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Abstract. Though trust and reputation systems have been extensively studied,
general architectural commonalities between the two have received little atten-
tion. In this paper, we present a life cycle model of reputation and trust systems,
along with accompanying measures of how much effect signaling and sanction-
ing have on a given system. We map reputation attacks within our framework and
apply our framework to an online auction model.

1 Introduction

Throughout the trust and reputation system literature, two techniques that stem from
game theory are commonly applied for designing such systems. Signaling models are
those in which agents attempt to assess private attributes about other agents, whereas
sanctioning models are those in which agents behave strategically in an attempt to max-
imize their utility [2].

In real-world environments where agents must decide whether or not to trust one
another, clean distinctions between signaling and sanctioning are rare. For example,
an agent that allocates its own bandwidth and other resources may have little influ-
ence over the amount of resources it has available. Yet, it may be strategic and rational
within those constraints. A manufacturer can acquire a good reputation for having tight
quality controls, but new management may wish to see larger profit margins and may
strategically slowly cut back on the quality controls as long as it remains ahead of its
competitors.

Despite the complexity of the real world, few reputation systems are specifically
designed to address both sanctioning and signaling. Typically, authors of reputation
systems that involve signaling devise a variety of malicious behaviors to test their sys-
tem against. Examples of the adversary agents include randomized acts of unfavorable
behavior [9, 6], building up and spending of reputation [18, 10, 14], Sybil attacks where
an agent creates multiple identities [10, 9, 17], and collusion with other agents [9, 17,
18]. Other systems are designed specifically around strategic agents to ensure good
behavior, but do not attempt to measure attributes of the agents [8, 5]. A minority of
reputation systems, such as that by Smith and DesJardins [16], examine both signaling
and sanctioning explicitly.

Our primary contribution is a model that connects trust and reputation systems both
architecturally and functionally. We examine the trust and reputation life cycle in an
abstract form from which we can systematically determine how much influence signal-
ing and sanctioning have on the particular system. We present a heuristic that indicates
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Fig. 1. Trust and reputation life cycle from an agent’s perspective.

how a system is governed between the signaling and sanctioning, which is prescriptive
in terms of what kind of a reputation or trust model should be used for a given situation.
From this model, we identify and categorize different kinds of attacks against reputation
systems. We use a running example of an online auction.

The general view of this paper is that trust is looking forward in time with respect to
sanctioning and strategy, whereas reputation is looking backward in time with respect
to signaling and determining agents’ types. We discuss this dichotomy in detail. The
focus of this work is on rational agents and e-commerce settings, rather than directly
modeling human behavior. Emotional and cognitive factors of trust are outside of the
scope of this paper.

The remainder of this paper is organized as follows. We first introduce the trust
and reputation life cycle using a logic-based formalism and illustrate it via an online
auction. We then discuss the signaling and sanctioning dichotomy, measuring the effect
of each on a simple online auction model, and then discuss how attacks on reputation
systems can occur at each of the points in our model. We conclude with a discussion of
the benefits and limitations of our model.

2 Trust and Reputation Life Cycle

Although the specifics of particular trust and reputation systems can differ greatly, they
all share some commonalities. In this section, we unify the systems to a common set of
states and actions as outlined in Figure 1.

2.1 Identity States

The following are the different states an agent can go through in a transaction in the
presence of an open reputation or trust system. An agent is not limited to being in one



state at a time, but can maintain multiple accounts and participate in multiple transac-
tions simultaneously.

No Identity The agent begins without an identity or account in the system. This state is
applicable for open systems where agents may enter or leave. From this state, an agent
may acquire an identity and move to the reputation state. Acquiring an identity may
be as trivial as using a nonvalidated screen name in an open text field where the agent
simply claims to have some identity. Alternatively, the system may require extensive
background checks, verifications from official organizations, or significant payments to
create the account. An agent may asynchronously acquire multiple identities, and may
acquire identities in different contexts or with different populations of agents.

Reputation Each identity that the agent has created will have its own reputation within
the community. An agent may discard an identity, either actively by deleting an account
or passively by simply no longer using an identity. When an agent decides to (or is
forced to) interact with another agent, it must select an agent (or agents) with which to
interact. It may communicate with this target agent, performing extensive negotiations
and setting up a formal contract. Alternatively, the agent may simply rely on norms or
not actively communicate with the target prior to the transaction.

Contract A contract expresses a promise or commitment to engage in some behav-
ior. Contracts may be well-defined and policed by an external system or may be as
ill-defined as the agents’ a priori assumptions. From a contract, the agents involved
undergo some transaction with the other agents involved. The transaction can involve
active participation, such as exchanging money for an item, or a transaction can be
passive, such as all agents timing out and not performing any task.

Resolution After a transaction has taken place, an agent will update its own beliefs
about the agents involved in the interaction. The agent can evaluate, report, and commu-
nicate its new beliefs about another agent based on the results of the transaction, either
directly to other agents or via a centralized reputation reporting mechanism. Concur-
rently, the agent may revisit the results and decide that further transactions are required.
To set up future transactions, the agents may renegotiate to a new contract after having
observed the other agents. A renegotiation can have positive connotations, such as pro-
viding additional services to supplement a previous transaction, or the renegotiation can
have negative connotations, such as an agent demanding reparations from a transaction
that did not fulfill the contract.

2.2 Agent Actions
To formalize our discussions about the life cycle of a reputation for further discussion
and analysis, we use a logic-based framework. We formally describe abstractions of
general interactions of a reputation system where comparisons between values are re-
quired to express agents’ preferences. For example, we can represent an example of
agent Alice’s utility as

Util(Alice, 5) ∧ Util(Alice, 10) → Util(Alice, 15) (1)

given the quasilinearity utility rule

Util(agent, value1) ∧ Util(agent, value2) → Util(agent, value1 + value2). (2)



Similar such rules can be used to describe the values within reputation systems. We de-
note ground terms as those identifiers beginning with an upper case letter, and variables
as lower case identifiers.

We can write each of the state transitions from Section 2.1 more formally as follows:

discard identity : ID(agent, id) ∧ Util(agent, discardCost)
acquire identity : ¬ID(agent, id) ∧ Util(agent, acquireCost)
select agent, negotiate : Terms(agent, otheragent, contract)
transaction : Transaction(agent, otheragent, Terms(agent, otheragent, contract))
update & communicate beliefs : Transaction(agent, otheragent, Terms(agent,

otheragent, contract)) → Observation(agent, otheragent, terms)

2.3 Example: Online Auction Representation

To illustrate the applicability of our life cycle and formalizations, we create an example
Beta model reputation model with only positive and negative ratings resembling an
online auction as follows.

Because it costs only a small amount of time for an agent to set up an account,
acquiring an identity becomes

ID(agent, id) ∧ Util(agent, acquireCost), (3)

which could be, for example, ID(agent, id)∧Util(agent,−$0.5). Similarly, discard-
ing an identity is easy, represented as

¬ID(agent, id) ∧ Util(agent, discardCost). (4)

The transaction itself becomes

Transaction(agent, otheragent, Terms(agent, otheragent, contract)) →(
Terms(buyer, seller, contract) ↔

(
Pay(buyer, seller, value)

∧Give(seller, buyer, good)
)
∨ (CurrentDate > SellDate + 30)

))
, (5)

with

Pay(buyer, seller, value) → Util(buyer,−value) ∧ Util(seller, value), (6)
Give(a, b, good) → ¬Has(a, good) ∧Has(b, good), and (7)

Has(agent, good) → Util(agent, V alue(agent, good)). (8)

We can represent the ratings mechanism, triggered by the observation of terms as

Terms(agent, otheragent, contract) → Observation(agent, otheragent, contract).
(9)

The buyer can be rated positively using AdditionalPositiveRating and AdditionalRatings
to each increment the respective value via

Pay(buyer, seller, value) ∧ CurrentDate ≤ SellDate + 30
→ AdditionalPositiveRating(buyer, 1) ∧AdditionalRatings(buyer, 1) (10)



and negatively as

¬Pay(buyer, seller, value) ∧ CurrentDate > SellDate + 30
→ AdditionalRatings(buyer, 1). (11)

The seller may be rated similarly as

Give(seller, buyer, good) ∧ CurrentDate ≤ SellDate + 30
→ AdditionalPositiveRating(seller, 1) ∧AdditionalRating(seller, 1) (12)

and

¬Give(seller, buyer, good) ∧ CurrentDate > SellDate + 30
→ AdditionalRating(seller, 1). (13)

A simple buyer agent might just choose the highest rated seller as

∃s(s ∈ Sellers) ∧ ∀t(t ∈ Sellers)
PositiveRating(s)/NumRatings(s)
≥ PositiveRating(t)/NumRatings(t)

→ Terms(buyer, s, contract). (14)

However, this simplified rating system does not take into account strategy, which we
discuss next.

3 Signaling Versus Sanctioning

The game-theoretic designations of signaling and sanctioning games are relevant to
trust and reputation systems because they address the key mechanism of whether an
agent must decide who to choose or how to act [2, 8]. In this section, we propose a way
of determining the influence of signaling versus sanctioning and how these properties
affect the design of a trust or reputation system, eventually connecting it back to our
life cycle model.

In a signaling setting, agents have private information that they may use to their
advantage. The asymmetric information can be used strategically to cause adverse se-
lection, where agents perform transactions with agents they believe to be desirable but
end up with an undesirable interaction. An example of a signalling situation is where
agents are purchasing mass-produced products and deciding whether to buy the prod-
uct from one manufacturer or another based on quality, price, and features. In this case,
agents signal to each other what they believe about other agents (specifically, the manu-
facturers). Statistical and probabilistic measures are most effective at measuring agents’
behaviors in the signaling setting.

Sanctioning mechanisms are useful in cases of moral hazard. Moral hazard occurs
when agents’ utilities are uncorrelated, meaning that one agent’s gain may yield an-
other’s loss, and one agent can directly exercise control over another’s utility. A pur-
chase where a buyer pays the seller and then the seller has the option of not sending



the product to the buyer is an example case of moral hazard. If the seller will not be
sanctioned for its behavior and will have no future relations with the buyer, then it has
no incentive to send the product. Sanctioning must be credible for the agents involved
to be successful, and may be performed by the agent affected by refusing future trans-
actions, or by other agents policing the system. Modeling behavior in a sanctioning
environment with rational environments means employing game theory techniques to
find Nash equilibria.

As we remarked above, many real-world situations do not fall cleanly into either
signaling or sanctioning situations. An agent may have some control over the quality of
its products, but it is rarely impossible for an agent to make any changes to quality (pure
adverse selection) or for an agent to have perfect control over quality (pure moral haz-
ard). This distinction is blurred further by agents having differing levels of patience that
influence their strategic behavior [5, 16] and also by the blurred distinction of whether
an observation was intentionally communicated [?]. The amount of sanctioning comes
down to how much explicit control an agent has over its communications, and also
intent, which may be subtle.

In broad terms, we can distinguish two varieties of trust that apply in many computa-
tional settings with intelligent agents. We abstract the terms Competence and Integrity,
as described by Smith and DesJardins [16], into

Capabilities, which are what an agent can do, and
Preferences, which are what an agent will do.

From these definitions, it is clear to see that when agents want to determine which
other agents have capabilities, they need a signaling system which looks into what the
agents have done before. When agents want to determine another agent’s preferences
and ensure that the agent will perform a desirable behavior in the future when it has
the choice, then they need a sanctioning system. This is consistent with the notions of
reactive and anticipatory coordination [?].

To examine the role of signaling versus sanctioning on reputation systems, it is
instructive to consider three interrelated terms—trust, trustworthiness, and reputation—
that are used in nonstandardized ways in the literature. We begin from basic definitions
in order to capture the general intuitions about them.

Trust is an agent’s assessment of another party along some dimension of goodness
leading to expected outcomes.

Trustworthiness is how good a party is in objective terms. In other words, this is a
measure of how worthy it is to be trusted.

Reputation is the general belief (among the agents in a society or community) about
an agent.

Specifically, Alice may or may not trust Bob for possessing desirable attributes
(these could be capabilities, resources, bandwidth, and such). Alternatively, Alice may
or may not trust Bob for having his preferences aligned with hers or rather for having
his preferences aligned with hers under a particular incentive mechanism. Bob may or
may not be worthy of any trust Alice may place in him. Bob may or may not have a



reputation for being trustworthy in the specified ways. And such a reputation may or
may not be well earned.

Reputation and trust therefore can be fit into our dual categorization. Reputation in-
volves what an agent is, as measured from its past; an agent has a reputation of having
some attribute or capability, and so a reputation system in this sense is a signaling sys-
tem. Trust is concerned with what an agent will do in a future situation, which concerns
the agent’s preferences and must be handled by a sanctioning system. However, as trust
and reputation have other connotations in specific domains, such as emotion, we will
maintain the distinction using the terms signaling and sanctioning.

3.1 Measuring Influence of Signaling and Sanctioning

Consider agents A and B that have strongly typed behavior, meaning that they will al-
ways behave almost the same way regardless of the situation (e.g., by offering products
of some specific quality). An example of such an agent is one that controls a high-
volume web service with specific offerings and finite bandwidth with little autonomy
and business logic. Consider an agent C that is deciding which agent to interact with
between A and B. If C chooses A, then C will receive some benefit (or loss) of utility,
bA. If C chooses B, then C would receive a change in utility of bB . Since the agents are
strongly typed, C’s behavior other than choosing A or B will not make much difference.
To maximize utility, C should use statistics to measure A and B’s attributes.

Conversely, consider that agents A and B are rational, have full and precise control
over each of their actions, and may change their behavior without any switching costs.
An example of these agents would be low-volume reseller agents that have sufficient
supply of substitutable products. In this case, whether C chooses A and B matters little
to C’s utility. Instead, C’s choices in negotiation and behavior with respect to A or B
dominates C’s change in utility. Finding an optimal interaction strategy is how C can
maximize its utility.

If we write the benefit C will gain with behavior x when choosing agent A as
bA,x, then magnitude difference of utility change between these choosing A and B
while C maintains consistent behavior is |bA,x − bB,x|. Using C’s ideal behavior, this
can be written as maxx |bA,x − bB,x|. When evaluated against all agents available for
interaction, S, agent C’s value of the utility difference between two agents, dselection(C),
can be written in terms of the expected rate of interaction between C and another agent
A as rA,C , as

dselection(C) =
1∑

A∈S rA,C + rC,A
·
∑
A∈S

∑
B∈S

max
x∈H

|rA,C · bA,x − rB,C · bB,x|. (15)

The normalizing term 1P
A∈S rA,C+rC,A

represents the reciprocal of the total interaction
rate. Similarly, we may write the expected value of the utility difference between any
two behaviors, dstrategy(C), of the set of all behaviors in H across all agents, as

dstrategy(C) =
1∑

A∈S rA,C
·
∑
A∈S

max
x∈H,y∈H

|rA,C · bA,x − rA,C · bA,y|. (16)



Seller Agent Refurb. Value Refurb. Market Price Unrefurb. Price Refurb. Cost
A $500 $400 $200 $150
B $490 $350 $250 $80

Table 1. Online auction refurbished laptop example data.

As dselection measures the impact of an agent’s type and dstrategy measures the impact
of an agent’s strategy, we can use these values to determine the impact of signaling
and sanctioning on a multiagent interaction mechanism. In aggregation, we express the
expected value of each of the values across all agents as E(dselection) and E(dstrategy) re-
spectively. The fraction of agents’ total utility in a system that is governed by signaling,
isignaling can be represented as

isignaling =
E(dselection)

E(dselection) + E(dstrategy)
. (17)

The fraction of utility governed by sanctioning, isanctioning, can be represented as

isanctioning =
E(dstrategy)

E(dselection) + E(dstrategy)
, (18)

with isignaling + isanctioning = 1.

3.2 Example: Online Auction Representation

We reuse our general interaction model from Section 2.3 to show an example of ap-
plying our signaling versus sanctioning measure. Suppose agents are participating in
online market for refurbished laptops outlined in Table 1.

A buyer agent, C, values its own utility of the refurbished laptop from A at $500
and the refurbished laptop from B at $490. It needs to decide whether to buy from A
or B for the market price of $400 or $350 respectively. It costs A $150 to refurbish its
laptop that it bought unrefurbished at $200, and costs B $80 to refurbish the laptop it
purchased at $250. Both A and B are claiming that the laptop on sale is refurbished,
but C does not know for sure.

First, we investigate the case of selection. Agent C can select to buy from A or B,
but A and B have no choice in the matter because of the online auction format. The
rates of interaction from A’s perspective are rA,A = 0, rA,B = 0, rA,C = 1, and B is
analogous. The rates from C’s perspective are rC,A = 1, rC,B = 1, rC,C = 0.

First we evaluate dselection(C). Agent A only can interact with C, and the maxi-
mum profit C could make while still providing a laptop is $200. Therefore, dselection(A) =
1
2 · (|($400− $200)− $0|+ |$0− $400− $200)|) = $200. Similarly, dselection(B) =
$100. To compute this value for agent C, we must first evaluate which strategy yields
the greatest difference between choosing A or B. When the seller performs the re-
furbishment, C’s difference in utility between choosing seller A and B is |($500 −
$400) − ($490 − $350)| = $40. When the seller does not perform the refurbish-
ment, the difference becomes |($200 − $400) − ($250 − $350)| = $100. As the rates



of interaction are symmetric, the larger of these two yields dselection(C) = $100.
The combined expected value of the difference of selection across all three agents is
E(dselection) = ($200 + $100 + $100) ≈ $133.

Next we investigate the case of sanctioning. Beginning with A, we find dstrategy(A) =
1 · |($400− $200− $150)− ($400− $200)| = $150, which is the cost of refurbishing
the laptop, and accordingly dstrategy(B) = $80. To find dstrategy(C), we also examine
the sellers’ behavior. If A does not refurbish the before shipping laptop, but instead
delivers a broken laptop, then C regains only $200 from selling the laptop at the unre-
furbished price and loses its $400 payment. Applying this evaluation with both A and B,
dstrategy(C) = 1

2 ·
(
|($500− $400)− ($200− $400)|+|($490− $350)− ($250− $350)|

)
=

$270. Putting the three of these agents’ results together, we obtain
E(dstrategy) = ($150 + $80 + $270) /3 ≈ $167.

The system has isignaling = $133
$133+$166 ≈ .44 and isanctioning = $166

$133+$166 ≈ .66. An
effective reputation system for this system should emphasize sanctioning mechanisms
slightly over signaling mechanisms.

4 Attacks on Trust and Reputation Systems

Given our logic model to represent a trust or reputation system, we can use these for-
malisms to give systematic treatment of types of attack or exploits for each type of
action.

discard identity: An agent may discard its identity to remove a bad reputation and
potentially acquire a new one [4], which can be expressed as ¬ID(agent, id1)
∧Util(agent, discardCost)∧ID(agent, id2)∧Util(agent, acquireCost). At a higher
level, an agent could discard an identity which is not lost in anonymity, but rather used
to frame another agent as a threat, for blackmail, to remove a competitor, or for other
forms of sanctioning.

acquire identity: Sybil attacks occur when one agent creates multiple identities
in order to manipulate a reputation or other aggregation system [11], expressed as
ID(agent, id2)∧Util(agent, acquireCost). Such attacks may directly influence rep-
utation or flood out other behavior.

select agent, negotiate: An agent may select another agent that is known to be in a
weak position or that is easy to manipulate or exploit, offer terms in negotiation with-
out intent to fulfill them or with intent to deceive or harm the other agent, or demand
a commitment by threatening to harm the other agent if not fulfilled. In subsequent
negotiations, an agent may mislead another agent that a previous transaction was prob-
lematic and that reparations are needed to continue the relationship. Agents can also be
selected against for sanctioning purposes.

transaction: An agent may not fulfill a commitment at all, fulfill it only part way or
of lesser quality than expected, or provide something unexpected [15].

update & communicate beliefs: This transition is particularly rich in terms of the
numbers and types of attacks, and can range from coordination with other transitions
(e.g., acquiring identities in a Sybil attack) to simply communicating [3]. An agent can
lie about another agent’s performance for positive or negative reciprocity.



Revisiting Figure 1, the different types of attacks can be categorized by whether
or not they can be primarily addressed by signaling or sanctioning matter. Selecting
agents and updating and communicating beliefs are two of the interactions in the life
cycle that can be exploited in the most complex strategic manners, but also map directly
to signalling systems.

5 Discussion

In this paper, we have examine an architectural view of the trust and reputation life
cycle. The motivation of this paper was not to introduce any new mechanisms of trust
and reputation, but rather to take a step toward formalizing the taxonomy and structure
of trust and reputation. Our model aids in the discussion of systems’ mechanisms, as
it presents a broadly applicable view that can be used in conjunction with other tax-
onomies of reputation systems [12, 1, 13, 7] and taxonomies of attacks [10]. Further, we
offer an indication as to the extent that a given interaction system is affected by both
signalling and sanctioning, which is useful in determining what kind of a reputation or
trust system should be deployed. Our work unifies reputation systems, trust systems,
and related game theory under a common architectural framework.

Applying our measure of the effect of signaling versus sanctioning to a live system
requires some judgement. For example, if the strategy which offers the worst utility for
a given situation is something that no rational agent would do, then it is best left out. In
general, only those actions that lie on the Pareto frontier of utility or on a Nash equilib-
rium (or approximate Nash equilibrium) should be considered. The actual attributes of
the agents, including preferences, utilities, and capabilities may also be unknown to a
system designer, so estimates may often need to be substituted.

A key theme in our model is the relative autonomy of the agents involved. If the
agents behave in a fixed manner that is largely independent of the other agents’ strate-
gies, then are best measured by a signaling system. An agent’s autonomy is further
reflected by the level of bounded rationality and information available to an agent in the
system.

Future work involves investigating time preferences of agents and combinations of
actions. Though our model is high level, some strategies require involvement of several
distinct pieces of the model. Further future work involves deepening the connection
between our logic framework with the signaling and sanctioning measures to give more
prescriptive results.
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