r e q u e s t ∗ /
p h y s i c i a n (X, dermato logy) .

� �

Iterative exploration. For reasons of privacy, an agent may generate not one but a
series of requests. For simplicity, let’s consider that only tacks are varied across such
requests. Successive requests may make the tacks weaker (less constraining) or stronger
(more constraining). We can think of the tacks as forming a hierarchy, where lower tacks
are stronger than upper tacks.

Listing 1.10.Example tack hierarchy
� �

e x p e r i e n c e (X, Y) , Y> 10
⇓

c e r t i f i e d B y (X, abms)
⇓

me d ic a lSc hoo l (X, duke) .
� �

Listing 1.10 shows three tacks in order for a query predicatephysician(X , cardio). The
top tack allows a physician with at least 10 years of experience and is the weakest. The
middle tack requires a certification by ABMS, whereas the bottom tack requires the
physician to be from Duke. In thebottom up strategy, if a specified tack yields no valid
answers, the agent weakens the tack in a subsequent request.This increases potential
space of answers. In thetop down strategy, the agent begins at the top and refines its
tack until an acceptable answer is found.

Conflict management. Tacks can conflict. To accommodate handling conflicts be-
tween tacks, InterPol supports assigning priorities to them. For example, consider a
scenario where a request for a physician is composed of two conflicting tacks, specify-
ing that the physician should be from Harvard and Duke respectively. The tack with the
higher priority is preferred.

3.3 Trust and Social Relationships

We modeltrust in relational terms: atrustor trusts atrustee with respect to a particular
service. For example, we may trust a cardiologist for all heart-related problems but not
for other ailments. Because of different bodies of evidenceor different evaluations of
the same evidence, two trustors can have different assessments of trust for a particular
trustee.Social trust is based on the relationships among the agents and is well suited
for P2P information systems.

InterPol supports social relationships such asneighborhood, competition, collabo-
ration, friendship, enmity, andservice dependency. These relationships lead to succinct
policies that govern agent interactions well. For reasons of brevity, they are not pre-
sented here. Instead we describe an example of a generic means to evaluate relation-
ships, which provides the heart of evidence-based reasoning. Social network analysis
models trust in the presence of social relationships based on evaluating the participants’
experiences [6]. The knowledge of these relationships at various strength levels can fea-
ture in an agent’s policies to evaluate trust among agents. InterPol captures the strength
I (values in the interval[0, 1]) of a relationshipR via a measurerStrength(R, I).

4 Related Work

Policies are widely used for access control and trust management in distributed systems.
InterPol differs from traditional policy approaches, because it focuses on a multiagent
service network, and provides a set of primitives that are designed for expressing natural
policies in it. These policies can be thought of as supporting subtle kinds of access
control where each agent determines how much of its domain orsocial knowledge to
share, when, and with whom.

Reputation-based access control. Reputation-based trust mechanisms are becom-
ing common for the management of decentralized peer-to-peer networks because of
the threat of malicious peers. Xiong and Liu propose an adaptive trust model using
community-based reputations to predict the trustworthiness of peers in P2P e-commerce
communities [7]. Boella et al. discuss authorization and permission in policies for vir-
tual communities consisting of resource consumers and providers, and authorities [8].

Each community includes an authority, which keeps track of membership and fine-
grained access control policies.

A common feature of current reputation and access control systems is that they
employ centralized mechanisms to store reputation values or to provide fine-grained
access control policies. By contrast, InterPol is decentralized and thus maximizes the
agents’ autonomy. Further, its use of policies simplifies the management of P2P systems
by placing control in the hands of the individual peers.

Policy languages. Of the several policy specification languages, two are particularly
important.Rei is a policy language implemented in Prolog for pervasive environments
[9]. PeerTrust has an expressive policy and trust negotiation language based on first or-
der Horn rules which form the basis for logic programs [10]. PeerTrust establishes trust
using a dynamic exchange of certificates. Rei does not model the privacy preserving
policies like in InterPol and PeerTrust. Like in PeerTrust,trust between entities in Inter-
Pol is built over time, but unlike the dynamic exchange of certificates in PeerTrust, trust
in InterPol depends on the quality of the answers or referrals provided by the entities,
and the trust models generated by the policy framework.

Role-based trust management. Role-based trust management languages emphasize
the properties of roles such as their hierarchy. They specify role delegation, and support
credential chain discovery and trust negotiation. Like InterPol, RT [11] and Cassandra
[12] are based on Datalog with constraints. InterPol modelsdeeper social relationships
and considerations of privacy. Via tacks and policies, InterPol supports a more flexible
kind of trust negotiation.

Privacy preserving systems.Several trust negotiation systems have introduced mech-
anisms to safeguard the privacy of the entities and their policies involved in a negotia-
tion by using privacy preserving policies. PeerTrust [10] uses a protection scheme that
uses named policies, so that policies can have their own policies. InterPol can support
named policies, because it can support nested policies. Also, InterPol supports sophisti-
cated privacy preserving mechanisms by supporting policies that use agent relationships
to evaluate agent privacy levels.

5 Conclusion

Referral systems provide an alternative approach to realizing service networks than
traditional P2P systems. They place control of the computation in the hands of the
requesting agent (even as it relies upon cooperation from others), because it is involved
in all interactions. Thus it can better control the information it reveals to other or the
information it receives and incorporates from others.

The referrals approach supports four types of policies to beformulated for each
agent. As a result, a far richer variety of interactions are supported than in traditional
P2P systems. This richer variety of interactions is essential for the engineering and
management of practical P2P information systems.

InterPol shows how its algorithms can be realized over a conventional Prolog en-
gine. It provides a rich vocabulary to enable to proper expression of policies, and sup-
ports various heuristics by which agents can interact with each other. Future work will

consider enhancing the algorithms for evaluating policiesto support better exchange of
information among the agents to perform cooperative search. A referral system evolves
as agents unilaterally can change their neighbor sets so that their “better” peers become
their neighbors. Interesting properties emerge and are related to how individual agents
act [2, 13]. It would be interesting to study such propertiesin the context of the policies
discussed above.

References

1. Bonnell, R., Huhns, M., Stephens, L., Mukhopadhyay, U.: MINDS: Multiple intelligent
node document servers. In: Proceedings of the 1st IEEE International Conference on Office
Automation. (1984) 125–136

2. Singh, M.P., Yu, B., Venkatraman, M.: Community-based service location. Communications
of the ACM44(4) (April 2001) 49–54

3. Dogac, A., Laleci, G., Kirbas, S., Kabak, Y., Sinir, S., Yildiz, A.: Deploying semantically
enriched web services in the healthcare domain. Information Systems Journal (Elsevier
Science) (2005)

4. Denti, E., Omicini, A., Ricci, A.: tuProlog: A light-weight Prolog for Internet applications
and infrastructures. In: Proceedings of 3rd InternationalSymposium on Practical Aspects of
Declarative Languages. Volume 1990 of LNCS., Springer-Verlag (January 2001) 184–198

5. Li, N., Mitchell, J.C.: Datalog with constraints: A foundation for trust management lan-
guages. In: Proceedings of 5th International Symposium on Practical Aspects of Declarative
Languages. (January 2003)

6. Sabater, J., Sierra, C.: Reputation and social network analysis in multi-agent systems. In:
Proceedings of 1st International Joint Conference on Autonomous Agents and Multiagent
Systems. (2002) 475–482

7. Xiong, L., Liu, L.: A reputation-based trust model for peer-to-peer ecommerce communities.
In: Proceedings of IEEE Conference on E-Commerce (CEC). (June 2003)

8. Boella, G., van der Torre, L.: Permission and authorization in policies for virtual communi-
ties of agents. In: Proceedings of Third International Workshop on Agents and Peer-to-Peer
Computing (AP2PC). (2004)

9. Kagal, L., Finin, T., Joshi, A.: A policy language for a pervasive computing environment.
In: Proceedings of 4th International IEEE Workshop on Policies for Distributed Systems and
Networks (POLICY). (June 2003) 63–74

10. Nejdl, W., Olmedilla, D., Winslett, M.: PeerTrust: Automated trust negotiation for peers on
the semantic web. In: VLDB Workshop on Secure Data Management (SDM). Volume 3178
of LNCS., Springer-Verlag (August 2004) 118–132

11. Li, N., Mitchell, J.C.: RT: A role-based trust-management framework. In: Proceedings of
3rd DARPA Information Survivability Conference and Exposition (DISCEX), Washington
(April 2003)

12. Becker, M.Y., Sewell, P.: Cassandra: Distributed access control policies with tunable expres-
siveness. In: Proceedings of 5th International IEEE Workshop on Policies for Distributed
Systems and Networks (POLICY). (June 2004)

13. Yolum, P., Singh, M.P.: Engineering self-organizing referral networks for trustworthy service
selection. IEEE Transactions on System, Man, and Cybernetics, Part A35(3) (May 2005)
396–407

