
Incorporating Commitment Protocols into Tropos?

Ashok U. Mallya and Munindar P. Singh

Department of Computer Science,
North Carolina State University,
Raleigh, NC 27695-7535, USA.

{aumallya,singh }@ncsu.edu

Abstract. This paper synthesizes two trends in the engineering of agent-based
systems. One, modern agent-oriented methodologies deal with the key aspects
of software development including requirements acquisition, architecture, and
design, but can benefit from a stronger treatment of flexible interactions. Two,
commitment protocols declaratively capture interactions among business part-
ners, thus facilitating flexible behavior and a sophisticated notion of compliance.
However, they lack support for engineering concerns such as inducing the de-
sired roles and selecting the right protocols. This paper combines these two di-
rections. For concreteness, we choose the Tropos methodology, which is strong
in its requirements analysis, but our results can be ported to other agent-oriented
methodologies.
Our approach is as follows. First, using Tropos, analyze requirements based on
dependencies between actors. Second, select top-level protocols based on the ac-
tors’ hard goals, while respecting the logical boundaries of their interactions.
Third, select refined protocols based on the actors’ soft goals. Consequently, Tro-
pos provides a rigorous basis for modeling and composing protocols whereas the
protocols help produce perspicuous designs that respect the participants’ auton-
omy. We evaluate our approach using a large existing case.

1 Introduction
Tropos is an agent-based software methodology that uses the notions of goals, plans to
achieve goals, and dependencies among the goals and plans of agents [2]. The depen-
dencies help capture the relationships between the various stakeholders in the system
being engineered. Followingi∗ [5], Tropos gives prominence to identifying stakehold-
ers and their goals early.

Commitment protocols model interactions among autonomous agents in terms of
their content rather than in terms of low-level message exchanges [4]. Commitment
protocols form building blocks for (and correspond to vertical slices of) flexible busi-
ness processes, each protocol ideally addressing a logically well-encapsulated interac-
tion for a specified purpose. For example, the purchase and shipping protocols would
have logically distinct purposes and involve distinct roles. Specific agents would play
suitable roles in different protocols to obtain a business process.

? We thank Amit Chopra, Nirmit Desai, and the anonymous reviewers for valuable comments.
This research was supported partly by the NSF under grant DST-0139037 and partly by a
DARPA project.

While both of the above approaches have strengths, they also have some limita-
tions where a synthesized approach would help. Tropos models dependencies among
stakeholders well and accommodates their evolution as the goals and plans of the stake-
holders are refined. The requirements serve as reminders and guards throughout the
development process. However, Tropos does not capture agent interaction requirements
in the early stages. Protocols are not identified until the penultimate (detailed design)
stage whereas dependencies are defined early. Protocols evolve as the design progresses.
Tropos can benefit from an interaction model that allows interactions to be refined with
each successive stage of software development. On the other hand, the theory of com-
mitment protocols does not address how interaction protocols and the contexts of their
application can be identified in a multiagent system. Tropos can provide cues for identi-
fying protocols because it identifies actors, their goals, their plans to achieve goals and
dependencies.

CONTRIBUTIONS. Our work contributes to both Tropos and the theory of commitment
protocols. Through protocols, our approach gives interactions the same status as goals
in Tropos. Interactions among independent parties can be captured early and succes-
sively refined based on a theory of protocol subsumption. Because of its identification
of stakeholders and their goals, dependencies, and plans, Tropos provides a valuable
approach in which to identify and refine commitment protocols. We illustrate our ap-
proach via an example of a large software system that was developed using Tropos.

ORGANIZATION . The rest of this paper is organized as follows. Section 2 introduces
Tropos and our running example. Section 3 describes commitments, protocols, and al-
lied concepts. Section 4 lists important properties of dependencies, which are used to
develop the guidelines of our methodology for incorporating commitment protocols into
Tropos in Section 5. Section 6 compares our contributions to the literature and outlines
some directions for enhancement.

2 Background: Tropos by Example
Tropos uses the following key concepts:

– ACTOR: An actor models an entity that has goals or plays a part in the software
being developed. Actors are similar to agents or roles, in traditional terminology.

– RESOURCE: A physical entity or a piece of information.
– GOAL : A goal corresponds to an actor’s desire.Hardgoalsare measurable, whereas

softgoalsare subjective.
– PLAN : A plan is an abstract description of steps to be taken to achieve a goal.
– DEPENDENCY: An actor (depender) can depend on another (dependee) for acquir-

ing a resource, satisfying a goal, or executing a plan. The resource, goal, or plan is
the dependum. The reasonfor a dependency is a plan, goal, softgoal, or resource
(belonging to the depender) for which the depender depends on the dependee.

Tropos uses three methods, all from an actor’s perspective, for refining goals and iden-
tifying plans to achieve them.

– Means-end analysisidentifies plans, resources, or goals (means) to satisfy a speci-
fied goal or plan (end). When a plan is the end, the means can be another plan or a
resource, but not a goal.

– AND-OR decompositionbreaks up plans into subplans. AND requires all subplans;
OR requires one. Likewise for goals and subgoals.

– Contribution analysisidentifies the positive and negative impact that a plan, a goal,
or a resource may have on the achievement of a goal.

Table 1 summarizes the stages of Tropos and how they use the concepts of actor, goal,
plan, dependency, and capability.

1. Early Require-
ments

2. Late Require-
ments

3. Architectural
Design

4. Detailed Design

Actor Mod-
eling

Identify “top-
level” actors actors
or stakeholders in
domain.

Introduce system
as an actor called
system-actor.

Decompose
system-actor into
subactors. Identify
all dependencies.

Define agents to
model capabilities
of system-actor
and its subactors.

Goal Model-
ing

Refine goals using means-end
analysis, AND-OR decomposition,
and contribution analysis. Find
new dependencies.

Plan Model-
ing

Refine plans using the three plan
analysis methods analogous to
goal analysis.

Dependency
Modeling

Identify dependen-
cies between stake-
holders using goal
modeling.

Model depen-
dencies between
system-actor and
other actors.

Model depen-
dencies between
subactors of the
system-actor to
identify capabili-
ties.

Capability
Modeling

Identify capabil-
ities of subactors
required to handle
dependencies with
all others.

Table 1. Tasks performed in modeling actors, dependencies, goals, plans, and capabilities in dif-
ferent stages of Tropos. Within each stage, the different modeling techniques are not ordered.

The eCulture Example

Tropos was used to develop theeCulture Systemfor the Trentino provincial govern-
ment (calledPAT) [2]. This system provides information about cultural services such
as museums to citizens and tourists.

EARLY REQUIREMENTS. Figure 1 identifies four stakeholders (top-level actors) in the
eCulture System: Citizen, PAT, Visitor, andMuseum, along with their goals and depen-
dencies. The above actors have the goalsget cultural info, increase Internet use, enjoy

Fig. 1. Actors identified in early requirements. Actors are circles, their scopes demarcated by
dotted ovals. Hardgoals are solid ovals; softgoals are clouds. Dependencies are lines with arrow-
heads at their center, going from the depender (or from the reason) to the dependee (or to the
dependum).

visit, andprovide cultural services, respectively, the last two being softgoals.Citizen
depends onPAT, taxes well spent being the reason for the dependency.

Next, the model of Figure 1 is refined via goal and plan analyses. During goal anal-
ysis, each goal is eitherexpandedinto subgoals using AND-OR decomposition,dele-
gatedto a new or existing actor, oracceptedby an actor as its own. Tropos performs
goal and plan modeling for different actors using label propagation to check that all the
root goals, i.e., goals that the modeling began with, are accepted by some actor. Figure 2
shows the partial result of such a goal and plan analysis. Theget cultural info hardgoal,
which is a root goal for the actorCitizen, is OR-decomposed into two subgoals—visit
cultural institutions andvisit cultural web systems. Under means-end analysis, the lat-
ter subgoal yields the planvisit eCulture as a means. This plan is AND-decomposed
into two subplans, namely,use eCulture andaccess Internet. The softgoaltaxes well-
spent—the reason forCitizen’s dependency onPAT—is delegated toPAT, which accepts
it.

LATE REQUIREMENTS. During late requirements, the software system is introduced as
an actor, called thesystem-actor. Dependencies between existing actors (stakeholders)
and the system-actor are identified, and goal and plan analyses are performed. Figure 3
shows part of the actor model forPAT, Citizen, Museum, and the system-actoreCulture.
This figure also shows a part of the goal model foreCulture. For example,PAT depends
on eCulture for the softgoalusable eCulture and for the hardgoalprovide eCultural ser-
vices, among others. Goal analysis performed on these goals from the point of view of
eCulture results in both goals being adopted byeCulture and decomposed as shown in
the goal diagram (within the dotted oval) in Figure 3.

ARCHITECTURAL DESIGN. During architectural design,eCulture is decomposed into
several subactors, including an actorInfo Broker introduced to satisfy the goalprovide
info. Goal and plan analyses are performed after identifying the dependencies between
the new subactors and the other actors.

3 Background: Commitments and Protocols
A commitmentis a directed obligation from one agent to another, within a social con-
text. A commitmentC(x, y,G, p) denotes that the agentx (debtor) is responsible to the

Fig. 2. Actor model after early requirements. Plans are hexagons; AND decompositions are ar-
rows with empty triangles as arrowheads, with an arc spanning over all the arrows; OR decom-
positions are similar, but without the spanning arc. Contributions are a+ or a− next to an
arrowhead; means-end relationships are similar, but without the+ or the−.

agenty (creditor) for bringing about theconditionp within a social contextG. The con-
dition is expressed in a suitable formal language.Conditionalcommitments, denoted by
CC(x, y,G, p, q), mean thatx is committed toy to bring aboutp if q holds. Convention-
ally, six commitment operations are defined. A commitment can becreated, canceled,
or discharged. The creditor of a commitment can bereleasedby the debtor. Further, the
creditor cancancelthe commitment, usually based on a suitable compensation for the
cancellation.

Commitment protocols are driven by the creation and transformation of commit-
ments between their participants rather than by a rigid sequence of steps. Thus com-
mitment protocols are akin to goal-based interactions. Here, we summarize an existing
framework in which a subsumption hierarchy is defined over protocols such that a re-
fined protocol is subsumed by the protocol it refines.

A protocol allows a set of computations orruns. Each run is a sequence ofstates.
Each state is an assignment of truth values to a set of domain-specific and generic,
commitment-relatedpropositions. Hence states are a snapshot of the universe of the
protocol. A run transitions from one state to the next based on the actions that the par-
ticipating agents take. Actions are substituted by messages passed between roles. States

� � � � � � � �

� � � � 	
 �

� � � � � � � �

� � � � 	 � � �

 � � �

� � � � � � � � 	 � � �

� � � � 	
 �

	 � � �

�
 � � � � 	 � � � �

� � � � 	 � � �

� 	 � � � � �

� 	 � 	 � �

� � � 	 � � 	 �

	 � � � � � � � � � � � 	 � � �

� � � � � �

� � � � � � � �

� � � � � � 	 � �
 � �

� � � � � � � �

� � � 	 � � � � �

� � � � � � � �

� � � � � � �

� � � 	 � � � 	 � 	 � �

� � � � � � � �

� � � � � � � �

�

�

�

�

�

� � � � � � � �

� � � � � �
 �

	 � � � � � � � �

� � � � � �

� � � � �

� � � � � �

� � � � �

� 	 � 	 � � �

� � � �

� � � � 	 � 	 � � � 	 � �

� � �

� � � � � � � � � � �

	 � � �

� � � � � � � �

� � � � � 	 �

� � � �

� � � � � � 	 � � �

� � � � � � � �

� � � � � � �

� � � � � 	 � �

� � � � � 	 �

� � � �

� � � 	 � � � � �

� � � � � 	 �

� � � �

� � � � � � � 	 � �

� � � � � � �

� 	 �
 	 � � �

� � � � � � �

� � � � �

� � � � � � �

� � �

� � � � � � � �

� 	 � � � � 	 �

Fig. 3. Partial actor and goal models showing dependencies ofPAT, Citizen, andMuseum on
the system-actoreCulture. Resources are rectangles.

are related bystate-similarityfunctions, which define when two states are considered
similar to each other.

State-similarity helps compare runs to determine if one runsubsumesanother. A
run r1 (which is a sequence of states, say,〈s0s1s2 . . . s|r1|〉) subsumes a runr2 under
a state-similarity functionf if and only if r2 consists of states that are similar (under
f) to states inr1 and corresponding states have the same relative order in each run. For
example, iff is identity-state similarity, meaning two states are similar if they have the
same labels, thenr2 could be〈s1s2〉.

Protocol subsumption is based on run subsumption. A protocolP1 subsumes a pro-
tocol P2 if and only if every run generated byP2 is subsumed by a run inP1. That is,
a protocol that specifies less subsumes a protocol that specifies its runs in more detail.
For example, consider an interaction in whichCitizen acquires some information from
eCulture. A generic protocol for this interaction might state that theCitizen sends a
query and awaits a response. A refinement of this protocol might state thatCitizen must
login, be authenticated, and will receive a response based on its credentials as identified
by eCulture. Both protocols enable the same top-level interaction, i.e., transferring in-
formation fromeCulture to Citizen. A system designer can use either protocol, possibly
based on the context in which the system is deployed. Commitments help us reason
about similarities and differences among protocols, and provide, through definitions
state-similarity functions, a basis for judging subsumption among protocols.

4 Dependencies in Tropos
We propose the use of commitment protocols in Tropos with actors as agents, and de-
pendencies between actors as the bases of application of these protocols. This section

describes intuitions about dependencies in Tropos that are used when developing and
applying protocols.

In Tropos, a plan is a sequence of steps that an actor may take in order to achieve
a certain goal, and a goal is a state which the actor wants to bring about. Plans are
meansto achieve goals. Plans areexecuted, goals areachieved, and resources aremade
available. Nine types of dependencies can exist between actors in Tropos, since depen-
dums on the dependee’s side and reasons on the depender’s side can be either a plan, a
hardgoal, or a resource. These dependency types are shown in Figure 4, leading to the
following observation about the operational behavior of the dependencies.

Actor1
Actor2

Plan2

Goal2

Resource2

Plan1

Goal1

Resource1

depender dependee

dependumreason

d1

d2d3

d4 d5

d6

d7
d8

d9

Fig. 4. Types of dependencies in Tropos

Observation 1 The reason of a dependency cannot be executed to completion, achieved,
or made available till its dependum is executed (at least partially), achieved, or made
available.
This is based on the assumption that all dependencies are required for their reason
to succeed. For instance, a plan cannot be executed to completion if the goal that it
depends on is not achieved. Dependencies can be fulfilled multiple times. For example,
the dependency on the resourcequery result between theeCulture and theMuseum is
fulfilled every timeeCulture makes a query result available to the museum.

Observation 2 A dependency’s reason is an actor’s local view of an interaction pro-
tocol.
For example, theaccess Internet plan ofCitizen is the citizen’s view of the interaction it
has withPAT on the dependumInternet infrastructure available. If a dependency is one
of several dependencies realized by a single protocol, then that dependency is only part
of the actor’s view of that protocol.

Observation 3 Outgoing dependencies can be propagated up the hierarchy in AND-
decomposition trees.
Generally, outgoing dependencies from all non-root nodes of an AND tree can be prop-
agated to the root. In essence, a tree can be captured with just its root node as the reason
for all its outgoing dependencies. ConsiderPAT’s plansearch by thematic area and its
AND decomposition tree, as in Figure 3. This plan is the reason for the dependency on
the resourcequery result, becausesynthesize results, a non-root node in the AND tree,
depends onquery result. The outgoing dependency has therefore been propagated up
the tree.

With means-end trees and OR-decomposition trees, since only one of the non-root
nodes need to be achieved, executed, or made available, the dependencies cannot always
be propagated to the root. ConsiderPAT’s planfind info sources in Figure 3. This plan is
part of the OR tree with the planget info on thematic area as its root.find info sources has
a dependency onMuseum for info about source. This dependency cannot be propagated
up to the root planget info on thematic area because there is an alternative way—query
sources—of executing the root plan without involving any dependency.

Designers propagate dependencies down the hierarchy as part of Tropos, when goals
and plans are refined.

5 Protocols Based on Dependencies
This section provides guidelines for introducing protocols into Tropos using dependen-
cies among actors as the basis.

Guideline 1 A protocol is required between two actors if and only if at least one de-
pendency exists between them.

A single protocol mightrealizeall associated dependencies between actors. This pro-
tocol would be coherent only if the dependencies were somehow related. For example,
both the dependencies betweeneCulture andCitizen shown in Figure 2 can be realized
by a single protocol since the dependencies are part of a coherent interaction in which
Citizen queries and receives information fromeCulture. System designers can thus state
the relationships between dependencies in terms of interactions between actors.

Conversely, consider actors that have multiple, unrelated dependencies realized by
a single protocol. Such a protocol would not be the best design because it combines
independent interactions. OWL-P is a framework for describing, composing, and en-
acting protocols [4]. The composition makes use of a designer-specifiedprofile, which
includes axioms specifying correspondences between roles, messages, and data in the
protocols being combined. As an example, consider Figure 5, which is a part of Fig-
ure 3. Let the dependency betweeneCulture andCitizen on get cultural info be realized
by aninformation transferprotocol with two roles:information providerandinforma-
tion consumer. Let the dependency onarea specification form be realized by aform
filling protocol with two roles:form creatorand form filler. These two protocols can
be combined by specifying in the composition profile thatCitizen plays the roles in-
formation consumer and form filler, andeCulture plays the roles information provider
and form creator. The composition profile would also specify that the form data be
filled before the cultural information is provided. Under such a scheme, a protocol that
realizes unrelated dependencies between two actors would not have any composition
axioms other than the ones required to bind roles between the protocols. That is, pro-
tocols group related dependencies, defining interactions in coherent units rather than as
unrelated dependencies.

Guideline 2 Protocols cannot realize dependencies that have softgoals as dependums
or reasons.

Whereas softgoals can be used by designers to refine protocols, they cannot be realized
using protocols since the achievement of softgoals is not objectively verifiable.

Fig. 5. Realizing dependencies using one protocol each. Actors play multiple roles.

Identifying Related DependenciesRelationships between dependencies can be iden-
tified only by the system designer, based on expert knowledge about the stakeholders
and actors. However, additional information about potential relationships between de-
pendencies can be obtained from the structure of the AND-OR decomposition and the
means-end analysis. Detecting sets of related dependencies corresponds to identifying
and demarcating the scope of a protocol. Identifying relationships between dependen-
cies also indicates how a protocol should be designed. Here, we describe the guidelines
for identifying related dependencies and how they correspond to protocols.

Guideline 3 If the means for an end are reasons for dependencies, those means should
either be parts of local views of different runs of the same protocol or parts of local
views of different protocols that achieve the same interaction. This guideline applies to
OR decompositions as well.

The means for an end are possible ways to achieve or execute the end. If a plan or a
goal has many means, any one of them is a way for executing the plan or achieving
the goal. If means are reasons for dependencies, then they are an actor’s view of a
protocol. Therefore, multiple means for a common end provide different views of an
actor’s involvement in an interaction whose essence is the same: to achieve the end. As
an example, considerPAT’s goal search info, as shown in Figure 3. This goal can be
achieved by 4 means,search by geo area, search by time period, search by keywords,
andsearch by thematic area. All these means are different plans forPAT’s view of an
information-searching interaction withCitizen. Hence, all these means can be designed
as local views of different runs of an information-searching protocol or as local views
of runs of different protocols to search for information.

When a plan or a goal is OR decomposed, executing any one of the child plans
or satisfying any one of the child goals is sufficient to execute or satisfy the parent
plan or goal respectively. The same reasoning as applied to means-ends applies to OR
decompositions as well. The child plans or goals are equivalent to each other in what
they provide to the actor.

Guideline 4 If the non-root elements of an AND decomposition are reasons for depen-
dencies, those elements should be parts of the local view of the same protocol.

Again, the reasoning is that in an AND-decomposition, all non-root elements must be
executed, achieved, or made available for the root to be executed or achieved.

Identifying 3-Party Protocols A protocol is used to realize dependencies, and de-
pendencies in Tropos exist only between two parties. For realistic situations, however,
we need to be able to identify 3-party protocols orn-party protocols in general, where
n > 2. We first note that anyn-party protocol can be viewed as a set of at mostn(n−1)

2
2-party protocols with the appropriate composition profile. Therefore, we need an op-
erational definition of what constitutes atruen-party protocol. For the purposes of this
discussion, we define a truen-party protocol as a protocol which cannot be broken into
constituent protocols without any data dependency or temporal ordering among them.

Guideline 5 If the AND decomposition tree has dependencies, either incoming or out-
going, with two different actors, a 3-party protocol exists between them.

This guideline is based partly on Observations 1 and 2. Consider the dependencies
shown in Figure 6 for example. ActorA0 has an AND tree, shown partially to ignore
unnecessary detail. The root of this tree is planp1, which has been AND decomposed.
Actor A1 depends on planp1 via the dependencyd1. Further, there exist a non-root
nodep2 which depends on actorA2 via the dependencyd2. From Observation 1, we
know thatp1 will not be executed to completion untilp2 is. Also, from Observation 2,
we know thatp1 andp2 are local views of some interaction protocol. Therefore, we
infer that the protocol that realizesd1 depends on the protocol that realizesd2. There-
fore, based on our operational definition of a truen-party protocol, the model shown
in Figure 6 warrants the use of a 3-party protocol. As a more realistic example, albeit

Fig. 6. Identifying 3-party protocols based on plan dependencies among 3 actors.

a variation of the above, consider the plansearch by thematic area belonging toPAT
in Figure 3. This plan depends onCitizen, and has an AND descendantsynthesize re-
sults, which depends onMuseum. Therefore, this plan cannot be executed to completion
without the help of bothCitizen andMuseum. Therefore, a 3-party protocol can be used
here.

Guideline 6 If a resource belonging to one actor is the dependum for a dependency
with a second actor and a reason for a dependency with a third actor, a 3-party protocol
exists between the the actors.

For example,PAT depends onCitizen for the resourcearea specification form, as shown
in Figure 3. IfCitizen depended on some actor other thanPAT for this resource, then a 3-
party protocol would be required because of the data-dependency between the protocols
realizing these dependencies.

Refining Protocols We have shown how protocols can be applied in Tropos models.
An advantage of using commitment protocols in Tropos is that protocols can be re-
fined with successive stages of software development. We proposed a protocol-design
methodology based on hardgoals and the plans that achieve them. Refinement of these
protocols should be based on the softgoals of the participants. In this regard, softgoals
are analogous to the private policies of a protocol-participant. We intend to develop this
line of research in future work.

6 Discussion

This paper demonstrated how protocols can be introduced into an agent-based software
engineering methodology, Tropos. Tropos benefits from our approach, because (1) pro-
tocols capture the dynamic, or runtime behavior of the software system being developed
before the implementation stage in addition to the static dependencies between actors;
(2) protocols decouple the meaning of an interaction by treating them as entities in their
own right, which can be tailored to suit the needs of their participants and local policies
at runtime; (3) Treating protocols as coherent units captures realistic interactions among
autonomous entities. This is an advantage over a client-server model in which protocols
are part of the logic embedded in the server.

Likewise, we contribute to commitment protocols by describing guidelines for de-
signing them from requirements. Specifically, dependencies, means-end models, and
AND-OR decomposition models in Tropos provide points of reference for using proto-
cols between actors. Tropos provides the scope, i.e., boundaries, for the protocols.

Related Literature Our work relates to software engineering and multiagent sys-
tems. Yu & Mylopolous explain the importance of identifying dependencies among
autonomous entities in organizational settings, e.g., for business processes [6]. They
describe how dependencies based on resources and goals can be used to re-engineer
business processes, since dependencies help answer “what-if?” and “why?” questions
about changes in business processes. Whereas Yu & Mylopolous describe how to intro-
duce a dependency model into an existing business processes, we describe how proto-
cols, which can be used to construct business processes, can be developed based on the
requirements.

Giorgini et al.present a rigorous analysis of goal decomposition in Tropos [3]. They
develop algorithms to identify contributions among goals and possible conflicts among
goals. This work would help our research in identifying valid refinements of protocols
based on goals.

Gaia, KAOS, MaSE, and SADDE are a few other important agent-oriented method-
ologies [1]. Tropos differs from these in including an early requirements stage. Besides
the early requirements gathering stage, Gaia differs from Tropos in that Gaia describes

roles in the software system being developed and identifies processes that they are in-
volved in as well as safety and liveness conditions for the processes [7]. Gaia incorpo-
rates protocols under theinteractions modeland can be used with commitment proto-
cols. However, the lack of a reasoning scheme based on early requirements—to answer
“why?” questions—limits the flexibility of Gaia’s protocols.

The work presented here is new. Whereas we have chosen Tropos for incorporating
a notion of interactions into the various stages of software design, we aim to study how
other agent-oriented engineering methodologies (which may not include a notion of
dependencies) can incorporate commitment protocols as a design abstraction.

References

1. Federico Bergenti, Marie-Pierre Gleizes, and Franco Zambonelli, editors.Methodologies and
Software Engineering for Agent Systems: The Agent-Oriented Software Engineering Hand-
book. Kluwer Academic, 2004.

2. Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Guinchiglia, and John Mylopolous. Tro-
pos: An agent-oriented software development methodology.Journal of Autonomous Agents
and Multi-Agent Systems, 8(3):203–236, May 2004.

3. Paolo Giorgini, John Mylopolous, and Roberto Sebastiani. Goal-oriented requirements analy-
sis and reasoning in the tropos methodology.Engineering Application of Atrificial Intelligence
Journal, 18(2), 2005. To Appear.

4. Munindar P. Singh, Amit K. Chopra, Nirmit Desai, and Ashok U. Mallya. Protocols for
processes: Programming in the large for open systems (extended abstract). InOOPSLA Com-
panion, pages 120–123, 2004.

5. Eric Yu. Modeling Strategic Relationships for Process Reengineering. PhD thesis, University
of Toronto, 1995.

6. Eric S. K. Yu and John Mylopoulos. An actor dependency model of organizational work: with
application to business process reengineering. InCOOCS ’93: Proceedings of the conference
on Organizational computing systems, pages 258–268. ACM Press, 1993.

7. Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge. Developing multiagent
systems: The gaia methodology.ACM Transactions on Software Engineering Methodology,
12(3):317–370, 2003.

